
THE STRUCTURE OF CERTAIN MEASURE ALGEBRAS

KENNETH A. Ross

Introduction* In their paper [3], Hewitt and Zuckerman study the
measure algebra ^ ( G ) where G is a topological semigroup of the follow-
ing type: G is a linearly ordered set topologized with the order topology, is
compact in this topology, and multiplication is defined by xy = max (x, y).
In this study, we will suppose that G has the above properties except
that compactness will be replaced by local compactness. (See § 8.5 [3]).
As the reader will readily observe, we are heavily indebted to Hewitt
and Zuckerman for their initial study of these measure algebras. For
completeness, we have listed, without proof, a few of their results; they
are stated in their paper for compact semigroups but the proofs easily
carry over to locally compact semigroups.

In §2 we study G and Go. The characterization of the Gel'fand
topology on G is somewhat simpler than that of Theorem 5.5 [3]. The
major result of this study is Theorem 3.4, stating that every closed ideal
in ^?f(G) is the intersection of maximal ideals; i.e., spectral synthesis
holds for ^£(G). Malliavin [7] has recently shown that spectral synthesis
fails for ^£ (G) when G is a non-compact locally compact commutative
group.1 Theorem 3.4 shows that this result cannot be generalized to
locally compact commutative semigroups. In § 4, a generalization of
Theorem 6.7 [3] is indicated; see Theorem 4.5. This is used to obtain
additional facts about ^f(G) (§5). In 5.8 we show that our theory is
not a special case of the theory of function algebras.

1. Preliminaries-

1.1. We will be concerned with linearly ordered sets; i.e. sets ordered
by transitive, irreflexive relations < . For elements x and y in such a
set Xy we define ]x, y[== {ze X: x < z < y] and [x> y] = {ze X: x ^ z
g y}. The half-open intervals [x, y[ and ]x, y] are defined analogously.
We also define ] — oo, x[ = {ze X: z < x) and ] — oo, x] = {ze X: z < x)
with analogous definitions for [x, oo[,]x, oo[, and ] — oo, oo[. The sym-
bols — oo and oo will never denote actual elements of X. The order
topology for X is the topology having the family {] — c°fx[}xex U
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{]x, oo^g-j, for a sub-base.
For terminology not explained here in measure theory, topology, and

harmonic analysis, see [1], [5], and [6], respectively. If A is a subset
of B, we will write A ^ B; A d B will mean that A is a proper subset
of B. For sets A and B, we write A — B = {x : x e A, x$ B} and A A B =
(A — B) U (B — A). The empty set will be denoted by 0. For any set
A, XA will denote the characteristic function of A.

1.2. STANDING HYPOTHESES. Let G be a set linearly ordered
by the relation < . Suppose also that G has the order topology and that
under this topology G is locally compact. For x,y e G, we define xy =
max (x, y). With this multiplication G is a locally compact topological
semigroup.

1.3. Let (£0(G) denote the linear space of all complex-valued continu-
ous functions on G that are arbitrarily small outside of compact sets. For
fe (£0(G), let | | / | | = maxxeQ \f(x)\. Let ^ f (G) consist of all countably
additive, complex-valued, regular, finite Borel measures on G. Let ©0*(G)
be the linear space of all complex-valued bounded linear functional L
on (£0(G). For each L e (£0*(G) there is a unique X e ^f(G) such that

(1.3.1) L(f) = \ f(x)dX(x)
Jo

for all fe (£0(G). Also for each Xe ^f(G), 1.3.1 defines a member of
(£0*(G). Under this correspondence, ^t(G) = (£0*(G). We will associate
L with X, M with [i, etc.

Let A, e ^T(G). Then for Borel sets E S G, we define

(1.3.2) I X I (E) = sup I 2 1 ̂  (#*;) I : {•#*}?=! is a Borel partition of # .}

Then the set-function | X \ belongs to ^/f{G) and

(1.3.3) | | x | | - | X | ( G ) - | | L | |

where Le (£0*(G) is defined by 1.3.1. See [2].

1.4. THEOREM. Let L and M be in (£0*(G). For all / e <£0(G), let

(1.4.1) L*M(f) = \Q\j{xy)dX{x)d[i{y) .

Then L*M e (£0*(G), and

(1.4.2) \\L*M\\ ^ | | L | | • ||ikf|| .

1.5. For X, [ie ^^ (G) , we define X*[t to be the unique measure in
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that corresponds to L*M e K0*(G) .

1.6. THEOREM. Under the convolution defined in 1.5 and the or-
dinary linear operations, ^Jt(G) is a commutative Banach algebra.

We omit the proof; see § 2 [3].

1.7. For ae Gf let eae ^(G) be defined by

1 if a e E ,

0 if a $ E ,

for Borel sets E ^G. For A, e ^T(G) and A g G a Borel set, V1 e ^
is defined by V(JE7) = X(A n # ) for all Borel sets S g G ,

The proofs of the following four lemmas are routine and uninteresting.

1.8. LEMMA, Let E C G be a Borel set and Xe ^//(G). Then
for any e > 0, there exist a,be E such that

(1.8.1) \X\(E n ] - o o , a [ ) < £ and \X\ {E n ] b, oo [ ) < £ .

1.9. LEMMA. Le£ Xbe a linearly ordered set and U <S= Xbe a finite
union of open intervals. Then U is the pairwise disjoint union of
open intervals:

m

U=\J]at,bt[,
i=l

where intervals of the form [inf X, bt[, ]aif sup X], and [inf X, sup X] are
also admissible if inf X or sup X exist. Moreover, at $ U except possibly
in the case where at = inf X, and bt $ U except possibly in the case that
bt = sup X.

1.10. LEMMA. Let X be a compact linearly ordered set and U S X
&£ cm opew se£. T/^w [7 is £/*,# pairwise disjoint union of open intervals:

where intervals of the form [inf X, 6J , ]aa, sup X], a^d [inf X, sup X]
are aiso admissible. In addition, aa 0 U except possibly in the case
that a* = inf X, araZ ba $ U except possibly in the case that ba = sup X.

1.11. LEMMA. Let X be a locally compact linearly ordered set.
Suppose that K ^ X is compact and that U is an open set such that
K C U £ X. Tfeew £/*,ere e#is£ finitely many pairwise disjoint closed
compact intervals {[aif 6J}f=1 such that U 3 \J?=1[at, bt] 3 iT. Also there
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exist finitely many pairwise disjoint open intervals {]uit v«[}?=1 such that
U 2 Ur=i ]u<i, Vi[ 3 K and each closed interval [uif v^ is compact. Inter-
vals of the form [inf X, vt[, ]uif sup X], and [inf X, sup X] are also
admissible whenever inf X or sup X exists.

2. The spaces G and GQ.

2.1. A Dedekind cut {A, JB} of G is a pair of subsets of G such that
A [\ B — Q, A{j B — Gy and # < 2/ whenever x e A and y e B. Let G
denote the set of all semicharacters of G.

2.2 THEOREM. Let {A, B} be a Dedekind cut of G such that A =£ 0.
Then the function

^ »

ŝ a semicharacter of G. Converselyf every semicharacter on G has the
form 2.2.1.

2.3. THEOREM. Let {A, B} be a Dedekind cut of G such that A =£ 0.
Then the mapping

(2.3.1) 7vA(X) = X(A) - ( irAtB(x)dX(x) (X e

is a homomorphism of ^t(G) onto the complex numbers. Moreover,
every homomorphism of ^{G) onto the complex numbers has the form
2.3.1.

Proof. This is essentially proved in Theorems 3.2 and 3.3 [3];
however the proof in [3] that TZA is multiplicative can be simplified. Let
Xy fie ^f(G). According to Theorem2 [8], X*fji(E) = X x ft{(x, y)eG x G:
xy e E} for Borel sets E g G where X x pt is the product measure of X
and [i. Hence if {A, B) is a Dedekind cut of G, then

= X x [x{{x, y) e G x G: max (a?, #) e

= \ x /i(A x A)= X(A)fJt(A) = 7cA(X)7tA(fi).

2.4. THEOREM. The Banach algebra ^(G) is semisimple.

Proof. In virtue of 2.3 we need to prove that if X(A) = 0 for all
Dedekind cuts {A, B), then X is identically zero. Suppose that X(A) = 0
for all Dedekind cuts {A, B}; evidently X(I) = 0 for all intervals I. If
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X is not identically zero, then X(K) =£ 0 for some compact set K S G.
By regularity there is an open set U a K such that |X\ (U — K) < | X(K)\.
For each x e K, let Ix be an open interval such that x e Ix cz J7. Let
i> • ' • , /m be a finite subset of {ZJa-e* covering K. Let F = \jT=Ji'> clearly
K g F S 17. By 1.9, F i s the pairwise disjoint union of a finite number
of open intervals. Hence X(V) = 0. Thus

\X(V - K)\ = \X(V) - X(K)\

= \X(K)\> \\\(U-K)> \X\(V-K)^ \X(V-K)\

which is a contradiction. Hence X is identically zero.

2.5. Theorem 2.3 identifies completely the homomorphisms of
onto the complex numbers. Relation 2.3.1 associates each homomorphism
7tA of ^£ {G) with the semicharacter tyAtB. Hence we will usually consider
G as consisting of the homomorphisms TCA. For X e ^f(G), we define X
on G by

(2.5.1) X(7vA) = 7ZA (X) = X(A) (7TA 6 G);

X is the Fourier transform of X.
For 7cAy 7rA, e G, we will write rcA < TCA, if and only if A a A'.

Under this ordering, G is obviously linearly ordered. Evidently G is
isomorphic to the maximal ideal space of ^J?(G). The Gel'fand topology
for G is the weakest topology for which all the functions X are con-
tinuous.

Henceforth we will write 7ial for ^h8Oia] and 7ral for 7c^OOial (a e G).

2.6. DEFINITION. Let Go = G U {TT0} where TV0 < TT for all TT e G.
The symbol rc0 may be taken to correspond to the zero homomorphism

of ^f(G), the zero semicharacter of G, and the Dedekind cut {0, G}.

2.7. THEOREM. The GeVfand topology on G coincides with the
order topology.

Proof. Let TZA e G where A =£ G, A, e ^ ( G ) , and e > 0. Using 1.8,
we can find b e A and c ^ 4 such that | X \ (]6, c[) < £. Clearly ^ e ]7r&[, TTC][.

For 7uB e ] 7rb[, 7rc] [, we have

\X(7tA)-X(7TB)\ =

| M ^ S ) I | | ( A J5) ^ | X | ( ] 6 , c [ ) < £

Thus X is continuous at TZA e G(A ^ G) in the order topology. Similarly
X is continuous at TCG in the order topology. Hence the Gel'fand topology
is weaker than or equivalent to the order topology.

For b,c e G,b < c, it is easy to verify that
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Hence sets of the form

(2.7.1) R [ . ^ ] [ b<c,

and

(2.7.2) too**],
are open in the Gel'fand topology. All sets of the forms 2.7.1 and 2.7.2
comprise a basis for the order topology. I t follows tha t the order topology
on G is weaker than or equivalent to the Gel'fand topology on G.

2.8. THEOREM. The set Go with the order topology is a totally
disconnected compact Hausdorff space. For X e ^f(G), let X be defined
on Go to agree with X on G and such that X(nQ) = X(0) = 0. Then X is
continuous on Go.

Proof. Let & consist of all subsets of Go of the form:

(2.8.1) ]*«[,*„[ ( a < 6 ) ,

(2.8.2) [7U0f 7T6][ ,

(2.8.3) K E , ^ ] •

Each set in £$ is open and closed and & is a base for the order topology
on Go. Hence Go is totally disconnected. The remainder of the proof
is omitted.

2.9. DEFINITION. Let I be an interval of Go and let h be a continuous
function on Go. Then we define:

f m - l ^

(2.9.1) V(h; I) - sup | g \h(nM) - fc(^)l : ^ ^ n* ̂  • • • ^ nn, 7zt e I J .

In particular, we define V(h) = V(h ; Go) and say that h has finite varia-
tion if V(h) < oo.

2.10. Let h be a continuous function on Go and let rcA

^ ^ f c , ^ 4 e Go. Then

(2.10.1) V(h ; [ ^ , 7tAk]) - g

Let fe be a continuous, real-valued function on Go of finite varia-
tion. For KA e Go, let ^ ( ^ = V(h; [7T0, ^ ] ) . Let /̂ 2 — ̂  — fc. Then hx

and fe2 are continuous, non-decreasing functions on Go.

3. The closed ideals of (

3.1. LEMMA. Let TCA, TZB e Go, where itA S Km and let A, e
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Then

(3.1.1) \X\(B-A)=V(X;

In particular, \\X\\ = \X\ (G) = V(X).

Proof. It is easy to show that V(X ; g |X| (B —

Let e > 0. Let JEi, • • • , 2?m be pair wise disjoint non-void Borel sets
whose union is B — A. For i — 1 , • • • , m , let Kt^ Et be a compact
set for which | A, | (Et — Kt) < e/m. By induction (and using the second
part of 1.11) we obtain pairwise disjoint open sets U19 ••• , Um such that

K, E ut <= u
(ii)
(iii)

(^-iT,)<s/m,
is a finite union of pairwise disjoint open intervals ;

i = 1, • • • , m. Now Uf=i y* is the finite union of pairwise disjoint open
intervals, say {iy}J=i, such that each I] is a subset of some J74. For
i = 1, • • •, r, let 7, - /;• n (B - A). Evidently U;«Jj - U r ^ ^ i n (B -
A)); we may suppose that each I3 is non-void. Let A2j = {x e G : x ̂  y
for some y e /,} (i = 1, • • • , r). Relabelling if necessary, we may suppose
that A2 c A, c • • • c A2r. Let A^-i = {a; e G : x < y for ally e I,}. Then
^ ^ 7tAl < 7ZH ̂  TZM < 7r̂ 4 ̂  • • • < ̂ 2 r ^ 7ZB and 7, = A2j - A2j^ for
i = 1, • • • , r. Now

[TCA, 7tB]) ^
2 r - l

whereas

)I = S

n (5 - 4)) -

+ M^i n (5 - A))

so that

It follows that
arbitrary.

^ V(X; [nA,nB\) since {£i}r=i and e are

3.2. LEMMA. Let R be an interval of Go of the form 2.8.1 or 2.8.3.
Suppose that X e ^f(G) and that X(TC) ^ 0 for all it e R. Then there
exists a v e ̂ ^(G) such that
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f—!— for x 6 R ,
(3.2.1) i>(n) = X{n)

1 0 f or TV <£ R .

Proof. Suppose that R = ]xxl, 7ry][ and let X =[x, y[. Evidently
X is a locally compact subsemigroup of G. Throughout this proof, ele-
ments of X will be denoted by n ; whenever the symbol rtA occurs, it is
tacitly assumed that 4 g l and that {A, X — A} is a Dedekind cut of
X. The functions X will be considered defined on G or X rather than
Go or Xo. For Borel sets E£ X, let X(E) = X(.E7 n l J + M ] " 0 0 , #[)

We have X e ^#{X). We now show that

(3.2.2) %(ftA) = X(KAU1 _ , B [ ) for

Indeed X(TT J = x(A) = X(A fl X) + X(] - oo, »[) ea(A) = X(A) + Ml - °°»»D
= X(AU] - o o , o?[) = X ^ u j ^ , xl). Since ^ u ] - . , , ^ e i? whenever ftA e X,
it follows from 3.2.2. that

(3.2.3) %(7fJ=£0 for ^ e l

By Theorem 4.15.1 (9) [4], X e ^T (X) has an inverse v e ^f(X). For
Borel sets E g G , let

- v(E n X) -

Evidently v e ^t(G). It is now routine to verify 3.2.1.
If R = ]7rx[, TZ ]̂, we let X = [x, co[ and repeat the preceding proof

with the appropriate modifications.

3.3. NOTATION. For subsets A and B of G (or Go), we write A < B
if x e A and | / e B imply x < y and A <̂  i? if a? e A and 2/ e i? imply
x ^y. Note, in particular, that 0 < A and A < 0 for any set A. Let
P = fa , • • • , 7rm} be a finite subset of GQ where itx < 7T2 < • • • < TTW.
We will sometimes write E(X ; P) for SJS11^«+i) ~ ^ ) l > x 6

For 7ẑ  e Go, let 7^ = {X e ^f{G)\ X(A) = 0}. Note that 70 =
Since each 7^(^ e G) is the kernel of the homomorphism izA, the set
{lA\nAeG is precisely the set of all regular maximal closed ideals in

The following theorem characterizes the closed ideals in

3.4. THEOREM. Let I g= ̂ t(G) be a closed ideal. Let H = {TC e Go:
\(7t) = 0 for all X e 7}. Then H is closed in Go and

(3.4.i) i= n I*.
nAen

Proof. Obviously H = flxei^)"1^) is closed and 7 £ C[*Ae*h -
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Let A, be a fixed element of O^eirXa. Let Z — {TC e Go: X(TC) = 0}.
Clearly Z is closed in Go, H g Z, and TT0 e Z. By Lemma 1.10, the comple-
ment Z' of J£ in Go is a pairwise disjoint union of open intervals:

where one of these intervals may be of the form ];r^, TTG]. Moreover,
%A<xi e Z for all a and %Bob e Z for all a except possibly when KBa = izQ.
We assume in the following that TCQ 0 Z'\ elementary modifications are
necessary when %Q e Z*.

We first prove

(3.4.2) V(X) = ^V(X; ]nA0, * , J ) .
Ob

Using^ 3.1, we have £-V(X ; [TT^, TT* J ) = %«\X\(Ba - Aa) ^ \X\ (G)
= F( \ ) . Let TTi < 7T2 < • • • < ;rm, ^ e G09 and call this partition Pf. Let
P = Pf U {^}. Let «!, a2, • • • , a^ be precisely those a: such that
]KAa.> ^Ba{ n P ^ O . For this paragraph we write At for AH and 54 for Ba..
We may suppose that ] ^ 4 , ̂ 4 [ < ] ^ + 1 , ̂ l + 1 [ (i = 1, • • • , fc - 1). For
i = 1, • • • , A?, let P i = fei,^J[nP. Let Zo = [ ^ o , ^ J n P . For i = 1,
• • • , k — 1, let Zt = [^4> ^4 + 1] n P . Let Zfc = [nB^ 7Zg\ n P . Clearly some
or all of the Z{ may be void. Evidently we have:

( i ) P = Zo U Px U ̂  U P, U • • • U Pfc-i U £*_! U P, U ̂ &;
(ii) Z, < P, < Z, < P2 < . . . < Pfc_x < Z M < Pfc < ^fc;
(iii) znP=uW;
(iv) P, S ]TT^, ^ , [ (i = 1, • • • , fc);
(v ) the intervals given in (iv) are pairwise disjoint.

Now let P* = P U {TT ,̂ KBI, TZA2, TZB^ • • • , 7r̂ fc, nBk}. Clearly Zo ^ {TT Ĵ < Px

< {xBl} SZ, ^ {Tr̂ } < P2 < • • • ^ ^ _ , ^ {^J < Pk < {7TB]c} £ Zk. Using
the notation established in 3.3, we now get

f! |x(7rm) - x(ffi)l = £ <Z; P') ^

I
t=i

= S £ (X; {TT^} U P, U {7TBi}) .

By 2.9, we have S (^ ; &*} U P« U {TT^}) ^ F(X ; [w^, JTBJ])

for i = 1, • • • , k. Combining these inequalities, we obtain

f! I X(7ti+1) - \ (7t{)\ £ ^ V(\; [nAi, 7rBJ) S
i—1

Since the partition P ' was arbitrary, we have V(X) ^ 2 ^ J
and hence 3.4.2 is proved.

Let s > 0. We shall ultimately show that there is a [i e I such that
\\X — fjt || ^ 3s. Since e is arbitrary and I is closed, this will prove that
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X e I. It will then follow that 0*^6 i A £ /, completing the proof. By
3.4.2, there exist a19 • • • , am such that 2f=i V(X ; [nAo6, 7tBa ]) + e ^ V(X).
We shall henceforth write A{ for AH and i?{ for 1?^. Then

(3.4.3) V(X) - £ V(X ; [TT^, ^ J ) ^ e .

We may suppose that A1 c £x £ A2 c JB2 £ • • • £ ^4m c 2?m. By 1.8, there
exist xif Vi e Bi — ili such that

(3.4.4) | \ | ((B, - A,) - [xif yS ^ — (i = 1, • • • , m) .
m

Let Ui = JTT^ [, 7ryi] [; obviously C7i is open and closed. Note also that
Ui £ ]xAit %B% [ £ Z\ Let U = Ur=iC^; f is open and closed (and hence
compact). Also U £ Z ' £ Hf where Hf denotes the complement of H
in Go. Thus for each itA e U, there is a XAe I such that X (̂A) =
XA(TZA) =£ 0. Note that TTQ0 U since 7tQe H and 7tQ$ U since ^ 0 Z ' .
By the continuity of XA on Go and Theorem 2.8, there exists an open
and closed set VA such that

(a) 7uA e VA;
(b) 7T e VA implies XA(TZ) ^ 0;
(c) VA £ C7;
(d) VA has the form 2.8.I.2

Since U is compact and \JnAeuVA — U, there is a finite set {V^Jf^i such
that \jUVAi = C/.

For F ^ = ]7Taj[, ^ 6 | ] [ , let VA% = [JT0, ^af][ and F i 4 = ]7r&i[, iZg\. Let
^ be the family of sets consisting of all VAi, V~A%t and V\c For it e U,
let Rn = f] {V e ^ : 7t e V}. Clearly there exist only finite many distinct
RK — s a y {Ri}k

i=i-
The following assertions are easily shown:
(a') \JURi = U;
(b') each Ri has the form 2.8.13;
(c') the family {Ri}Ui is pairwise disjoint;
(d') for each i, there exists a X{ e I such that TreRi implies A^TT) -=£ 0.

By Lemma 3.23, there are Vi^^iff) such that

f * if TceRi ,

1 0 if ^ 0 Ri ;

^ = 1, • • • , fc. Let j« = SLa\i*V;*A.; clearly jW e / . Evidently

2 If TO657, then VA can be of the form 2.8.3.
3 If 1C065', then JK« can be of the form 2.8.3.
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(X(7r) if 7t e U,
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We observe that

0 if n e Ui = ]^<c, nv0[ ,

\,{7Z) i f 71 = TT^ Or 7T = TTj,̂  .

Using this, Lemma 3.1, and relation 3.4.4, we have

(3.4.5) V(X-ft; ft., 7UVil]) =

-eoffl54[ - A { ) + 1^1(5 , -

- A i ) - K » 4 ] ) ^ — .
m

We also have from 3.1 that

(3.4.6) V(X ; [jr,|]f 7ra4]

m

Using 2.10, 3.4.5, and 3.4.6, we obtain

(3.4.7) F(X - ft; [7tAi, nBi}) = V(X - ft; [nAi, 7tX([]) + V(X - ft; [x^, x^])

+ V(X - ft; [nVii, 7CBf\) = V(X ; [icAt, ic^\)

+ V(X- ft; [7tHl, 7tVli\) + V(X ; [7Cyil, 7tBi)) £ M. .
7/1

We used the fact that ft is zero on [nAi, nXi{\ and \ity$, xBi] since these
sets are disjoint from U. Finally, using 2.10, 3.1, and 3.4.7, we get

m ^^ TO ^

+ g V(x - ft; [x^, KAt\) + g V(x - j&; [^4, TT̂ ])

= V(X ; [nBm, xg\) + V(X ; [xt, 7tAJ) + g V(X ; [xBl_lt x^])
m ^ m

+ S y ( ^ — Ĵ J [^-> ^fl.l) = 1̂ 1 (fi — Bm) + |X| (Ax) + Ŷ  IX I (Ai — -Si-i)

+ 2e = IXI (G) - S IXI (B^ - A4) + 2e = F(X)

TO ^

Now applying 3.4.3, we obtain ||X — fi\\ < 3s . This completes the proof.
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3.5. EXAMPLES. Let G = ]0,1[ and X e ^T(G) be ordinary Lebesgue
measure. Then the ideal I — {X*fJt + aX: ft e ^f(G) and a is a complex
number} is dense in ^(G) since X vanishes only at ;r0; I is the ideal
generated by X. If G = [0,1] and A, is Lebesgue measure, then I = {X*ft:
fi e ^?(G)} is the ideal generated by X and / is dense in {X e
MM) - 0}.

4. The Herglotz-Bochner theorem for ^f(G). This section gener-
alizes §6 [3].

4.1. DEFINITION. Let h be any bounded, real-valued, nondecreasing
function on Go. Let A denote a partition {*„.}?=<> of G where t0 < tx <
< t^. For an arbitrary complex-valued function / o n G, let

J) - f(t0) [h(7TtQl) - t

4.2. THEOREM. Le£ / e S0(G) â cZ fe 6̂  as m 4.1.

a unique number L(f) such that for every s > 0 there exists a
Ao as in 4.1 with the property that \L(f) — S(f, A)\ ^ s /or aH J 3 Jo.

this relation as L(f) = limjSC/, z/).

4.3. THEOREM, r ^ e function L defined in 4.2 for all f e (£0(G) i&
a bounded nonnegative linear functional on

4.4. DEFINITION. Let h be a continuous function on Go and let
TCA> nB e Go, ^ < nB* Then we define

(4.4.1) Vc(h; [7cA9 7zB]) = sup

KA ^ ^ c, ^ m ] ^ ?Tfl, [^i, 1/J compactj .

In particular, we define Vc(h) = Vc(h; [izQ, 7zQ]). We also define

(4.4.2) Vc(h; [7uA, 7tA]) = 0

for 7ZA e Go.

4.5. Let h be a real-valued continuous function on GQ having finite
variation and let TVAI ̂  TTA2 ̂  • • • ^ 7r4fc. Then

(4.5.1) 7c(fe; K , 7T̂ ]) = g ^ ^

4.6. THEOREM. Let h be a continuous function on Go having finite
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variation and such that h(7r0) = 0. Then there exists a X e ^/S(G) such
that X — h if and only if

(4.6.1) V(h) = Vc(h)

The proof is a tedious lengthy extension of the proof of Theorem
6.7 [3] and uses 4.2, 4.3, 3.1, 4.5, and 1.11 in the case that h is non-
decreasing. The general case is proved by applying 2.10.

4.7. EXAMPLES. Let G be the real line under the usual ordering.
Then a function h on Go is the Fourier transform of some measure
X e ^(G) if and only if h is continuous, has finite variation, and h(7c0) = 0.

Condition 4.6.1 is not always satisfied by continuous functions h on
Go having finite variation and satisfying h(7r0) = 0. Let G = [0,1] x ]0,1[
where (a, 6) < (c, d) if a < c or if a = c and b < d. Let h on Go be
-defined by

h{nA) = sup {a e [0,1]: (a, x) e A for some x e ]0,1[} .

The function h is continuous, V(h) = 1, and Fc(/^) = 0. The linear func-
tional L obtained from h in 4.3 turns out to be the zero functional.

5* Some consequences of the Herglotz-Bochner theorem. Theorems
5.1 and 5.2 are routine applications of 4.6.

5.1. THEOREM. Let <£ be a continuous function from a subset
H 3 {0} of the complex plane to the complex plane such that <j>(0) = 0
and

{5.1.1) for every M > 0, there exists a KM > 0 such that

\${z) — <£O)| g KM \z — w\ for z,w e H, \z\ g M, \w\ ^ M.

(I.e., <$> satisfies a Lipschitz condition for arbitrarily large disks.) Then
for every X e ^(G) for which {range X) £ H, there exists a v e ^f(G)
.such that v — <j>oX.

5.2. THEOREM. Let <f> be a continuous function from [0, <x>[ to [0, &>[
that is non-decreasing, absolutely continuous on all intervals [0, M],
and such that 0(0) = 0. Then for every nonnegative measure X e
there exists a nonnegative v e ^/f(G) such that v — cj>oX.

5.3. COROLLARY. Let X e ^f(G). Then there exists a v e
such that v{n) = |X(TT)| for all % e Go.

5.4. COROLLARY. Let X e ^/f(G). Then there exists a v e (
such that v(n) = X(TC) for all n e Go; here z denotes the complex conju-
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gate of z. In other words, ^f(G) is self-adjoint (see page 88 [6]).

5.5. COROLLARY. Let X e ^f(G) be a nonnegative measure. Then
there exists a nonnegative v e ^(G) such that v*v — X.

5.6. It is natural to ask whether Theorem 5.2 is valid for more
general measures X; one might hope that the result would be valid at
least for X e ^f(G) for which X is nonnegative. If this were the case,
5.5 would also generalize. However, we will see in 5.7 that this is not
the case whenever G is infinite. Theorem 5.7 also shows that the
Lipschitz condition assumed for ^ in 5.1 cannot be replaced by absolute
continuity. (The function 4>(x) = V~x~ is absolutely continuous on all
intervals [0, M] but does not satisfy 5.1.1.)

5.7. THEOREM. Suppose that G is infinite. Then there exists a
X 6 ^f(G) such that X is nonnegative on GQ and such that X 4=- v*v for
all v e ^

Proof. Suppose G has an infinite subset {x{}T=i such that xt < xi+x

for all i. Let X be the discrete measure defined by

— if n odd ,
n2

MW) -
_ if n even .

(n — I)2

It can be shown that X satisfies the conclusions of the theorem. If G
does not have an infinite subset as above, then G has an infinite subset
{%i}7=i such that x{ > xi+1 for all i. This case is treated in a similar
manner.

5.8. It is evident from 5.7 that ^//{G) (G infinite) is not isomorphic
as an algebra to the algebra &0(X) for any locally compact space X.
In the contrary case, ^f/(G) would be isomorphic to K0(G) and the
isomorphism would be X —• X. However, if h e (£0(G) is nonnegative,.
then for some h0 e (£0(G), we have hi — h.

Finally, the result of 8.3 [3] holds for locally compact G. That is.

5.9. THEOREM. A measure X e ^f/(G) is idempotent if and only
if X is of the form:

(5.9.1) X - eCo - eOl + • • • + ( - 1 ) * ^

where c0 < cx < • • • <ck.
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