ON SIMILARITY INVARIANTS OF CERTAIN OPERATORS IN L_{p}

G. K. Kalisch

The purpose of this paper is to extend the result of Corollary, Theorem 2 of the author's paper on Volterra operators (Annals of Math., 66, 1957, pp. 481-494 quoted as A; we shall use the definitions and notations of that paper) to the most general situation applicable: We are dealing with operators T_{F} where $F(x, y)=(y-x)^{m-1} a G(x, y)$ is a function defined on the triangle $0 \leqq x \leqq y \leqq 1$, where m is a positive integer, a a complex number of absolute value $1, G$ is a complex valued function which is continuously differentiable and $G(x, x)$ is positive real. We recall that if $f \in L_{p}[0,1]$, then $\left(T_{F}\right)(f)(x)=\int_{x}^{1} F(x, y) f(y) d y$ is again in $L_{p}[0,1]$. The only difference from A is the presence of the constant a which affects none of results except Theorem 2 and its Corollary. Theorems 1 and 2 of the present paper fill the gap. Theorem 3 shows that differentiability conditions imposed on F cannot be abandoned entirely-and also that the integral equation (1) of A cannot be solved unless K (which corresponds to our F) has at least first derivatives near $y=x$.

If c is constant and E is the function identically equal to 1 , we define T_{B}^{c} as T_{H} which $H(x, y)=(y-x)^{c-1} / \Gamma(c)$ (fractional integration of order c).

Theorem 1. Let c_{1} and c_{2} be complex numbers and let r_{1} and r_{2} be real numbers such that $r_{i} \geqq 1$, then $c_{1} T_{E}^{r_{1}}$ is similar to $c_{2} T_{E}^{r_{2}}$ if and only if $c_{1}=c_{2}$ and $r_{1}=r_{2}$.

Proof. The first part of the Proof of Theorem 2 of A applies and implies that $r_{1}=r_{2}(=r)$ and $\left|c_{1}\right|=\left|c_{2}\right|$. Thus suppose that $c_{1} T_{E}^{r}$ is similar to $c_{2} T_{E}^{r}$ or that $c T_{E}^{r}$ is similar to

$$
\begin{equation*}
T_{B}^{r}=P c T_{E}^{r} P^{-1} \text { for }|c|=1 \tag{1}
\end{equation*}
$$

where P is a bounded linear transformation of $L_{p}[0,1]$ onto itself with the bounded linear inverse P^{-1}. If T is similar to $S=P T P^{-1}$, then $f(T)$ is similar to

$$
\begin{equation*}
f(S)=P f(T) P^{-1} \tag{2}
\end{equation*}
$$

for polynomials and even analytic functions f. Let

[^0]$$
f(z)=\sum_{i=0}^{\infty} a_{i} z^{i+1}
$$

Then

$$
f\left(c T_{E}^{r}\right)=\sum_{i=0}^{\infty} a_{i} c^{i+1} T_{E}^{r(i+1)}=T_{g_{1}(y-x)}
$$

where $g_{1}(t)=c t^{r-1} g\left(c t^{r}\right)$ where we have written t for $y-x$ and where

$$
g(z)=\sum_{i=0}^{\infty} b_{i} z^{i}
$$

with $b_{i}=a_{i} / \Gamma(r(i+1))$. Equations (1) and (2) imply that $\left\|f\left(T_{E}^{r}\right)\right\| \leqq$ $\|P\|\left\|P^{-1}\right\|\left\|f\left(c T_{E}^{r}\right)\right\|$. The definition of the norm of a linear transformation in a Banach space implies the following inequality:

$$
\left\|f\left(T_{E}^{r}\right)\right\|=\left\|T_{t^{r-1} g\left(t^{r}\right)}\right\| \geqq\left\|\int_{x}^{1}(y-x)^{r-1} g\left((y-x)^{r}\right) k(y) d y\right\|_{p}
$$

for all $k \in L_{p}[0,1]$ such that $\|k\|_{p}=1$. On the other hand, Lemma 2 of A implies that

$$
\left\|T_{c t}^{r-1} 1_{g(t r)}\right\| \leqq\left\|c t^{r-1} g\left(c t^{r}\right)\right\|_{1}=\left\|t^{r-1} g\left(c t^{r}\right)\right\|_{1}
$$

Thus if $k(y)=1$, we obtain

$$
\begin{align*}
L & =\left\|\int_{x}^{1}(y-x)^{r-1} g\left((y-x)^{r}\right) d y\right\|_{p} \leqq\left\|f\left(T_{E}^{r}\right)\right\| \\
& \leqq\|P\|\left\|P^{-1}\right\|\left\|f\left(c T_{E}^{r}\right)\right\| \tag{3}\\
& \leqq\|P\|\left\|P^{-1}\right\|\left\|t^{r-1} g\left(c t^{r}\right)\right\|_{1}=R .
\end{align*}
$$

We shall find a family of functions g_{v} (and correspondingly f_{v}) depending on a positive parameter v such that if we use the notations L_{v} and R_{v} for the corresponding left and right hand sides of (3), $L_{v} \rightarrow \infty$ and $R_{v} \rightarrow 0$ as $v \rightarrow \infty$ contradicting the inequality (3): this contradiction then proves our theorem.

Let us first consider the case where the real part of $c, R e(c)$, is less than 0 . Let $g_{v}(t)=\exp (v t)$. Since T_{B}^{r} is generalized nilpotent for $r \geqq 1$, the corresponding function $f_{v}\left(T_{E}^{r}\right)$ exists and (1) indeed implies (2) for $S=T_{E}^{r}$ and $T=c T_{E}^{r}$. Then

$$
R_{v}=\left\|t^{r-1} g_{v}\left(c t^{r}\right)\right\|_{1}=\int_{0}^{1}\left|t^{r-1} \exp \left(v c t^{r}\right)\right| d t
$$

and $R_{v} \rightarrow 0$ as $v \rightarrow \infty$. On the other hand

$$
L_{v}=\left(1 / r^{p}\right) \int_{0}^{1}(\exp (v(1-x))-1 / v)^{p} d x \rightarrow \infty
$$

as $v \rightarrow \infty$. If finally $\operatorname{Re}(c) \geqq 0$ and $c \neq 1$, then there exist a positive
integer n such that $R e\left(c^{n}\right)<0$. But then (1) implies that $c^{n} T_{E}^{n r}$ is similar to $T_{E}^{n r}=P c^{n} T_{E}^{n r} P^{-1}$ which contradicts the preceding result and the proof of the theorem is complete.

Theorem 2. Let $F(x, y)=(y-x)^{m-1} a G(x, y)$ satisfy, in addition to the general hypotheses stated above, one of the following:
(1) G is analytic in a suitable region and m is arbitrary;
(2) $G(x, y)=G(y-x), G(0) \neq 0, G \in C^{2}$ and m is arbitrary;
(3) $G \in C^{2}$ and $m=1$. Let A be a complex number. Then $A I+T_{F}$ and $A I+T_{F}^{*}$ are similar to the unique operator $A I+c a T_{E}^{m}$ and $A I+c \bar{a} T_{E}^{m}$ respectively where $c=\left(\int_{0}^{1}\left(G(u, u)^{1 / m} d u\right)^{m}\right.$.

Here I is the identity operator and T_{K}^{*}, the adjoint of T_{K}, is defined by

$$
\left(T_{K}^{*}\right)(f)(x)=\int_{0}^{x} \overline{K(y, x)} f(y) d y
$$

Proof. Note first that A implies that $A I+T_{F}$ is similar to $A I+c a T_{B}^{m}$ and that $A I+T_{F}^{*}$ is similar to $A I+c \bar{\alpha} T_{E}^{* m}$ (see Cor. Theorem 2 of A). Observe next that $T_{E}^{*} f(x)=\int_{0}^{x} f(y) d y$ and

$$
T_{E}^{* m} f(x)=(1 / \Gamma(m)) \int_{0}^{x}(x-y)^{m-1} f(y) d y
$$

and that if $\left(S_{1-x} f\right)(x)=f(1-x)$ then S_{1-x} is an isometry of $L_{p}[0,1]$ onto itself and $S_{1-x} T_{E}^{m} S_{1-x}^{-1}=T_{E}^{* m}$. It remains to show uniqueness. Suppose that $A_{1} I+c_{1} a_{1} T_{E}^{m_{1}}$ is similar to $A_{2} I+c_{2} a_{2} T_{E}^{m_{2}}$. Then $A_{1}=A_{2}$ (because of the complete continuity of T_{E}) and $c_{1} a_{1} T_{B}^{m_{1}}$ is similar to $c_{2} a_{2} T_{B}^{m_{2}}$ which by Theorom 1 implies that $c_{1}=c_{2}, a_{1}=a_{2}, m_{1}=m_{2}$.

Theorem 3. The linear transformation $T_{E}+T_{E}^{1+a}$ where $0<\alpha<1$ of $L_{p}[0,1]$ into itself is not similar to any linear transformation $c T_{B}^{r}$ for complex c and real $r \geqq 1$.

Proof. Preliminaries. 1. If two linear transformations S and T are similar, i.e., if there exists P such that $S=P T P^{-1}$, then there exists a constant K such that

$$
\begin{equation*}
1 / K \leqq\left\|T^{n}\right\| /\left\|S^{n}\right\| \leqq K \tag{4}
\end{equation*}
$$

for all positive integers n. It suffices to take $K=\|P\|\left\|P^{-1}\right\|$.
2. The following inequality is a consequence of the fact that if $0 \leqq F_{1}(x, y) \leqq F_{2}(x, y)$ then $\left\|T_{F_{1}}\right\| \leqq\left\|T_{F_{2}}\right\|$:

$$
\begin{equation*}
\left\|\left(T_{E}+T_{E}^{1+a}\right)^{n}\right\| \geqq n\left\|T_{B}^{n+a}\right\| \tag{5}
\end{equation*}
$$

for all positive integers n.
3. Our next task is to find estimates for $\left\|T_{E}^{n}\right\|$. An estimate from above is the following:

$$
\begin{equation*}
\left\|T_{E}^{n}\right\| \leqq 1 /\left(n \Gamma(n) p^{1 / p}\right) \tag{6}
\end{equation*}
$$

for all positive integers n. An estimate from below is furnished by the following Proposition:

Given the real positive number e there exists a positive number $K=K(e)$ and a positive integer $N=N(e)$ such that for all integers $n \geqq N$,

$$
\begin{equation*}
\left\|T_{B}^{n}\right\| \geqq K /\left(n^{1+e} \Gamma(n)\right) . \tag{7}
\end{equation*}
$$

Proof of (6). If $f \in L_{p}[0,1]$,

$$
T_{E}^{n} f(x)=\int_{x}^{1}\left[(y-x)^{n-1} / \Gamma(n)\right] f(y) d y .
$$

If $(1 / p)+(1 / q)=1$, Hölder's inequality yields

$$
\begin{aligned}
\int_{x}^{1}(y-x)^{n-1} f(y) d y & \leqq\left(\int_{x}^{1}(y-x)^{(n-1) q} d y\right)^{1 / q}\|f\|_{p} \\
& =(1-x)^{(n-1) q+1) / q}\|f\|_{p} /\left(((n-1) q+1)^{1 / q}\right)
\end{aligned}
$$

so that

$$
\begin{aligned}
& \left\|T_{E}^{n} f\right\|_{p}^{p} \\
& \quad=\int_{0}^{1}\left|\left(T_{B}^{n} f\right)(x)\right|^{p} d x \\
& \quad=(1 / \Gamma(n))^{p} \int_{0}^{1}\left|\int_{x}^{1}(y-x)^{n-1} f(y) d y\right|^{p} d x \\
& \quad \leqq(1 / \Gamma(n))^{p}\left(1 /((n-1) q+1)^{p / q}\right) \int_{0}^{1}(1-x)^{(n-1) p+(p / q))} d x\|f\|_{p}^{p} \\
& \quad=(1 / \Gamma(n))^{p}\left(1 /((n-1) q+1)^{p / q}\right)(1 /((n-1) p+(p / q)+1))\|f\|_{p}^{p}
\end{aligned}
$$

which implies that

$$
\left\|T_{E}^{n}\right\| \leqq(1 / \Gamma(n))\left(1 /((n-1) q+1)^{1 / q}\right)\left(1 /((n-1) p+(p / q)+1)^{1 / p}\right)
$$

which in turn implies (6).
Proof of (7). We first observe that elementary considerations concerning the gamma function imply that given c such that $0<c<1$ and given a positive real number d there exists an integer N depending on c and d such that for all integers $n \geqq N$

$$
\begin{equation*}
\Gamma(n+c)<(n+c)^{c+a} \Gamma(n) \tag{8}
\end{equation*}
$$

Consider next the function $f(x)=r(1-x)^{-s} \in L_{p}[0,1]$ such that $\|f\|_{p}=$ 1, i.e., $r^{p}=1-s p$ and $0<s<1 / p$. Then

$$
T_{E}^{n} f(x)=r \Gamma(1-s)(1-x)^{n-s} / \Gamma(n+1-s)
$$

and

$$
\left\|T_{E}^{n}\right\| \geqq r \Gamma(1-s) / \Gamma(n+1-s)(p(n-s)+1)^{1 / p}
$$

We now choose s (and hence r) such that for the positive real number e of (7), $0<(1 / p)-s<e$ and then we choose d such that $0<d<$ $e+s-(1 / p)$ and finally by virture of (8) we obtain N as a function of e such that for all integers $n \geqq N, \Gamma(n+1-s)<(n+1-s)^{1-s+a} \Gamma(n)$ whence

$$
\left\|T_{B}^{n}\right\| \geqq r \Gamma(1-s) /(n+1-s)^{1-s+a} \Gamma(n)(p(n-s)+1)^{1 / p}
$$

which upon choosing $K=K(e)$ properly implies (7).
After these preliminaries, we turn to the proof of the theorem. We distinguish several cases. Let $T=T_{E}+T_{B}^{1+a}$.

Case 1. $|c| \leqq 1$. Consider

$$
h_{n}=\left\|\left(c T_{E}^{r}\right)^{n}\right\| /\left\|T^{n}\right\| \leqq\left\|T_{E}^{n}\right\| /\left(n\left\|T_{E}^{n+a}\right\|\right)
$$

where we have used (5) and the fact that $r \geqq 1$. Take now positive real numbers e and d such that $a+e+d<1$. Then there exists by (7) a positive constant K and an integer N such that for all integers $n \geqq N$

$$
\begin{align*}
h_{n} & \leqq(n+a)^{1+e} \Gamma(n+a) /\left(n^{2} \Gamma(n) p^{1 / p} K\right) \tag{9}\\
& \leqq(n+a)^{1+e+a+a} \Gamma(n) /\left(n^{2} \Gamma(n) p^{1 / p} K\right)
\end{align*}
$$

where we have made use of (8) and (6). The last inequality implies that $h_{n} \rightarrow 0$ which in conjunction with (4) implies the truth of our theorem in the case under consideration.

Case 2. $r<1$. Using the notations and making similar choices as under Case 1, (9) becomes

$$
h_{n} \leqq|c|^{n}(n+a)^{1+e+a+a} \Gamma(n) /\left(n^{2} r \Gamma(r n) p^{1 / p} K\right)
$$

which, since $|c|^{n} \Gamma(n) / \Gamma(r n)$ is bounded (in fact converges to 0) for $r>1$ as $n \rightarrow \infty$, again proves the truth of the theorem in the present case.

Case 3. $r=1,|c|>1$. This time we consider the quotient

$$
\begin{align*}
k_{n} & =\left\|T^{n}\right\| /\left\|\left(c T_{E}\right)^{n}\right\| \\
& \leqq \sum_{i=0}^{n}\binom{n}{i}\left\|T_{E}^{n+a(n-i)}\right\| /\left(|c|^{n}\left\|T_{E}^{n}\right\|\right) \tag{10}\\
& \leqq\left(\left(n^{1+e} \Gamma(n) /\left(|c|^{n} K p^{1 / p}\right)\right) \sum_{i=0}^{n}\binom{n}{i} /(\Gamma(n+a(n-i)+1)),\right.
\end{align*}
$$

which is valid for sufficiently large n; again we used (6) and (7).
In order to complete the proof of our theorem, we need the following fact:

Given any positive real number e and given the positive real number $a<1$, there exists an integer $N=N(e ; a)$ such that for all integers i and n such that $0 \leqq i \leqq n \leqq N$

$$
\begin{equation*}
\Gamma(n) / \Gamma(n+a(n-i)+1) \leqq 2 e^{n-i} \tag{11}
\end{equation*}
$$

Proof. The case $i=0$ results from elementary considerations about the gamma function. If $i=1$, we find N_{1} so that (11) is valid for $i=0$ and $n \geqq N_{1}$. We then find N_{2} so that (8) is true for some arbitrary but fixed d, for $c=a$ and for $n \geqq N_{2}$. Then $\Gamma(n) / \Gamma(n+(n-1) a+1) \leqq$ $(\Gamma(n) / \Gamma(n+n a+1)) /(n+n a+1)^{a+a}$ which for $n \geqq \max \left(N_{1}, N_{2}, e^{-1 / a}\right)=N_{3}$ implies (11) for $i=2$ and $n \geqq N_{3}$. The remaining cases are settled by induction (except $i=n$ which is obvious); note that we never have to go above N_{3} at any point. This completes the proof of (11).

The proof is now completed by substituting (11) into (10):

$$
k_{n} \leqq 2 n^{1+c}\left(1+e_{1}\right)^{n} /|c|^{n} K p^{1 / p}
$$

where e_{1} is the constant e of (11). Thus $k_{n} \rightarrow 0$ upon proper choice of e_{1} and our theorem is again true in view of (4). This completes the proof of Theorem 3.

[^0]: Received February 29, 1960. The author was supported in part by the United States Air Force under Contract No. AF 49(638)-64 and by a grant from the National Science Foundation.

