LEBESGUE DENSITY AS A SET FUNCTION

N. F. G. MARTIN

Lebesgue (or metric) density is usually considered as a point function in the sense that a fixed subset of a space X is given and then the value of the density of this set is obtained at various points of the space. Suppose the density is considered in another sense. That is, let a point x of the space be fixed and consider the class $\mathscr{D}(x)$ of all sets whose density exists at this point. Then to each set E in $\mathscr{D}(x)$ we assign the value of its density at x, and denote this number by $D_x(E)$. Thus from this point of view the density is a finite set function. It was shown in [2] that if the space X is the real line then the image of $\mathscr{D}(x)$ under D_x is the closed unit interval.

It is evident from the definition of density of sets of real numbers, which we give below, that D_x is a finitely additive, subtractive, monotone, nonnegative set function and the class $\mathscr{D}(x)$ is closed under the formation of complements, proper differences, and disjoint unions. Therefore, if $\mathscr{D}(x)$ were closed under the formation of intersections, D_x would be a finitely additive measure. This however is not the case for if

$$egin{aligned} R_n &= \Big\{x \colon rac{1}{2} \Big(rac{1}{n} + rac{1}{n+1}\Big) < x < rac{1}{n} \Big\} \ , \ L_n &= \Big\{x \colon -rac{1}{n} < x < -rac{1}{2} \Big(rac{1}{n} + rac{1}{n+1}\Big) \Big\} \end{aligned}$$

and

$$L_n^* = \left\{x: \ -rac{1}{2} \Big(rac{1}{n} + rac{1}{n+1}\Big) < x < -rac{1}{n+1}
ight\}$$
 ,

the sets $\bigcup_n (R_n \cup L_n) = E$ and $\bigcup_n (R_n \cup L_n^*) = F$ are members of D(0) but $E \cap F$ is not. In fact $D_0(E) = D_0(F) = \frac{1}{2}$ and the upper density of $E \cap F$ at zero is not less than $\frac{1}{2}$ while the lower density of $E \cap F$ at zero is zero.

In part 1 of this note we prove a theorem which is somewhat of an analogue of the Lebesgue density theorem [3] in the following respect. As noted above D_x is not a finitely additive measure, but we show that the upper density at x, \overline{D}_x , is a finitely subadditive outer measure defined on the class of all Lebesgue measurable subsets of X and the class of \overline{D}_x -measurable sets is the class of all sets whose density exists at x and has the value zero or one. In part 2 a Lebesgue density of a measurable set E on a fixed F_{σ} set of measure zero is defined and a similar result

Received May 24, 1960. Presented to American Mathematical Society. Part 1 of this note constitutes a portion of the author's doctoral dissertation written at Iowa State College under the direction of Professor H. P. Thielman.

proven for this function.

1. If E is a measurable subset of the real line X and I is any interval we shall denote the relative Lebesgue measure of E in I, $m(E \cap I)/m(I)$, by $\rho(E:I)$.

The upper Lebesgue density of a measurable subset E of X at a point $x \in X$, $\overline{D}_x(E)$, is defined by

 $\overline{D}_x(E) = \limsup_{I \to x} \rho(E:I) = \sup \{\limsup_k \rho(E:I_k): I_k \to x\}$ and the lower Lebesgue density of a measurable set $E \subset X$ at a point $x \in X$, $\underline{D}_x(E)$, is defined by

$$\underline{D}_x(E) = \liminf_{I o x}
ho(E:I) = \inf \left\{ \lim_k
ho(E:I_k) \colon \ I_k o x
ight\}$$
 ,

where $I_k \to x$ means the sequence $\{I_k\}$ of intervals converges to x in the sense that $x \in \overline{I}_k$ for all k and $m(I_k) \to 0$ as $k \to \infty$. In the case $\underline{D}_x(E) = \overline{D}_x(E)$ the common value is the Lebesgue density of E at x and will be denoted by $D_x(E)$.

LEMMA 1. A necessary and sufficient condition that a set E be a member of $\mathscr{D}(x)$ is that

$$\overline{D}_x(E) + \overline{D}_x(X-E) = 1 .$$

Proof. The necessity is immediate. To obtain the sufficiency we note that for any interval I containing x, $\rho(E:I) + \rho(X - E:I) = 1$ so that $\underline{D}_x(E) + \overline{D}_x(X - E) \ge 1$. Therefore

$$\overline{D}_x(X-E) \ge 1 - \underline{D}_x(E) = \overline{D}_x(X-E) + \overline{D}_x(E) - \underline{D}_x(E)$$

and it follows that $\overline{D}_x(E) \leq D_x(E)$.

LEMMA 2. The set function \overline{D}_x is a finitely subadditive outer measure defined on the class \mathscr{M} of all Lebesgue measurable subsets of the real line.

Proof. It is clear that $\overline{D}_x(\phi) = 0$ and $\overline{D}_x \ge 0$. Let $E \subset F$ be two sets from M. Then since $\rho(E:I) \le \rho(F:I)$ for all intervals containing x, \overline{D}_x is monotone. Let E_1, E_2, \dots, E_n be any finite collection of sets from \mathscr{M} . Since $\rho(\bigcup_{i=1}^n E_i:I) \le \sum_{i=1}^n \rho(E_i:I)$ for all intervals I containing x, we have

$$ar{D}_x \Big(igcup_{i=1}^n E_i\Big) \leq \sum\limits_{i=1}^n \limsup_{I o x}
ho(E_i:I) = \sum\limits_{i=1}^n ar{D}_x(E_i) \;.$$

Thus \overline{D}_x is a finitely subadditive outer measure.

Let $\mathcal{M}(x)$ denote the class of all sets E such that for every $A \in \mathcal{M}$,

 $\overline{D}_x(A) = \overline{D}_x(A \cap E) + \overline{D}_x(A - E)$. Since $\mathscr{M}(x)$ contains X and $\phi \mathscr{M}(x)$ is an algebra (in the sense of Halmos [1]) and the restriction of \overline{D}_x to $\mathscr{M}(x)$ is a finitely additive measure.

LEMMA 3. $\mathcal{M}(x)$ is a subset of $\mathcal{D}(x)$.

Proof. Let $E \in \mathcal{M}(x)$. Since the real line X is a member of \mathcal{M} and $\overline{D}_x(X) = 1$, we have

$$1 = \bar{D}_x(X) = \bar{D}_x(X \cap E) + \bar{D}_x(X - E) = \bar{D}_x(E) + \bar{D}_x(X - E)$$

which by Lemma 1 gives $E \in \mathscr{D}(x)$.

LEMMA 4. If $E \in \mathscr{D}(x)$ and J is any interval with x as one end point then $\overline{D}_x(E \cap J) = D_x(E)$.

Proof. Let $D_x(E) = d$. Since \overline{D}_x is monotone, $d \ge \overline{D}_x(E \cap J)$ and if $\{I_k\}$ is any sequence of intervals converging to x, $\limsup_k \rho((E \cap J) : I_k) \le d$.

Suppose first that J is a bounded interval. If x is the left end point of J, denote the right end point by y and let

$$I_n^* = \left\{z: \ x \leq z \leq x + rac{1}{n}(y-x)
ight\};$$

if x is the right end point of J, denote the left end point of J by y and let

$$I_n^* = \left\{ z: \ x - rac{1}{n}(x-y) \leq z \leq x
ight\}.$$

In either case $I_n^* \to x$ and $\rho(E:I_n^*) = \rho((E \cap J):I_n^*)$ for all n. Therefore, $\lim_n \rho((E \cap J):I_n^*) = d$ and we have $\overline{D}_x(E \cap J) = D_x(E)$.

Suppose next that J is unbounded. If x is the left end point of J let $I_n^* = \{z: x \leq z \leq z + (1/n)\}$ and if x is the right end point of J let $I_n^* = \{z: x - (1/n) \leq z \leq x\}$. Again we have $I_n^* \to x$ and $\rho(E: I_n^*) = \rho((E \cap J): I_n^*)$ for all n so that $\overline{D}_x(E \cap J) = D_x(E)$.

LEMMA 5. Let $E \in \mathscr{D}(x)$ and let J be an interval open on the right with right end point at x and K be an interval closed on the left with left end point at x. Define the set A by $A = (E \cap K) \cup (J - E)$. Then $\overline{D}_x(A) = \max \{D_x(E), D_x(X - E)\}.$

Proof. Suppose $D_x(X-E) \leq D_x(E) = d$. By Lemma 4, $\overline{D}_x(J-E) = 1 - d \leq d$ and since \overline{D}_x is monotone, $\overline{D}_x(A) \geq \overline{D}_x(E \cap K) = d$.

Let $\varepsilon > 0$ be given. Then there exists a sequence $\{I_k^*\}$ converging to x such that

$$ar{D}_{x}(A) < \limsup_{k}
ho(A:I^*_k) + rac{arepsilon}{2} \;.$$

For each k, let $J_k = I_k^* \cap (J \cup K)$. Since $I_k^* \to x, J_k^* \to x$ and $\rho(A:I_k^*) = \rho(A:J_k)$ for all but a finite number of k. Therefore

(1)
$$\bar{D}_x(A) < \limsup_k \rho(A:J_k) + \varepsilon/2$$
.

For each interval J_k we have

$$egin{aligned}
ho(A:J_{k}) &- d =
ho(K:J_{k})[
ho(E:(K\cap J_{k})) - d] \ &+
ho(J:J_{k})[
ho(X-E:(J\cap J_{k})) - d] \ . \end{aligned}$$

Since $E \in \mathscr{D}(x)$ and $K \cap J_k \to x$, $\lim_k \rho(E: (K \cap J_k)) = d$. Since $J \cap J_k \to x$, $\lim_k \rho(X - E: (J \cap J_k)) = 1 - d \leq d$. Therefore there exist integers N_1 and N_2 such that for all $k > N_1$, $\rho(E: (K \cap J_k)) - d < \varepsilon/2$ and for all $k > N_2$, $\rho(X - E: (J \cap J_k)) - d < \varepsilon/2$. Thus for all $k > \max\{N_1, N_2\}$

$$ho(A:J_{\scriptscriptstyle k})-d< rac{arepsilon}{2}
ho(K:J_{\scriptscriptstyle k})+rac{arepsilon}{2}
ho(J:J_{\scriptscriptstyle k})=rac{arepsilon}{2}\,.$$

Therefore $\limsup_k \rho(A:J_k) < d + \varepsilon/2$ and we have by way of equation (1) that $\overline{D}_x(A) < d + \varepsilon$. Since ε was arbitrary, $\overline{D}_x(A) \leq d$ which completes the proof of the lemma.

THEOREM 1. The class $\mathscr{M}(x)$ of \overline{D}_x -measurable sets is the class of all sets whose density exists at x and has the value 0 or 1.

Proof. First suppose $E \in \mathcal{M}(x)$ and $D_x(E) = d$. Let $J = \{z: x - 1 \leq z < x\}$, $K = \{z: x \leq z \leq x + 1\}$. Define the set A by $A = (E \cap K) \cup (J - E)$. By Lemma 5, $\overline{D}_x(A) = \max\{1 - d, d\}$ and by Lemma 4, $\overline{D}_x(A \cap E) = \overline{D}_x(E \cap K) = d$ and $\overline{D}_x(A - E) = \overline{D}_x(J - E) = 1 - d$. Since $E \in \mathcal{M}(x)$

$$1 = d + 1 - d = ar{D}_x(A \cap E) + ar{D}_x(A - E) = ar{D}_x(A) = \max\left\{1 - d, d
ight\}.$$

Therefore d = 0 or 1.

Next let E be a set whose density at x is zero or one. Let A be any Lebesgue measurable set and suppose $D_x(E) = 0$. Since \overline{D}_x is monotone, $\overline{D}_x(A \cap E) \leq D_x(E) = 0$ and hence $\overline{D}_x(A \cap E) = 0$. Since \overline{D}_x is an outer measure

$$ar{D}_x(A-E) \geq ar{D}_x(A) - ar{D}_x(E) = ar{D}_x(A)$$
 ,

and since \bar{D}_x is monotone $\bar{D}_x(A) \ge \bar{D}_x(A - E)$. Therefore $\bar{D}_x(A) = \bar{D}_x(A \cap E) + \bar{D}_x(A - E)$ and E is in $\mathscr{M}(x)$. In case $D_x(E) = 1$ the above argument with E replaced by X - E gives the desired result.

2. Suppose that Z represents an F_{σ} set of measure zero. Define

the upper Lebesgue density of a measurable set E or Z by

$$\bar{D}_{\mathbf{z}}(E) = \sup \left\{ \bar{D}_{x}(E) : x \in Z \right\}$$

and the lower Lebesgue density of E or Z by

$$\underline{D}_{z}(E) = \inf \left\{ \underline{D}(E) : x \in Z \right\} .$$

If $\overline{D}_{z}(E) = \underline{D}_{z}(E)$ we will say that the Lebesgue density of E on Z, denoted by $D_{z}(E)$, exists and has the common value of $\overline{D}_{z}(E)$ and $\underline{D}_{z}(E)$. It is clear that if the density of E exists on Z then the density exists at every point of Z and has the same value at each point. In [2] it was shown that for any number d such that 0 < d < 1, there exists a set E such that $D_{z}(E) = d$. Thus if $\mathcal{D}(Z)$ denotes the class of all sets whose density on Z exists, D_{z} is a set function which maps $\mathcal{D}(Z)$ onto the closed unit interval. It is clear that D_{z} will have the same properties as D_{x} where x is any point in Z.

LEMMA 7. \overline{D}_z is a finitely subadditive outer measure defined on the class \mathscr{M} .

Proof. The lemma follows immediately from the monotoniety and subadditivity of \overline{D}_x and the definition of \overline{D}_z .

Let $\mathscr{M}(Z)$ denote the class of all sets E such that $E \in \mathscr{M}$ and for every $A \in \mathscr{M}$, $\overline{D}_z(A) = \overline{D}_z(A \cap E) + \overline{D}_z(A - E)$. Then $\mathscr{M}(Z)$ is an algebra and the restriction of \overline{D}_z to $\mathscr{M}(Z)$ is a finitely additive measure.

LEMMA 8. $\mathcal{M}(Z)$ is a subset of $\mathcal{D}(Z)$.

Proof. Let $E \in \mathscr{M}(Z)$. The real line X is in \mathscr{M} so we have $1 = \overline{D}_{Z}(X) = \overline{D}_{Z}(E) + \overline{D}_{Z}(X-E) \ge \sup \{\overline{D}_{x}(E) + \overline{D}_{x}(X-E) : x \in Z\}$

and

$$\bar{D}_x(E) + \bar{D}_x(X - E) \le 1$$

for all $x \in Z$. But for any $x \in Z$, \overline{D}_x is subadditive so that $\overline{D}_x((E) + \overline{D}_x(X-E) \ge 1$. Therefore $\overline{D}_x(E) + \overline{D}_x(X-E) = 1$ for all $x \in Z$ and by Lemma 1, the density of E exists at every point of Z. Hence $D_x(E) + \overline{D}_x(X-E) = 1$ for all x in Z and

$$ar{D}_z(E)+ar{D}_z(X-E) \geq \inf \left\{ ar{D}(E)+D_x(E): x\in Z
ight\} \ = 1 = ar{D}_z(E)+ar{D}_z(X-E) \; .$$

Since \overline{D}_z if finite, $\underline{D}_z(E) \ge \overline{D}_z(E)$ and it follows that $E \in \mathscr{D}(Z)$.

THEOREM 2. The class of all \bar{D}_z -measurable sets is the class of

all sets from $\mathscr{D}(Z)$ which are mapped onto 0 or 1 by D_z .

Proof. Let $\mathscr{K} = \{E : E \in D(Z) \text{ and } D_z(E) = 0 \text{ or } 1\}$. If $E \in \mathscr{K}$ we may show that $E \in \mathscr{M}(Z)$ exactly as was done in Theorem 1.

Suppose $E \in \mathscr{M}(Z)$. By Lemma 8, $E \in \mathscr{D}(Z)$ and hence $D_z(E) = D_z(E) = d$ for all $x \in Z$. Let x_1 be any point in Z and let $J = \{z : z < x_1\}$, $K = \{z : z \ge x_1\}$. Define the set A by $A = (J - E) \cup (E \cap K)$. Then by Lemmas 4 and 5, $\overline{D}_{x_1}(A) = \max\{d, 1 - d\}, \ \overline{D}_{x_1}(A \cap E) = d$, and $\overline{D}_{x_1}(A - E) = 1 - d$. Since $A \in \mathscr{M}$ and $E \in \mathscr{M}(Z)$,

$$\sup \left\{ D_x(A) : x \in Z \right\} = \sup \left\{ \overline{D}_x(A \cap E) + \overline{D}_x(A - E) : x \in Z \right\}.$$

Let $\varepsilon > 0$ be given. Then there exists an $x_2 \in Z$ such that

$$egin{aligned} D_{x_2}(A)+arepsilon>& \sup\left\{ar{D}_x(A\cap E)+ar{D}_x(A-E):x\in Z
ight\}\ &\geqqar{D}_{x_1}(A\cap E)+ar{D}_{x_1}(A-E)=1 \ . \end{aligned}$$

Suppose $x_2 < x_1$. Then $\overline{D}_{x_2}(A) = D_{x_2}(X-E)$ and $1-d+\varepsilon > 1$. Since ε was arbitrary and $1-d \leq 1$ we have 1-d=1 and d=0.

Suppose $x_2 > x_1$. Then $\overline{D}_{x_2}(A) = D_{x_2}(E)$ and $d + \varepsilon > 1$. Since ε was arbitrary and $d \leq 1$ we have d = 1.

Suppose $x_2 = x_1$. Then $\overline{D}_{x_2}(A) = \max \{d, 1 - d\}$, and $\max \{d, 1 - d\} + \varepsilon > 1$. Since ε was arbitrary $\max \{d, 1 - d\} \ge 1$. But both d and 1 - d do not exceed 1 so that d = 0 or 1.

Therefore E is in \mathcal{K} and we have $\mathcal{M}(Z) = \mathcal{K}$.

BIBLIOGRAPHY

- 1. P. R. Halmos, Measure Theory, Princeton, New Jersey, (1950).
- 2. N. F. G. Martin, A note on metric density of sets of real numbers, to be published in Proc. Amer. Math. Soc., 11 (1960), 344-347.

3. S. Saks, Theory of the integral, Trans. by L. C. Young, Warsaw, (1937).

IOWA STATE UNIVERSITY AND UNIVERSITY OF VIRGINIA