
ON EQUIVALENCE OF GAUSSIAN MEASURES

DALE E. VARBERG

1. Introduction. When are two Gaussian processes equivalent
•(mutually absolutely continuous with respect to each other)? More
precisely, given {S, B, mj, i = 1, 2, where S is a set of real valued
functions on some interval [a, &], B is a Borel field of subsets of S and
wti is a Gaussian probability measure on B, under what conditions is mx

•equivalent to m2? This question has been investigated, by several authors.
In particular, we mention Jacob Feldman, who in a recent paper [5] has
shown that a certain dichotomy exists. If S is a linear space, then
either m1 and m2 are equivalent or they are perpendicular (mutually
singular). Moreover, using some results of Segal [6], he has shown
that, if K is the linear span of S and the real constants, then mx and
m2 are equivalent if and only if the mi-equivalence classes of K are the
.same as the m2-equivalence classes of K and the identity correspondence
between the L2{m^) closure of K and the L2(m2) closure of K is a bounded
invertible operator T such that (T*T)112 — / is a Hilbert Schmidt opera-
tor.

We propose to look at this question from a somewhat different point
of view. It is well known that a Gaussian process and hence its prob-
ability measure is determined by a covariance function r(s, t)1. It should
therefore be possible to answer the question posed above directly in
terms of conditions on the con variance functions of the two processes.
We are able to do this for a rather wide class of Gaussian Markov
processes (Theorem 1), and we conjecture that an answer of this type
is possible in general. The crucial condition appears to be that the first
derivatives of the two covariance functions have the same jump on the
diagonal s = t. To set the stage for our main theorem, we make the
following definition.

DEFINITION 1. Let M = M[a, b] denote the class of all Gaussian
processes {x(t), a ^ t ^ 6} with mean function identically zero and
covariance function r(s, t) given by

_ (u(s)v(t) s S t )

\u(t)v(s) s ^ t )

where moreover,
(A) u(a)^0,

Received June 12, 1960.
1 More correctly, it is determined by a covariance function r(s, t) and a mean function

m(t), (see [3], p. 72). We assume that the mean function is identically zero throughout
this paper.
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(B) v(t) > 0 on [a, b],
(C) u" and v" exist and are continuous on [a, 6],
(D) v{t)u\t) - w(*y(t) > 0 on [a, 6]2.
Almost all sample functions of such processes are continuous (see

[4], pp. 401, 402). We shall assume therefore that the space of sample
functions of processes belonging to the class M[a, b] is {C, B] where
C = C[a, b] is the set of all continuous real valued functions on [a, 6]
and B is the Borel field of subsets of C generated by sets of the form
{x e C:ak< x(tk) Sh, k = 1, 2, • • •, n, tke [a, &]}.

THEOREM 1. Let {x(t), a ^ t ^ b} and {y(t), a g t ^ 6} be two Gaussian
processes belonging to M[a, b] with probability measures mr and m^
determined by their respective covariance functions r(s, t) and p(s, t).
Let

u(s)v(t) s^t) WsMt) s 5S t
u(t)v(s) 8^t)' P(S' ] " lOms) S ^ t

Then, necessary and sufficient conditions that mr be equivalent to m<>
are that

(E) v{t)u'(t) - u(t)v\t) = 4it)0'{t) - e{t)<j>\t) on [a, 6],
(F) u{a) and 0{a) are either both zero or both non-zero.

Moreover, if these conditions are satisfied, the Radon-Nikodym derivative
of mp with respect to mr is given by

dmPldmr =

where

{Ma)v(b)]l[cl>(b)v(a)]}^ if 6{a) = 0
1 V ( a M & ) ] / [ 0 ( « M & ) ] } 1 / 2 i f 6>(a) ¥ = < > ) '

JO i f 6{a) = 0
2 (WaWia) - u(a)v(a)]l[v(a)cl>(a)6(a)u(a)] if 0(a) * 0

and

f(t) = [v(t)(j>'(t) — (j>(t)v'(t)]l[v(t)u'(t) — u(t)v'(t)]s.

The ''necessity" part of the proof depends on a theorem of Baxter
while the ''sufficiency" will be made to depend on several lemmas.

2 Conditions (A), (B) and (D) insure that r(s, t) is a covariance function. Covariance
functions which factor this way are sometimes called triangular covariance functions. Gaus-
sian processes determined by triangular covariance functions may be shown to be Markov
processes.

8 The corresponding theorem for the Wiener process on [0,1], (i.e., for the case r(s, t) =
min (s, £)), was obtained by a somewhat different method in the author's doctoral disserta-
ton written under the direction of Professor R. H. Cameron (see [8]).



ON EQUIVALENCE OF GAUSSIAN MEASURES 753

After proving the theorem, we give several examples, one of which
(Example 3) implies a result previously obtained by Charlotte T. Striebel
in connection with Ornstien Uhlenbeck processes.

2. Baxter's theorem and a corollary•

BAXTER'S THEOREM. Let {x(t)f a ^ t S fi} be a Gaussian process with
mean function identically zero and continuous covariance function r(s, t),
r having uniformly bounded second derivatives for s =£ t. Let

frit) = lim_ r«> *> ~ r < s ' *> - lim+
 r{t' *> ~ r(*> *) .

s->t t — S s-+t t — S

Then with probability one,

(2.0) lim £ [x(tk) - x(tk^)Y = \"fr(u)du
n-+oo k = l job

where tk = a + k(fi - a)2~n, k = 0, 1, 2, • • •, 2n \

COROLLARY. Let {x(t), a g t ^6} and {y(t), a ^ t <£ b} be Gaussian
processes with mean functions identically zero and covariance functions
r(s, t) and p(s, t) determining probability measures mr and mp respec-
tively. Suppose that r and p satisfy the conditions of the above theorem.
Then, if mr is equivalent to mp, it follows that fr(t) = fp(t) for all
t 6 [a, b].

Proof of corollary. Let S denote the common space of sample
functions of the two processes and let

xeS: lim £ [x(tk) - x(t^)Y = fr{u)du\
n-+oo k=l Ja )

where tk = a + k(fi - a)2~n, k = 0,1, 2, • • •, 2n, fi e [a, b]. By Baxter's
theorem mr{N^} = 1 = mp{Ng}. Now let / denote the Radon-Nikodym
derivative of mp with respect mr. Then if % denotes the set character-
istic function of Ng, we have

mp{N^} = E>\x(v)} = Er{x(x)J(x)} = V.

Hence mp{Na\ = mp{M} = 1, i.e., for each fi e [a, b], N* and M are sets
of mp measure one. It follows that \ fr(u)du — \ fp{u)du for each

ja Ja

fie [a,b] and, since fr and fp are continuous, fr(fi) = fP(fi) for each
fi e [a, b].

This result gives the "necessity" almost immediately (see §5). The
4 This actually is a slight generalization of the theorem of Baxter (see [1]), the gener-

alization being that we state the result (2.0) for the interval [a,/9] rather than [0,1].
5 Er denotes expected value on the Gaussian process with covariance function r.
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1 'sufficiency'' is apparently harder to demonstrate. To facilitate matters
we introduce some notation and prove four lemmas.

3* Notation, The following notation will be used throughout the
rest of this paper.

(u(s)v(t) s^
r(s, t) = ]

\u(t)v(s) s^

= \ e ( s w t ) s = *

r is the covariance function of the process {x(t), a ^ t ^ b},
p is the covariance function of the process {y(t), a ^ t g &},

w(s) = v(s)u'(s) —

CO(S) -

m = 2W ,
tk = a + fc(6 — a)/m , ifc = 0 ,1 , 2, • • •, m; w > 0 ,

for any function g, g^ — git^), unless otherwise indicated,

i2 is the mxm matrix with elements rjfc; j , k = 1, 2, • • •, m,
P is the m#m matrix with elements pjJC; j , k = 1, 2, • • •, m,

I i21 and | P \ are the determinants of R and P respectively,

x = (a? i , a? a , • • • , » « ) ,

J ^ = (Pi - p0, p2 — pl9 pm — pm-J .

4 . Some lemmas.

LEMMA 1. Under (A), (B) am£ (D) of Definition 1,
(a) w(t) > 0, 6(t) >0 for te (a, 6],
(b) wk > 0, a)fc > 0 /or fc = 1, 2, • • •, m; w > 0,
(c) JB"1 cmd P"1 6xisi.

Proo/. dldt[u(t)lv(t)] = w(t)/v\t) > 0 by (B) and (D). Hence (*)M«)
increases as <̂  increases and so u(t) > v(t)u(a)lv(a), t e (a, 6], and 0 <
[Wjb/vJ - [^-i/^-J = ^ f c /[^^-i] , fc = 1, 2, • • •, m, giving the first parts
of (a) and (b). One may actually compute R~\ the result being
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(4.0)

u2
uxw2

1
w2

o

1
w2

w3w2

1
wz

u4v2

0

1

— u2v4

W3W4

We remark for later reference that | R | may also be computed explicitly.

(4.1) | i e I = uxw2w^ •- . o)mvm .

C o m p l e t e l y a n a l o g o u s r e s u l t s h o l d f o r 6(t), %&%, P 1 , a n d \ P \ .

LEMMA 2. Under (A)~(D) of Definition 1,
(a) 2nwk, 2n(b1c are bounded uniformly (in k and n) away from 0,
(b) if w(t) = Q)(t), then lim | d)k — wk \ 2

2n = 0 uniformly (in k).
n—>oo

Proof. A simple algebraic manipulation followed by use of the mean
value the theorem for derivatives gives

2nwk = w(t^) + 2—*[& - dllvit^WiXn) - vit^W'iXn)]

where tk^ < XM X2J6 < <s. That 2nw1c is uniformly bounded away from
0 now follows from the fact that w is (uniformly) continuous and positive
on [a, b] and hence bounded away from 0 and from the fact that the
second term in the expression for 2nwlc becomes uniformly small as n
gets large. A similar argument is pertinent for 2nd)JC giving us part (a).

A somewhat more lengthy algebraic exercise together with applica-
tion of Taylor's formula (two terms plus remainder) gives

22n[d>k - wk]

[(6 - a

Since o)(t) ~ w(t) (and hence a)\t) = w(t)) and since 6»", 4>", u" and v" are
(uniformly) continuous on [a, 6], it follows that (6) holds.

LEMMA 3. If Conditions (A)-(F) of Definition 1 and Theorem 1
hold, then
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(a) lim[|i?|/|P|] = Clf
n-*oo

(b) lim x\\ \ = C2x
2 (a) for almost all x (mr sense),

(see Theorem 1 for the definitions of d and C2).

Proof. Using formula (4.1) for \R\ and its analog for | P\ we have

ln[\R\l\P\] = Iniuje,] + ln[vJ4>m] i

Now

kl<&k] I - I lnwk -

where min (<bk, wk) ^ Xk ^ max (o)fc, wfc). But by Lemma 2, | wfc — Afc | =
o(2~2n) uniformly in k while Xk2

n is bounded away from 0 uniformly in
k and n. It follows that

lim 2 ?w[wfc/Afc] = 0 .
n->oo fe=2

Hence

lim Zw[| RI /1 P |] - lim Zw[

This gives part (a) immediately in ca£°. 6{a) =£ 0. If 0(a) = 0 (and hence
u(a) — 0) we use the fact that w(t) = a)(t) to write

so that

[d[u(s)lv(s)] =
Ja

By the mean value theorem for integrals and the fact that u(a) — 6(a) = 0t

we have

(4.2) u(t)lv(t) = [<t>\X)6{t)\lv\X)4>{t)\ for some X, a < X < t .

Rewriting and letting t —> 0, we see that limc_0 [u(t)l0(t)] = 4>{a)lv{a), the
needed result.

Part (b) is immediate in case 0(a) and ii(<x) are not zero. If 6(a) =
w(a) = 0, then x(a) = 0 with mr (and mp) measure one. Hence it will
be sufficient to show that [ l / t ^ J — [l/^i^>i] is bounded. But
[ 1 / ^ ] = {[^/Wi] - [Vi/^ilJ/bA] which will be bounded if
is bounded. Now



ON EQUIVALENCE OF GAUSSIAN MEASURES 757

u(t) 6(t) U(t)0(t)

u{t)9{t)

where a < X < t, (by 4.2),

\4>\t)v\X)-4>\X)v\t)\
u(t)v2(X)<p(t)

<P(a) + na) v\X) - v\t)
t — CL t — a t —

~ [u(a)lv{a)]

t — a

^ + 2v\t)j(XMX^
t — a t — a

where a < Xx < t, X < X2 < t, a < X3 < X, a < X, < t. This last] ex-
pression is clearly uniformly bounded for t e (a, &].

The first three lemmas allow us to prove the following key result.

LEMMA 4. If (A)-(F) of Definition 1 and Theorem 1 hold, then

Mmx'iR-1 - P^)x = C2x\a) + \f{t)d{x\t)j[4>{t)v{t)\} .

Proof. We may verify using formula (4.0) for R'1 and its analog
for P-1 that

_ _ /j.2 ^2 m f (7; ^ -jj UJ \2 (d> X (/> X Yr

X \It — r )X — — ~r 2-i 1 ^ — ^
U1V1 ^1^1 fc=2 I Vfc-iVfcWfc ^fc-î fc^fc

where

Kn(x) = S[<fe» - wk\[cj>k-1xk

We note first that Jn(x) —> C2^
2(^) as ^ —> co by Lemma 3 part (b). We

show next that Kn(x) —> 0 as w —> oo. Let e > 0 be given and choose
N so large that n^ N implies that m21 o>fc — wk \ < e, (see Lemma 2).
Let T = minô &^m>7l>o[m

2(/)fc_1(/)&a)fc'̂ fc]. Then for n^ N,
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- wk

fyfc-1
+

S (e/r) s { -

where ifc_x < Xs < ^

(4.3) I Z J ^

Thus

(b — a)\rm

(2e/r)

(26/r)

The first three terms are small since the sums involved are Riemann
sums. Futhermore the sum in the fourth term approaches a limit by
Baxter's theorem. The result now follows.

Lastly, we consider Ln(x).

Ln(x)

- g)/2m]
*=2 U X - uhv'k + [vfcu"

(by Taylor's formula)
- a)/2m]

Kfa) . B / m U a?8^) _ ^2fe-i)

(where J5fcm is bounded independently of k and m)

a s w - > c o .

For later re ;rence we note that the last expression for Ln(x) may be
rewritten using partial summation giving

(4.4) Ln(x) - {Jf^'l Mf(tm)
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5* Proof of Theorem 1»

Necessity. Here we assume that mp is equivalent to mr. Now by
the corollary to Baxter's theorem, fp(t) == fr(t). An easy calculation
shows that fr(t) = v(t)u'(t) - u{t)v'(t) and fp(t) = 4>(t)0f(t) - 6{t)fi{t) so
that Condition (E) holds. To see Condition (F), we note that #(a) = 0
with mp measure 0 or 1 according as 0(a) ^ 0 or 0(a) = 0. Similarly
x(a) — 0 with mr measure 0 or 1 according as u(a) ^ 0 or u(a) •= 0. But
since mp is equivalent to mr, null sets with respect to the two measures
must correspond. Hence F holds.

Sufficiency. We assume that Conditions (E) and (F) of the theorem
are satisfied. Define two functions FM and FMi7l on C[a, b] by

(1 if sup [ i/(«) I ̂  M)
FM(V) =

(0 otherwise )
1 if sup I y(tk) I ̂  M and S b(«*) - 3/(<*-i)]a ^ ^(^)^^ + 1

0 otherwise J

Let HM n be a function of m real variables i6 = (uu uu • • •, um) such that

1 if sup I uk I ^ M and S K - %-i]2 ̂  w(t)d« + 1

0 otherwise I

and note that HM n(y) = FM>n(y). By Baxter's theorem and using the
continuity of y and the fact that fp(t) = /r(<) = w(i), we have that for
almost all y e C (in the sense of both measures mp and mT) limw_oo FMn{y) =
Ĵ jf(l/) a n ( i lim^^co JFM(T/) = 1. Hence for any step function p on [a, 6],

exp ^y(t)dp(t)j = F^\m^FMtn{y) exp

\im [HM>n(y] exp y'
w->oo

= lim Ep{HMn(y) exp (^'z/p)} (by bounded convergence)
n-*oo

= lim [(2n)m \P\]-m\°° Hu,n(u) exp [ i t ' ^ " - (1/2)%'P-^du

= \im {[\P\I\R\)[(2nr I 221]}-1'21*2^..(it)
n-*oo Ja

x exp {u'~Jp + (lffllu'iR-1 - P-^u - u'R-^jdu
= lim [| 221 /1 P |]1/2 lim Er{HK,n(x) exp [x'lp + (lffix'iR-1 - P-l)x]}
- C1! lim Er{FM.n(x) exp [sc'Jp +
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the last equality following from Lemma 3, part (a). Now the expectant
will be bounded (independently of n and x) provided xrAp+(ll2)xf{R~~1 — P-1)x
is so bounded on the subset An of C where FM>n is different from 0.
But on An, x'~dp <Z MYl=i I P(h) — P(h-i) I which is bounded (independently
of n and x). Furthermore, x'iR'1 — P~l)x = JJx) + Kn{x) + Ln(x). Jn(x) is
bounded on An as may be seen from the proof of Lemma 3, part (b),
while Kn(x) and Ln(x) may been to be bounded on An by examination
of formulas (4.3) and (4.4) respectively. This allows us to take the limit
inside the expected value from which we obtain (see Lemma 4)

(4.5)

E>{FM(y) exp

Now letting ilf —> oo, we obtain by monotone convergence

(4.6)

(l/2)(C2x
2(«)

Now consider the stochastic process {z(t), a s; t g 6} with space of
sample functions {C, B) whose Radon-Nikodym derivative with respect

to MO, a g t ^ b} is d exp [l/2]fc2a;2(a) + ["f(t)d{x2(t)l[4>(t)v(t)]}\ Then

for all measurable (B) functions F,

(4.7) E{F(z)} = C^\F{x) exp

Hence in particular, formula (4.6) holds for the process {z(t), a =g t ^b}.
But this means that {z(t), a g t ^ 6} and {#(£), a ^ t ^ b} have the same
multidimensional moment generating functions and since they determine
the measures of all the measurable subsets of C (i.e., all sets in B),
the processes z(t) and y(t) are identical. Since (4.7) holds for the former,
it also holds for the latter. This shows that mp is absolutely continuous
with respect to mr. By symmetry, mr is also absolutely continuous with
respect to mp. This completes the proof.

5. Examples* The best known process in the class M[0, T] is the
Wiener process (Brownian motion process) with probability measure mWa

determined by the covariance function

{(J2S S < t)

wa(s, t) - a' min (s, t) - \ g > A > a% > ° •
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Theorem 1 shows immediately that two such processes determined by
covariance functions wai and wV2 are equivalent if and only if ax — a2,
{see [2] for a discussion of what is essentially this problem). We can
actually say much more. In fact, we can easily characterize all processes
in the class M[0, T] which are equivalent to the Wiener process deter-
mined by wa(s91)*. Let <f> be any function which is positive and has a
continuous second derivative on [0, T] and define 6 by 6{s) =

^2^(s)\ [V<t>\t)\dt. Then those processes (and only those) in the class
Jo

ikf[O, T] with covariance functions of the type

P{Sf ^ [0(t)4>(8) S ^ t\

are equivalent to the process in M[0, T] determined by wa(s91). We
give two examples.

EXAMPLE 1. Let {y(t)9 0 g t g T < 1} be the process belonging to
M[0, T] with probability measure mp determined by the covariance
function

s(l -t) s ^

This process is equivalent to the Wiener process {x(t)9 0 ^ t ^ T] with
covariance function wx(8, t) = min (s, t). Moreover,

dmp/dmWl = (1 - T)-ll2exp{-x\T)l[2(l - T)]} .

EXAMPLE 2. Let {y(t)9 0 g t g 1} be the process belonging to M[0,l]
with probability measure mPx determined by the covariance function

sin i/x,s cos
z ,\ v /M COS

px(s, t) = — 7_
sin V\t cos l/\ .(l — s)

s <l/Xcos

This process is equivalent to the Wiener process {x(t)9 0 ^ ^ ^ 1} with
covariance function w^s, t) = min (s, ^). Moreover,

dmpJdmWi = (cos l/x,)1^ exp

6 We reason as follows. For r(s, i) = wa(s, t), w(s) = a2. Hence w(s) must equal a2,
i.e., dlds[e(s)!<l>(s)] = (72/^2(s). This together with 0(0) = 0 implies that 0(s) = a20(s)fS[l/

7 This process has been studied by various authors, among them Doob [4].
8 For X = 0, p\(s, t) = lim p\(s, t) = min (s, £)•
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For our last example we consider the class of (Ornstien Uhlenbeck)
processes in M[a, b] determined by covariance functions of the type

where 0(t) = a2 exp (/3t), $(t) = exp (-/3t), (a2 > 0, /3 > 0). If U[a, b]
denotes the class of such processes, we have the following result.

EXAMPLE 3. Let {&(<), 0 g t ^ T} and {y(t), 0 St^T] be two
processes belonging to £7[0, T] with covariance functions pv^ and/0^t/M

respectively determining two probability measures m ^ ^ and m^ ^ on
{C, JB}. Then w^,^ is equivalent to mCT.l̂ l if and only if <rl/30 = otA.
Moreover if this condition is satisfied and if we let K =
then

1/2

dm,

x

6» Conjecture* Consider two general Gaussian processes determined
by covariance functions r(s, t) and p(s, t) respectively. Under regularity
and boundary conditions of the type (A)-(D) of Definition 1, a necessary
and sufficient condition that the two processes be equivalent is that
fr(t)=f9(t)f (see §2).
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