WEAK COMPACTNESS AND SEPARATE CONTINUITY

IRVING GLICKSBERG

1. For a locally compact space X let C(X) denote the Banach space
of all bounded continuous complex valued functions on X, Cy(X) the
subspace of functions vanishing at infinity, so that the adjoint Cy(X)*
consists of all finite complex regular Borel measures on X. In a natural
fashion, we may view C(X) as a subspace of C,(X)**.

When X is compact Grothendieck [6; Th. 5] has shown that a
bounded set K < C(X) is compact in the weak topology if (and of course
only if) K is compact in the topology of pointwise convergence on X,
and then both topologies, being comparable, coincide on K. In some
recent work the writer was led to a simple corollary of Grothendieck’s
result which yields the significance, when X is only locally compact, of
compactness in C(X) under pointwise convergence:

1.1. Let K be a bounded subset of C(X), X locally compact. Then
K is compact in the topology of pointwise convergence on X (if and)
only if K is compact in the weak* topology of Cy(X)** [4, 5.1].

Again both topologies coincide on K. A direct corollary of 1.1 is

1.2. Let X and Y be locally compact spaces, and f a bounded
complex function on X x Y which s separately continuous, t.e., for
which all the maps

x— flz, y) and y— f(x, y)

are continuous. Then for pe Cy(X)*,

v — |, v)u(do)

18 continuous [4, 5.2].

The continuity obtained in 1.2 allows one to form the iterated
integral

(1.21) |7, ppdopan,  pecqxy, vecuy)y,

and thus one can extend the notion of convolution of a pair of finite
measures to a locally compact semigroup S in which the operation is
only separately continuous. Moreover 1.2 shows (1.21) is identical with
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(1.22) SSf(x, y)(dy)da)

so that convolution is commutative if S is. Consequently we show in
§4 how some results of [3] extend to the separately continuous situation;
these in turn yield an analogue of the Weyl equidistribution theorem
which applies to weakly almost periodic functions on locally compact
abelian groups (4.6 below).

Although the fact will not be needed in what follows, note that 1.1
is actually a weak compactness criterion for the complete locally convex
space C(X), formed from C(X) by endowing it with the strict topology
(cf. [0]). For since the dual C(X); consists precisely of the measures
in Cy(X)*, the weak topology of C(X), is just the weak* topology in 1.1 and
the bounded sets of C(X) and C(X), coincide. But as a consequence
the topology of pointwise convergence on C(X), when restricted to
bounded sets, shares some properties of weak topologies of complete
locally convex spaces: conditionally countably compact sets are condition-
ally compact, and have compact convex hulls.

Notation. For a function f, f|E will denote its restriction to K,
while for a set K of functions, K | E will denote the corresponding set
of restrictions. C(X), and C(X),. will denote C(X) in the topology of
pointwise convergence on X, and in the weak* topology of Cy(X)**,
respectively. In general X and Y will denote locally compact (Haus-
dorff) spaces, and, for a function f on X x Y, f(-, y) will be its section
x — f(x, y) (with f(x, -) defined analogously). As we have indicated f is
separately continuous only if all of sections are continuous. Other
notation is standard.

2. Since the proofs of 1.1 and 1.2 (given in [4]), are quite short, we
shall include them for completeness.

Consider 1.1, and let . be an ultrafilter on K. & converges to
some f, in K in C(X),, and we need only show & converges to f, in
C(X)y. On the bounded set K the weak* topology is defined by the
dense set of measures ¢ with compact carriers C,, so we need only show

S fldp = limgg fdp for such p. But K|C, is compact in C(C,), and thus,
by Grothendieck’s theorem, compact in the weak topology, and both
topologies coincide on K |C,. Clearly then S Sy = Iimgzg fdp as desired.

In order to prove 1.2 we have to show the map y— f(-,y) of Y
into C(X),. is continuous. But it is a continuous map into C(X),, so
that any compact neighborhood V of y,€Y has an image which is
compact in the weak* topology by 1.1. And since the weak* topology

coincides on this image with that of pointwise convergence, the desired
continuity is immediate.
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As a first application of 1.2 we note the following simple proof of
the well known fact (due to Krein and Smulian) that if K is a weakly
compact subset of a complete locally convex linear space FE, then the
closed convex hull °(K) is weakly compact. Take, as our X and Y
of 1.2, K in the weak topology, and the polar V° < E* of a neigh-
borhood V of 0 in E, in the weak* topology. Since z — {x, 2*> and
x* —x,x*) are each continuous in the appropriate topologies, by 1.2
we have, for p¢e C(K)*,

(2.11) o — S<x, oS ()

continuous on V° Since V is an arbitrary neighborhood of 0, and E is
complete, a well known result of Grothendieck [5] shows (2.11) repre-
sents a weak* continuous functional on E*, and thus there is an z, in
E satisfying

(2.12) &y, ¥ = S(oc, x*>uldr) , x*e B* .

Let N={u: pe C(K)*, £ =0, i(K) = 1}, a weak™ compact convex subset
of C(K)*, and endow N with the weak* topology. Since

©— S<x, x*yp(de)

is clearly continuous on N, (2.12) implies ¢ — x, is a continuous map
from N into E under the weak topology; thus the range of this map is
a convex weakly compact subset of E, which clearly contains K. Since
Z(K) is weakly closed by Mazur’s theorem, this is all we need to
show.

3. As was noted in the introduction, 1.2 allows one to form the
iterated integral

|\, vdzyay), (e CX)*, ve CUY)"

for any bounded separately continuous f. The desirable interchang-
ability of the order of integration would of course be immediate once
f is, say, locally Borel measurable; however the writer is not aware of
any general answer to the question of measurability of separately con-
tinuous functions (a special case is covered in [7, §39]). Nevertheless
the independence of order is easily obtained from 1.2.

THEOREM 3.1. Let f be a bounded separately continuous complex
Sunction on X x Y. Then

@11) ||z, pdomay = ||, vr@nudn, pecix)y, vec(ry .
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Proof. Let p be fixed. For K a compact subset of Y let Ex =
{r:llv]l £1, v vanishes on subsets of K’}. Clearly (3.11) holds when
v is a finite linear combination of point masses; since these are weak*
dense in Er we can prove (3.11) holds for all v in K by showing both
sides are continuous functions on FEj, taken in the weak* topology of
C(Y)*. By Urysohn’s lemma this topology coincides on E, with the
weak* topology of C(K)*, and thus the left side of (3.11) is continuous
since the inner integral represents an element of C(K). On the other
hand Ey is compact in the weak* topology of C(K)* and

(%, v) — Sf(w, y)v(dy)

defines a bounded separately continuous function on X x Ex (by 1.2 and
the definition of the weak* topology). Thus 1.2 implies

v— | |, u(dyde)

is continuous on FEi.
Consequently (3.11) holds for any given g, and any v with compact
carrier. Since such v are strongly dense in Cy(X)*, (3.11) follows.

4. Let S be a compact space which is also a semigroup (group),
and suppose the operation is separately continuous:

z—xy and y — xy

are continuous; then we shall call S a compact separately continuous
semigroup (group). For g and v in C(S)* we can form the convolution
of £ and v, an element v of C(S)*, by virtue of the Riesz represent-
ation theorem and 1.2:

[@ran) = || ravpdoman), feas).

Convolution is easily seen to be associative, and endowing C(S)* with
its weak* topology, separately continuous (by 3.1). Moreover 3.1 shows
convolution is commutative when S is.

Let S= {p: pe CS)*, p=0,4S)=1}; S forms a compact separ-
ately continuous semigroup under convolution and the weak* topology.
In [3] the writer determined the subgroups of S when S is also jointly
continuous; in the present section we shall see how some of the results.
of [3] extend to the separately continuous situation. (We might remark
that compact separately continuous semigroups arise naturally in the
study of weakly almost periodic functions on, for example, the real line

(cf. [2]).
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That most of these results carry over to the separately continuous
situation is due to the consequences of Grothendieck’s theorem given
above. We shall also make mild use' of a fact due to Ellis [1] which
can be obtained, interestingly enough, from Grothendieck’s result [2,
Avppendix]: a compact separately continuous group is a compact topo-
logical group. In particular any closed algebraic subgroup of S is a
compact topological group. (However an algebraic subgroup need not
have its closure an algebraic subgroup, as in the jointly continuous
case.)

To begin, let us note some distinctions between the present, separ-
ately continuous, situation, and that of [3], preserving, insofar as
possible, the notation of [3]. When S is separately continuous, only
the same is true of S in general. But all of the ideal structure used
in [3] continues to hold (with one exception: (1.11) of [3] fails); in par-
ticular every abelian separately continuous compact semi-group S con-
tains a least ideal (N,es®S) which is closed, a group, and thus a com-
pact topological group. (In [3] we allowed S to be abelian, or a group;
by virtue of the result cited above nothing new is obtained by allowing
S to be a group here, and we shall insist that S be abelian in all but
our first result.) The following is, in modified form, the key lemma

of [3].

LEMMA 4.1. Let S be a compact separately continuous semi-group,
and let p,veS. Then

(4.11) carrier py = [(carrier p)(carrier v)]~ .

Proof. The proof given in [3, Lemma 2.1] with A-B replaced by
the right side of (4.11) shows the right side has pv-measure 1. To see
that any open set W which meets the right side of (4.11) has py(W) >0,
we argue as follows.

Let x,,€ W, x,€ carrier y, y,ccarrier v. Then if fe C(S) vanishes
off W while f(xy,)=1, 0 = f <1, we have S fley)p(dx)>0 since x—f(2Yo)
is positive near x=wx, Since y— S fxy)(dx) is continuous by 1.2, and
positive at y = y,,

0 < |[enpdapan) = {Fopids) < mw) .

Consequently the right side of (4.11) is indeed carrier fwv.

In the remainder of this section we assume that S is an abelian
compact separately continuous semigroup.

1 Essentially we use this to assert that u in 4.2, when shown to be an invariant nor-

malized measure on a separately continuous compact group, is the Haar measure; of course
this could easily be avoided.
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THEOREM 4.2. Let (2 = peS. Then carrier p is a compact sub-
group of S, and p its Haar measure.

If H = carrier p, then 4.1 shows H?~ = H, and scrutiny of the
proof of [3, Th. 2.2] shows this is an adequate replacement for H?=H.
(Note that 1.2 must be used to obtain the continuity of f’.)

THEOREM 4.3. Let I' be an algebraic subgroup of S. Then
G=U.er carrier ¢t is an algebraic subgroup of S. If 1 is the identity of
I, g = carrier 1) is a compact topological group, 7 its Haar measure, and
I the set of G-translates of 7. Furthermore if I' is closed, G is closed.

Proof. G is algebraically a subsemigroup of S by 4.1, while g is a
compact group and 7 its Haar measure by 4.2. Let ¢ be the identity
of g. Then for pel’, xecarrier ¢t = [gcarrier ¢]~ implies ex = x since
this holds for « in g carrier . Consequently e acts as an identity on G.

Again let e I’, x e carrier g, z € carrier ¢*; then zgCcarrier ¢ by
4.1, so xzg C (carrier p)(carrier ') C g, and thus g = (xz9)g =xz9. Con-
sequently there is a y in zg for which 2y = ¢ and G is a group. More-
over x' =yezg so zex'g; since z was any element of carrier g7,
carrier p' C a7'g = yg C zg C (carrier 1 *)g C carrier #~*. Thus carrier p*
= zg for any zecarrier ¢, or carrier ¢ = xzg, for any z in carrier 4,
and carrier ¢ is a coset of g in G. Now

[r@ ma = [[rewmaman, recs),

since p¢ = npu. Since y — S flxy)n(dx) is constant on carrier ,

[#@) a2 = {r@wym(aa)
for any ¥ in carrier ¢. Thus g is exactly the translate to yg of 7.
Finally suppose I" is closed. If xeG~ we can find nets {x;} and
{¢ts} for which x;—x, x; € carrier t;, ¢, € I” and g;—pel’. If x & carrier p

then xzg N carrier ¢t = ¢ and there is an f in C(S), 0 =< f < 1, which is
1 on zg and 0 on carrier p. Since

v — \fwanaz
is continuous by 1.2, and assumes the value 1 for ¥ in xg, we have
+ = {fwamian = [forz) for 2 5,

despite the fact that
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[f@edn = s@pdz = 0.

Thus z ecarrier ¢t C G, and G is closed, completing our proof.

Actually we can obtain all of the analogous result (Th. 2.3) of [3];
it is easy to see that if I" is closed (as [3] required) then the weak*
-closed convex hull &(I") of I' is the image of (G/g)~, using exactly the
map T, of [3, 2.3] (alternatively we could note that our measures all lie
.on a compact topological group G, and apply 2.3 of [3]).

THEOREM 4.4. Let 3 be a closed subsemigroup of S with least
ideal 75 let* S, = (U.escarrier p)~, with least tdeal I. Then
I = e~ carrier p.

Proof. Since .7 is a closed subsemigroup of 5, and thus of S, by
4.3, G = U,er carrier ¢ is a closed subgroup of S, and thus of S,. Let
Sy = Uees carrier g, and algebraic subsemigroup of S with S;=S,.

Suppose xS, does not contain G for some z in S,. Then since
yexS, N G implies G = yG C 2S,G C zS,, S, N G = ¢. Consequently
there is an f in C(S) which vanishes on %S, and is 1 on G. Since
xeS, =Sy, there is a net x; — x, x;€ccarrier g, ps€2. For v in 7,

% carrier v C xS, so that S fley)v(dy) =0, and therefore S flxsy)v(dy)—0
‘by 1.2. On the other hand p;v e _ 7 so that x; carrier v C carrier psv
C @, and \f(zsy)v(dy) =1, a contradiction, whence we conclude that

‘G C xS, for all  in S;. Thus G C I = Nies,®S,.

Now for # in S, and v in _#, the fact that x carrier v € G shows
2G C G; for y in G then 2ye( for all x in S, since G is closed and
x — zy continuous. Consequently G C G, all z in S,, and G is an ideal
in S;; of course G must then contain the least ideal I, whence G =T
.and our proof is complete.

By virtue of 4.4 and the remark immediately preceding it we obtain,
by exactly the proof of [3, 3.2],

THEOREM 4.5. Let ﬂeg. Then (1/N)SN_.p" — Haar measure on
ithe least ideal of the closed subsemigroup of S generated by carrier .

For the proofs of some of our next remarks (and for definitions of
‘the basic entities involved) the reader is referred to [2]. Let G be a
locally compact abelian group. Then the weakly almost periodic funec-
tions on G form a closed translation invariant subalgebra W(G) of C(G)
-containing C,(G). Moreover W(G) is isometrically isomorphic to C(G"),
where G* is a compact abelian separately continuous semigroup, the

2 Separate continuity (applied twice) is sufficient to guarantee that the closure of an
valgebraic subsemigroup is a subsemigroup.
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weakly almost periodic compactification of G, in which G forms (topo-
logically® and algebraically) a dense open subgroup; the elements in W(G)
are just the restrictions, to G, of the elements of C(G*). (G* is mot
jointly continuous, or a group, unless G is compact.) Naturally each
finite measure ¢ on G induces an element ' of C(G*)*, and p©— ' is
easily seen to preserve convolution, norm and order; in particular =0,
| ]l =1 imply ¢ eG®. If we define the carrier, in G, of such a non-
negative ¢ to be the closed complement of the union of all open sets
_of p-measure zero, then carrier ¢ in G contains the carrier of p (since
open sets in G remain open in G¥, and Cy(G) € W(G)). Finally let the
translate R,f of f be defined by R,f(9') = f(9'9), 9,9" in G, f in W(G).
We need only apply 4.5 to S = G* and g’ to obtain

~ THEOREM 4.6. Let G be a locally compact abelian group, and let
¢t =0 be an element of C(G)* of norm 1. Then there is a non-negative
functional F of morm 1 on W(G) for which

N
=+ 3\ oo — F(5) fin W@,
and F(R,f) = F(f) for all g in the carrier of .

Here p" is, of course, the ordinary n-fold convolve of p. As the
reader will observe, a related result can be obtained when G is merely-
an abelian topological semigroup, as in [2].

Familiar results from ergodic theory suggest an alternative approach:
to 4.6, but yield a result of a different nature. Indeed if we define

prf, for fin W(G), by pxf(g) = Sf(gg’),u"(dg') then p"xf lies in the
weakly compact closed convex hull K of the set of translates of f,
and ergodic theory shows (1/N)>.,_,p"+f converges strongly to an f; in
K with pxf; = f;. From this alone it is not all apparent that f, should
have the stronger invariance property that R,f; = f; for g in the carrier:

of g But since pf(g) = SR, F(g")r(dg’), 4.6 shows

=+ Srufa) — F(R,f)

and f,(9) = F(R,f), so f, does indeed have the invariance property..
Consequently we have proved

COROLLARY 4.7. Let G be a locally compact abelian group, p a
non-negative measure of norm 1 on G. Then the operators

3 In the more general context of [2] G is only imbedded continuously in Gw; here
Cy(G) = W(G) guarantees the imbedding is open as well.
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f—

1, ,

Ngl# *f

on W(G) converge in the strong operator topology to a projection onto
the manifold of functions left fixed by {R,: g in the carrier of p}.

4.8 REMARK. The remaining result of §3 of [3], 3.5, extends to
the present context with no change in proof; beyond this point, how-
ever, there are difficulties in obtaining extensions. In particular §4
makes strong use of the now lacking property that the closure of an
algebraic subgroup of S be a group.

5. For E c C(X) let o(C(X)*, E) denote the least fine topology
for which the maps

p— |f@)pds), feE,

are continuous. When X is taken to be a locally compact abelian group
G, 1.1 can be applied to some topologies on C(G)* by virtue of the
Fourier-Stieltjes transformation. Let G~ denote the character group of
G, [ the Fourier-Stieltjes transform of pe Cy(G)*, C(G)*" the set of
all such transforms.

THEOREM 5.1. Let K < C(G)* have a wuniformly bounded set of
Fourier-Stieltjes transforms. Then K is a(C(G)*, C(G™)*") compact
if (and of course only if) K is o(Cy(G)*, G™) = a(C(G)*, P(G™)") compact,
where P(G") is the set of point masses on G~. Moreover K is then
weak® compact if bounded.

We need only note that by virtue of the identity

| Ao ptde) = || puaad)

(for pe C(G)*, v e C(GT)¥), a(Cy(G)*, CG™)*") is the topology o¢(C(G)*",
C(G™)*) (or the weak* topology of C((G™)**) transported to C,(G)*, while
a(C(G)*, P(G™)") corresponds in the same way to a(Cy(G)*", P(G™)) (or
the topology of pointwise convergence). Thus 1.1 can be applied. For
the final statement, note that C(G™)*" contains L,(G")", which defines
the weak* topology on bounded subsets of Cy(G)*.
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