
DISSIPATIVE OPERATORS IN A BANACH SPACE

G. LUMER AND R. S. PHILLIPS

1. Introduction* The Hilbert space theory of dissipative operators1

was motivated by the Cauchy problem for systems of hyperbolic partial
differential equations (see [5]), where a consideration of the energy of,
say, an electromagnetic field leads to an L2 measure as the natural
norm for the wave equation. However there are many interesting
initial value problems in the theory of partial differential equations
whose natural setting is not a Hilbert space, but rather a Banach space.
Thus for the heat equation the natural measure is the supremum of the
temperature whereas in the case of the diffusion equation the natural
measure is the total mass given by an Lx norm. In the present paper
a suitable extension of the theory of dissipative operators to arbitrary
Banach spaces is initiated.

An operator A with domain ®(A) contained in a Hilbert space H is
called dissipative if

(1.1) re(Ax, x) ^ 0 , x e ®(A) ,

and maximal dissipative if it is not the proper restriction of any other
dissipative operator. As shown in [5] the maximal dissipative operators
with dense domains precisely define the class of generators of strongly
continuous semi-groups of contraction operators (i.e. bounded operators
of norm =§ 1). In the case of the wave equation this furnishes us with
a description of all solutions to the Cauchy problem for which the energy
is nonincreasing in time. Our aim will be to characterize the generators
of all strongly continuous semigroups of contraction operators in an arbi-
trary Banch space. For this we shall use the notion of a semi inner-
product, introduced in [4].

DEFINITION 1.1. A semi inner-product is defined on a complex
(real) vector space 36 if to each pair x, y in X there corresponds a com-
plex (real) number [x, y] in such a way that:

I IT I 01 Ojl — \ If /y~\ I ["/if /y~\

(1.2) ' ' ' x, y, z e 36 and X complex (real) ;
[Xx, y] = X[x, y]

(1.3) [x, x ] > 0 f o r x ^ O ;

(1.4) I [x, y] |2 ^ [x, x] [y, y] x, y e £ ,
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1 The term operator will be understood throughout as denoting a linear transformation,,
not necessarily bounded, with domain and range subspaces of the same space.
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Such an X is called a semi inner-product space (in short a s.i.p.s.).
One easily shows (see [4]) that any s.i.p.s. is a normed space, the

norm being defined by | x \ — [x, x]112.
Conversely any Banach (or normed) space can be made into a s.i.p.s.—

and this in general in infinitely many ways—as follows: Let X denote
a Banach space with adjoint space X*. According to the Hahn Banach
theorem to each x e X there corresponds at least one (and let us choose
exactly one) bounded linear functional Wx e X* such that (x, Wx) =
Wx(x) = I x |2. Then clearly [x, y] — (x, Wy) for each x,y eH defines a
semi inner-product on X. It is clear that there is a unique semi inner-
product compatible with the norm of a given Banach space if and only
if its unit sphere is "smooth" in the sense that there is a unique sup-
porting hyperplane at each point. In particular for a Hilbert space the
only semi inner-product is the usual inner-product.

DEFINITION 1.2. An operator A with domain ©(A) in a s.i.p.s. X
is called dissipative if

(1.5) re[Ax, x] ^ 0 , x e ®(A) .

DEFINITION 1.3. For any operator A with domain ®(A) in a s.i.p.s.
X, we define its numerical range W(A) as

(1.6) W(A)^[[Ax,x]; x e ®(A) , M = 1] ,

and set
6{A) = sapre{W(A)}.

In the sequel, although the connection between dissipative operators
and semi-group of contraction operators is always kept in the foreground,
only §§ 3, 4 and 5 deal primarily with semi-group theory. Section 2 is
concerned with bounded dissipative operators and their relation to the
geometry of the unit sphere S of 95(X), the algebra of all bounded oper-
ators on X. The following identity, previously proved in [4], is basic
for these considerations:

(1.7) 0(A) = lim r\\ I + tA I - 1) , Ae
+

here I is the identity operator.2 In particular, we show that a conjecture
2 The relation (1.7) is readily verified when X is a Hilbert space. In fact for x € 36,

1 x I = 1, and t > 0, we have

I (/ + tA)x i2 = (x + tAx, x + tAx) = 1 + 2tre(Ax, x) + t21 Ax |2 .
As a consequence

and also
2re(Ax, x) rg t~K\ I + tA I2 - 1) + t \ A |* .

Hence
e(A) = lim (2*)-1(l I + *A |2 - 1) = lim t~K\ I + U I - 1) .

+ +
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of Bohnenblust and Karlin [1]—concerning the non-existence of tangent
rays to S at I in the direction of the radical—is false. On the other
hand we show that if a suitable condition (on the growth of the re-
solvent of the quasi-nilpotent operator in question) is assumed, then the
conclusion of the conjecture is valid; in particular, the conjecture always
holds in the finite dimensional case.

The relation (1.7) is also of interest in semi-group theory. In fact,
for a strongly continuous semi-group of operators [S(t); t >̂ 0] with
infinitesimal generator A, if we define the local type a)(A) as

(1.8) o)(A) = lim t~' log I S(t) I

(see [3; Theorem 7.11.1]), then for A e 35(1) and S(t) = exp (tA), it is
clear that

Q)(A) = limt~1(\I+ tA\ - 1) ,

and hence by (1.7) that

(1.9) o)(A) = 0(A) .

This result extends to the case of unbounded A as does the following
generalization of (1.7) (proved in § 3)

(1.10) sup lim t~\\ x + tAx | - 1) ^ 6{A) g sup lim f\\ x + tAx \ - 1) .
+ +

Section 3 deals with unbounded dissipative operators and their con-
nection with the generation of semi-groups of contraction operators. It
is shown that an operator A with dense domain in a s.i.p.s. X generates
a strongly continuous semi-group of contraction operators if and only if
it is dissipative and the range of I — A, in symbols 5R(I — A), is £. In
particular this will be the case if A is closed, densely defined, and both
A and A* are dissipative. It is clear that any dissipative operator has
a maximal dissipative extension. Now if A is a dissipative operator
with dense domain in a Hilbert space then $R(J — A) is 3t if and only if
A is maximal dissipative. Unfortunately the situation is not that simple
in general; we show by example that A can be maximal dissipative with
dense domain and yet 3i(I — A) need not be dense in £. On the other
hand, it is shown that A generates a semi-group of contraction operators
if it is dissipative and if the set [x; x e ®(A°°), | Anx \lln = o(n)] is dense
in X. It is clear that the above condition holds for self-adjoint opera-
tors on a Hilbert space, or more generally that it holds for all unbounded
spectral operators in the sense of Dunford. It is shown that this condi-
tion also holds for all generators of groups of operators, but not for all
.generators of semi-groups. Two lemmas concerning the smallest closed
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extension of a dissipative operator with dense domain are given at the
end of § 3.

Finally it was noticed that in certain physical initial value problems,,
a given generator could be, roughly speaking, dissipative with respect
to several norms simultaneously. In a cooling process, for instance, the
maximum temperature is nonincreasing as is the total amount of heat
in the body; thus the semi-group solution consists of contraction opera-
tors in both an L^ and an Ll setting. With this as motivation, it is
shown in § 5 that if [S(t)] defines a semi-group of operators of finite
local type a)p on Lp and of finite local type a)q on Lq, 1 ^ p ^ q g oof

then as a semi-group acting on Lp n Lq it can be extended to be a semi-
group of local type cos ̂  ao)p + fta)q on Ls; here a, ft ^ 0, a + ft = 1,.
and s"1 — ap-1 + ftq~x. A similar convexity type result involving con-
ditions on the generators rather than the semi-group operators is also-
established.

2. Bounded dissipative operators* This section is concerned with
bounded dissipative operators on a Banach space £. We show first of
all that A e 33(36) is dissipative if and only if the semi-group exp (tA}
generated by A is a semi-group of contraction operators. Next we con-
sider the special class of dissipative operators for which sup re{ W(A)} =
0 in connection with the geometrical properties of the unit sphere of
33(£). Among other things we disprove a conjecture of H. F. Bohnenblust
and S. Karlin [1] by exhibiting a non-trivial quasi-nilpotent bounded dis-
sipative operator.

LEMMA 2.1. If A is a bounded dissipative operator on a s.i.p.s.
36, then the resolvent of A, namely R(X, A) exists for reX > 0.

Proof. Denote the spectrum of A by a(A) and suppose A, is a point
in the boundary of o(A). Then there exists a sequence {xn} c 36, | xn | = 1,
such tha t (XI — A)xn —> 0. I t follows tha t [Xxn — Axny xn] = X — [Axnj xn]-+
0, and since re[Axn, xn] ^ 0, we see that reX ^ 0; consequently the
spectrum itself if contained in the half plane reX ^ 0.

Combining Lemma 2.1 and Theorem 3.1 we have

THEOREM 2.1. A bounded operator on a s.i.p.s. generates a semi-
group of contraction operators if and only if it is dissipative.

REMARK 1. In the previous theorem all that is required is to show
that I exp (tA) | ^ 1 if and only if A is dissipative. This however is an
immediate consequence of the relation (1.9) which in turn depends on
(1.7) or, equivalently, on (3.8).
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REMARK 2. Theorem 2.1 implies also that if A is a bounded dis-
sipative operator with respect to any s.i.p. consistent with the norm of
a Banach space £, then it is dissipative with respect to any other such
s.i.p.. This fact could also be obtained from the corollary of Lemma
3.2; it is also a consequence of a general linear space lemma given in
the appendix.

In considering the geometry of the unit sphere S of 23(£), we first
recall some terminology. Let I be the identity operator, and A e 33(£),
A^O, we refer to {I + tA: t ^ 0} as the "ray generated by I and A."
According to [1], the ray generated by I and A will be said to be
tangent to S at I, if

(2.1) lim t'W I+tA\-l)=0 .

We have then as an immediate consequence of (1.9) and (3.8).

LEMMA 2.2. The ray generated by I and A is tangent to S at I,
if and only if sup re{ W(A)} = 0 (or equivalently, if and only if A gener-
ates a semi-group of local type 0).

Inspecting the proof of Lemma 2.1, we see at once that if in parti-
cular A is quasi-nilpotent, then supre{PP(A)} ^ 0. Hence we also have

COROLLARY. A quasi-nilpotent bounded operator generates with I
a ray tangent to S at I, if and only if it is dissipative.

Bohnenblust and Karlin conjecture in [1] that in no Banach algebra
can there exist a ray tangent to the unit sphere at the identity which
is generated by an element of the radical. In order to show that this
conjecture is false, it suffices, in view of the above corollary, to exhibit
a non-trivial quasi-nilpotent dissipative operator A on a Hilbert space 36,
considering A to belong to some commutative subalgebra of 33(36) con-
taining I and A.

THEOREM 2.2. There exists a bounded quasi-nilpotent dissipative
operator A on a Hilbert space X, different from 0.

Proof. Let 3£ = L2[0,1]. And set

(o{l -T) for O ^ ^ r ^ l
) |

This is the Green's function corresponding to the boundary value problem
-(d2ldt2), x(0) = x(l) = 0. Thus the operator G defined by

(Gx)(a) = U(<7, z)x(T)dr , x e 3£ ,
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is self ad joint and positive. Now consider

rO for a < z

yg((f, z) for z ^ G

and define

(2.2) (Ax)(a) — — \a(a9 z)x(z)dz , x e £ .

Then A + A* = —G, hence re(Axf x) ^ 0 for x e X, so that A is dissi-
pative. Moreover it is easily verified that | An \lln —> 0, and the proof is
complete.

THEOREM 2.3. Let A be a bounded quasi-nilpotent operator on a
s.i.p.s. 9£, whose numerical range W(A) = {[Ax, x]; [x, x] — 1} is confined
to an angular region Q, with vertex at 0 and angle n\a, 0 ^ it\a < 2TC.
If I R(X, A) I = 0(exp IX |~0), /3 < a, as X —• 0 in some angular region
strictly containing Q, then A = 0.

Proof. For the sake of clarity let us use Q3 to denote the angular
region (in the complex plane) with vertex at 0 and angle 0, bisected by
the real axis. We may assume without loss of generality that Q = Qx!o6.

Next we consider F(X) = (7 + XA)~\ Since A is quasi-nilpotent,
F(X) is an entire function in the complex variable X. We shall first
show that I F(X) \ = 0(1) as X -> 0 for X e Qe with 0 < 2TZ — ic\a. For

I (I + XA)# I ̂  I [a? + XAxy x] I = 11 + X[A#, a;] |

If X 6 QQ, then 1 + X[A#, x] e 1 + Q^!a>)+B, and the minimum distance
from the origin to the latter set is positive. It follows that

( I + XA)x I ̂  M{0) \x\ for x e X

On the other hand we have

I F(X) I = - L I i2( -X-\ 4) I = 0(exp IX I
I X I

as X—> oo in a region —-0 ,̂ ̂ > > ?r/tf. We now choose 0 <.2TV — nja in
such a way that the complement of Qe (i.e. —Q2^9) is contained strictly
in both — Q<p and —Q^. Then

= 0(1) in QQ

= 0(exp IX P) as X -^ oo in -Q^+9 .
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Under these conditions one can apply the Phragmen-Lindelof theorem to
the numerical valued functions f(F(X)), f being any bounded linear
functional on the algebra S9(X) of all bounded operators on X. One
concludes that \f(F(X)) | = 0(1) in the entire plane, hence f(F(X)) =
f(F(0)) = / ( ! ) ; F(X) ~ I, and consequently A = 0.

COROLLARY. If A is a dissipative, quasi-nilpotent bounded operator
on a s.i.p.s., and | R(X, A) | = 0(exp | X \~1+s), s > 0, asX-^O wsome
angular region strictly containing the half plane reX ̂  0, then A = 0.

Notice that for the operator A defined in (2.2) one verifies easily
that I R(X, A) I = 0(exp | X I"1) near 0; which shows that the condition in
Theorem 2.3 is sharp.

We also have the following.

COROLLARY. If A is a quasi-nilpotent, dissipative, and X is finite
dimensional, then A — 0.

Proof, In this case R(X, A) is a polynomial in Ar1, hence | R(X, A) | =
€(exp I X \-s), 8 > 0, near 0.

Next, using the fact that a dissipative bounded operator generates
a semi-group of contractions we obtain another condition under which a
•dissipative quasi-nilpotent bounded operator vanishes.

THEOREM 2.3. Let A be a bounded quasi-nilpotent dissipative
operator defined on a s.i.p.s. £. / / for some k ^ 0

exp (tA) = O{tk)

as t —•» — oo, then A = 0.

Proof. It is known (see [3; Theorem 3.13.8]) that an entire vector-
valued function F(z) of order one and of minimal type such that | F(t) \ —
O(| t \k) for real t, is necessarily a polynomial in z of degree < k. Setting
F(z) = exp (sA) we see that

\F(z)\^exv(\z\\A\)

so that F(z) is of order one. Moreover, since A is quasi-nilpotent, given
e > 0 there is an JV8 such that | An | ^ en for all n> N,. Hence

I W I ̂  £ I z \n\ A \n/nl + e^ ^ e2e'^

for I z I sufficiently large. Therefore

lim sup r~x sup [log | F(z); | z | = r] ^ 2s ,
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and e being arbitrary, it follows that F{z) is of minimal type. Now A
is dissipative and hence | F(t) | g 1 for real t > 0. By hypothesis | F(t) \ =
O(| t \k) for real negative t. Thus the above mentioned result applies-
and we may conclude that F(z) is a polynomial, say of degree m. But
then

lim inf | z~mF(z) | > 0 .
|Z|->oo

In particular this holds for real positive z so that m = 0. In other
words exp (tA) = F(0) = I and A = dF\dz |0 = 0.

3* Unbounded dissipative operators* We now consider unbounded
linear operators satisfying the dissipative condition (1.5). Unlike the
bounded case, the property of being dissipative for an unbounded oper-
ator on a Banach space £ will in general depend on the particular semi
inner-product (compatible with the norm of £) that is used. As we
have already mentioned such operators play an important role in the
theory of semi-groups of operators (see [3]).

LEMMA 3.1. If A is dissipative and X > 0, then (XI — A)"1 exists
and is bounded with norm ^ X"1.

Proof. Suppose / = Xy — Ay. Then

* I V I2 = H v , V] ̂  re[X[y, y] - [ A y , y]] - re[f, y ] £ \ f \ \ y \ .

THEOREM 3.1. A necessary and sufficient condition for a linear
operator A with dense domain to generate a strongly continuous semi-
group of contraction operators is that A be dissipative and that

Proof. Suppose [S(t); t 2> 0] is a strongly continuous semi-group of
contraction operators. Then

re[(S(t)x - x), x] = re[S(t)x, x] - \ x |2 ^ 0

so that for x e ©(A)

re[Ax, x] — lim re t~x\(${t)x — x), x] ^ 0 .
+

Thus the infinitesimal generator A is dissipative. Moreover it is known
(see [3; Theorem 12.3.1]) that ®(A) is dense and that $ ( / - A) = £.
Conversely if A is dissipative, we see by Lemma 3.1 that (XI — A)~l is
of norm ^ Ar1 for all X > 0. By assumption 5R(J — A) = X so that X = 1
is in the resolvent set of A. Denoting the resolvent of A at X by
R(X; A), it readily follows (see [3; Cor. 2 to Theorem 5.8.4)] that
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R(X; A) = fl(l; A)(I + (X - 1)R(1; A))-1

for IX — 11 < 1. Since the dissipative property now implies | R(X; A) | ^
X"1 for IX — 11 < 1, the method of analytic continuation shows that
R(X; A) exists for all X > 0 and is of norm ^ X"1 for all such X. Since
®(A) is assumed dense in 36, it now follows from the Hille-Yosida theo-
rem [3; Theorem 12.3.1] that A generates a strongly continuous semi-
group of contraction operators.

COROLLARY. If A is a densely defined closed linear operator and
if both A and A* are dissipative, then A generates a strongly con-
tinuous semi-group of contraction operators.

Proof. In view of the previous theorem, it suffices to show that
the range of / — A is all of X. However since (I — A)'1 is closed (with
A) and bounded, SR(I — A) will in any case be a closed linear subspace
of X. Hence if it is not all of X there will exist a non-trivial xt e £*
such that (x — Ax, x*) — 0 for all x e ©(A). As a consequence x* e ®(A*)
and x* — A*x* = 0. The dissipativeness of A* then implies xt = 0
{Lemma 3.1), contrary to the choice of x*m It follows that ?H(I — A) — H.

REMARK 1. Since being a generator of a semi-group of contraction
operators is independent of the choice of semi inner-product, we may
conclude that an operator A with dense domain and ?R(I — A) = £ which
is dissipative with respect to one semi inner-product, will be dissipative
with respect to any other semi inner-product compatible with the norm
of £.

REMARK 2. Let [S(t)] be a strongly continuous semi-group of oper-
ators with infinitesimal generator A and of local type o)(A). Setting

<3.1) o) = sup t-1 log I S(t) I ,

we see by [3; Theorem 7.11.1] that a) = o)(A) whenever co < co. In
this case T(t) = exp [— co] S(t) defines a semi-group of contraction
operators with infinitesimal generator A! — A — col. By the above theo-
rem A! will be dissipative so that

(3.2) 0 ^ 0(A') = 6{A) - (o .

On the other hand if A is a generator, then so is A" — A — 0(A)I and
since A" is obviously dissipative, Theorem 3.1 implies that exp[—0{A)t\
S(t) is a contraction operator. As a consequence [S(t)] is of local type
rg 6{A) and combining this with (3.2) we obtain

(3.3) 8(A) = G)(A) .
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By way of illustrating the above discussion we consider semi-groups
of contraction operators on the space C(S) of real-valued continuous,
functions defined on a compact Hausdorff space S with infinitesimal
generator A taking the constant functions into 0. We shall show that
the semi-group operators are necessarily positive. It suffices to prove
(see [3; Theorem 11.7.2.]) that R(X; A) is positive for X > 0. For a given
fe C(S) with a maximum of \f(x)\ at x0 we define Wf by (g, Wf) =
9(x0) f(x0) = [#,/]• Suppose for y e ^(A) and fixed X > 0 that Xy — Ay —
/ ^ 0 and that y(x) has a minimum at x0. Then for c sufficiently large
I y(x) — c I assumes its maximum value at x0. In view of Remark 1 we
can choose W(y — c) so that

(A(y - c), W(y - c)) - [A(y - c))(xo)(y(xo) - c) .

Since A is dissipative this expression is ^ 0 and this together with Ac —
0 implies (Ay)(x0) ̂  0. Hence

y(x0) ^ y(x0) - (Ay)(x0) ^ /(a0) ^ 0 ,

which is the desired result.
It is clear from Lemma 3.1 that if A is dissipative then I — A is

one-to-one. Consequently when 5R(7 — A) = 3£ the operator A is neces-
sarily maximal dissipative in the sense of not having a proper dissipa-
tive extension. Thus it follows from Theorem 3.1 that the generators,
of strongly continuous semi-groups of contraction operators are maximal
dissipative operators with dense domains. The converse has been shown
to be true when K is a Hilbert space (see [5]). Unfortunately, as the
example given below shows, this converse is not in general valid.

EXAMPLE. Let X = C0[0,1] be the continuous real-valued functions,
on [0,1] which vanish at x = 0 and 1. For each / e C0[0,1] pick an x0,
at which |/(a?)| attains its maximum and define the semi inner-product
by [g,f] = g(xo)f(xo). Finally we set

Ay ±= y'
£>(A) = [y; y(x) continuously differentiate, y and y' in C0[0,1]] .

One readily verifies that A is dissipative (in fact [Ay, y] — 0, ye ®(A)
and that ®(A) is dense in C0[0,1]. On the other hand

- A) = [/;/ e C0[0,1], \y*f(x)dx - O] ,

which is obviously not even dense in C0[0,1]. We now prove that A is
maximal dissipative. If this were not the case there would exist a
proper dissipative extension, say A. Suppose u belongs to S(A) but not
to ®(A) and set g — u — An. For fixed x0, 0 < xQ < 1, we construct an
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S i

e~xf(x)dx =
0. Then f e m(I - A) so that there is a t/e ®(A) with y - Ay = f.
Finally forw = y — uwe see that [Aw]^) = w(x) for x > sc0. Suppose
now that w(x) has a positive relative maximum at x1 > #0. I*1 this case
we choose a smooth h, 0 ^ /&(#) ^ 1, so that ^ is a maximum of w(#)
on the support of h (contained in [x0,1]) and so that h(x) equals one
only at xx. Then h e ®(A) and [AK\(XT) = 0. For sufficiently large posi-
tive c, it is clear that | w(x) + ch(x) | has its only maximum at xx. For
such c,

(3.4) [A(w + ch), (w + ch)] = {[Aw\(x^ + c[Ah](xl)}{w{x1) + cfcfa)} > 0

since [^w]^) = w(x^) > 0 by assumption. The relation (3.4) is contrary
to A being dissipative. Thus w(x) can not have positive relative maxi-
mum (nor negative relative minimum) for x > x0 and hence if w(x) is
not identically zero for x e (x0,1) there will be a portion of this interval
for which it is, say, positive and decreasing. Suppose w(xx) > 0, xx > x0.
We again choose h as above (with the additional assumption that h"(x) < 0
near xx) and we see that for c sufficiently large, | w(x) + ch(x) \ will have
its maximum at a point xc just to the left of xx where h'(x) ^ 0. Again
we see by (3.4), with xx replaced by xc, that this is impossible and we
conclude that w(x) = 0 for all x > xQ. This implies that LAw](#) =
[AT/](O;) = y\x) = ur(x) for all x > xQ, and since x0 was quite arbitrary
we see that An = u'. This shows that u actually lies in ®(A) and hence
that A is maximal dissipative.

Because of the important role played by the numerical range in
these considerations it is of interest to obtain independent estimates for
the supremum of the real part of the numerical range of A, that is for
6(A). The following result generalizes the relation (1.7) which has been
shown by Lumer [4] to hold for all bounded operators on a Banach space.

LEMMA 3.2. If A is a linear operator, then

(3.5) sup lim t~\\ x + tAx \ -1) S 0(A) ^ sup lim ^ ( | x + tAx \ -1 ) .
1 1 1 *0+ | | i +1*1=1

Proof. It is clear for x 6 ®(A) and | x \ = 1 that

I [x + tAx, x]\ = {l + 2tre[Ax, x] + o(t)}112 = 1 + tre[Ax, x] + o(t) ,

and hence that

re[Axf x] = lim ^{l [x + tAx, x] \ -1} ^ lim t'W x + tAx \ -1) .

This establishes the right inequality in (3.5). The left inequality is
trivial if 0(A) = co. If this is not case, we set y = x + tAx. Then for
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x 6 ®(A2) and t < {O(A)}-1 we have

\ y \ \ v - t A y \ ^ \ [ y - t A y , y] | ^ \ y \ 2 - t r e [ A y , y ] ^ { l - t0(A)}\

For \x\ = 1, the above inequality together with

(3.6) \y-tAy\ = \x- t2A2x\^ 1 + o(t)

gives

(3.7) fr^flx + tAx\-l)^ t-'Hl + o(t)][l - tO^A)]-1 -1} =

which is the desired result.
In case A is bounded we see that (3.6) holds uniformly in x, \ x \ =

1, so that (3.7) now implies

t-'d I + tA I - 1 ) = sup t-\\ x + tAx I - 1 ) ^ 0(A) + o(l) .

It is also clear that the right inequality in (3.5) continues to hold if we
interchange lim inf and sup. We therefore obtain as a

COROLLARY. If A is a bounded linear operator, then

(3.8) 6{A) = lim t~\\ I + tA \ -1) .
t->0+

Of primary importance in applying the theory of semi-groups is a
convenient criterion for an operator to be a semi-group generator. In
the case of a dissipative operator A with dense domain we have seen
that SR(7 — A) = X is sufficient but that maximality is not. We now
give another sufficient condition covering a fairly large class of opera-
tors.

THEOREM 3.2. Let A be a closed dissipative operator and suppose
that

I Anx \lln = o(n)

on a dense subset 2) of 3)(A°°). Then A generates a strongly continuous
semi-group of contraction operators.

Proof. We begin by defining

S(t)x = S *"/"! Anx
n=Q

for all x e 2). It is clear from the abstract Cauchy-Hadamard theorem
(see [3; Theorem 3.11.4]) that ® is precisely the subset of S)(A) for
which the above series converges for all t ^ 0. As a consequence S(t)
is a linear and strongly continuous on D. Moreover since A is assumed
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closed it is readily verified that

AkS(t)x = f; tn/nl Ak+nx .

Therefore

exp (sA)[S(t)x] = £ s7/c! £ W A*+Ba
/fc = 0 71 = 0

and since this double sum is absolutely convergent for all s it follows
that S(t)x belongs to 55. Rearranging terms we verify that S(s)[S(£)^] =
S(s + t)x. Thus S(t) defines a strongly continuous semi-group of opera-
tors on 35.

We next show that S(t) is a contraction operator on 3), In fact
the series form of S(s) implies that

I S(s)S(t)x I - I S(t)x I - I S(t)x + sAS(t)x I - I S(t)x \ + O(s2) .

Hence by Lemma 3.2 we may conclude that

Ma-'llSis + t)x\ - \S(t)x\]

^ sup [re[Ay, y];\y\ = \ S(t)x \,ye ©(A)] ^ 0 .

Thus I S(t)x I is a non-increasing function of t and since S(0)x — x we
conclude that | S(t)x | ^ | x \ for alH ^ 0.3 Since ® is dense by hypothesis,
we see that S(t) has a unique closed linear extension on 36 which is
again a contraction operator. To simplify our notation we shall also
denote this extension by S(t). It is clear that the so defined operators
from a strongly continuous semi-group of contraction operators on 3c.

It remains to show that the generator of this semi-group, which we
denote by B, is actually equal to A. Now for x e ® it is clear that

lim t-'iSifyx - x] = Ax

so that B extends A cut down to ®. On the other hand it is well
known (see [3; Theorem 10.3.3]) that for x e

S(t)x - OJ= [s(a)Bxda .
Jo

For x e 35 it is clear that S((?)Ax = AS(a)x and since A is closed we
have by [3; Theorem 3.3.2]

[s(a)Axda =
Jo

3 Here we make use of the fact that a continuous real—valued function having a non-
positive upper right hand derivative at every point of an interval is non-increasing in that
interval. See for instance Titchmarsh, "Theory of Functions" p. 354.
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Each x e 2)(2?) can be approximated by a sequence {xn} c 3). Again
using the closure of A together with the above remarks we get

S(t)x - x = A [s((7)xda , x e
Jo

Thus

Bx = lim t'^Sitjx - x] = lim .JV1 f ' s^a?^
*-*0+ i->0+ L Jo

and since t~l \ S{o)xda —> x we conclude that x e ®(A) and that A# = J3#;
Jo

in other words AID B. However A is dissipative and B is maximal
dissipative and therefore A — B.

REMARK 1. Since the smallest closed extension of A cut down to-
® satisfies the hypothesis of the theorem, it follows that A is this,
smallest closed extension.

REMARK 2. The hypothesis of the theorem is always satisfied by
generators of groups of operators. In order to verify this, let [S(t);
— o o < £ < o o ] b e a strongly continuous group of operators with infini-
tesimal generator A and set

ys = \ k(t, e)S(t)xdt , x € 9£ r
J-oo

where

k(t,e) = (7T£)-1/2exp(-f/s) .

Obviously ys—*x as e —* 0+ so that the set ®0 of elements of the form
yz is dense in X. On the other hand by [3; Theorem 10.3.4]

Anyz = (—If \ k{n){t, e)S(t)xdt .

Now it is known (see [3; p. 306]) that \S(t)\ = Mexp(o)\t\) for some
constants co and M. Also, there is the estimate (see [3; pp. 571-572])

exp («V2e) I k{n)(t, e)\dt = 0[(2nw!)1/V/4] ,

for fixed e. Since M'exp(f/2e) majorizes ikf exp (a>| 11) for Mf suf-
ficiently large, we see that

I Any \lln = O(n1/2) = o(n) .

The set © of the theorem obviously contains S)o, so that it too is dense.

REMARK 3. The hypothesis of Theorem 4.1 is not always satisfied
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by semi-group generators. In fact let X = Lx(0, oo) and set

[f(x - t ) , x ^ t ,
ISW)lx) = io. o s . < i .

Then the infinitesimal generator A is defined by

— [/;/(#) absolutely continuous, fix) e Lx(0, oo), /(0) = 0]

A function / in ®(A°°) is therefore infinitely differentiate with f{n)(0) =
0 for all n ^ 0. Suppose now that / satisfies

\Anf\lin = o(n) .

Then employing the Taylor expansion with remainder we see that

f{x) = (^I)-1 \\x - 8)»rn)(8)d8 .
Jo

Consequently

\f(x) I ̂  ^/w! (°°|/(n)(s) I ds = xn\n\ \Anf\ .
Jo

For fixed e, x > 0 we can choose w so that | Anf\ ^ (en/ex)71. In this case

I/(a?) I ̂  e^/e)"^!)-1 ^ ew ,

and w being arbitrary, we conclude that f(x) = 0. Thus the set 3) of
the theorem contains only the zero vector in this example.

LEMMA 3.3. If A is dissipative with dense domain, then A has
a smallest closed linear extension A.

Proof. If A does not have a closed extension, then there is a
sequence {xn} c ®(A) such that xn —> 0 and Axn —*y, \ y | = 1. Choose
u e S5(A) such that | u — y \ < 1/2, | ̂  | = 1. It is clear that the adjoint
space X* will contain a weak* limit point v* of the bounded set of func-
tionals {W(u + cxn)}; here W defines the semi inner-product on X. The
functional v* has the properties

W(u + cxn)\

(u, v?) = lim (u + cxn, W(u + cxn)) = 1 .

Furthermore we see that

(3.9) re(Au + cy, v*) ^ lim re(Au + cxn), W(u + cxn)) ^ 0 .

On the other hand (y, v*) = (u, v*) + (y - u, v*) ^ 1 - 1/2 = 1/2 so that



(x, v*) = 1

Moreover

re(Ax, v*) ^

nn 1 Wxn | =
im(o?n, Wxn)

\ Km re(Aa?w,

= | X

Wxn)

w
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(3.9) can not hold if c has been chosen greater than 2|Aw|.

LEMMA 3.4. If A is a dissipative operator with dense domain and
smallest closed extension A, then there exists a semi inner-product
relative to which A is dissipative.

Proof. Let x belong to S)(A) but not to ®(A). Then there is a
sequence {xn} c ®(A) such that xn —• x and Axn —• Ax. Let v* be a weak*
limit point of the set {Wxn}. Then as above

s o t h a t \ v * \ — \ x \

and hence if we redefine W in the set of all such x by setting Wx =
v*, then A will be dissipative relative to the semi inner product induced
by the new W.

4. A convexity theorem. The Marcel Riesz convexity theorem (See
[2; p. 525]) when applied to semi-groups of operators leads to a simple
convexity theorem for the local types of these semi-groups and hence
(by (3.3)) for the supremum of the real parts of the numerical ranges
of the corresponding infinitesimal generators.

THEOREM 4.1. Suppose [S(t)] defines a strongly continuous semi-
group of operators of finite local type o)p on Lp and of finite local
type o)q on Lqy 1 ^ p ^ q ^ oo. Then [S(t)] defined on Lp n Lq can be
extended to be a strongly continuous semi-group of local type

(4.1) o)s ̂  aa)p + /3o)p , s-1 = ap-1 + fiq'1 ,

on Ls for a, & ̂ 0 , a + /3 = 1.

Proof. The inequality (4.1) follows directly from (3.1) and the Riesz
convexity theorem which gives

(4.2) \S(t)\,£\S(t)\;\S(t)\i.

Now for any x e Lp D Lq we see that S(t)x is strongly continuous
in both Lp and Lq. A simple calculation shows that

I S(tjx - S(t2)x I. g I S(tjx - S(t2)x I? I S(tx)x - S(t2)x I?

so that S(t)x is strongly continuous in Ls for x e Lpf] Lq. Since Lp n Lq

is dense in Ls and since | S(t) \s is bounded by (4.2) on compact subsets
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of [0, oo), it follows that [S(t)] is strongly continuous on all of Ls.

REMARK 1. If x e Lp n Lq and X > max {o)p, a)q), then

"exp (-Xt)S(t)xdt

converges in Ls to R(X; A)x (see [3; Theorem 11.5.1] for all s e [py q].
Thus the set

®0 = Rfa A)[LP n Lq]

lies in Ls. Given any x e Ls there is a sequence {xn} cLpf) Lq which
converges to x in Ls. Clearly i2(X; A)#w -^ J?(X; A)# in Ls and

AR(X; A)xn = AJ?(A,; A)#w - aw --> XJ2(X; A)& - x = A.K(A,; A)a?

also in Ls. It follows from this that the Ls closure of the restriction
of A to SB0 is the generator of [S(t)] in Ls for each s e [p, g].

REMARK 2. In applications it is sometimes convenient to apply this
theorem with L . replaced by C(S); here S is a locally compact Hausdorff
space and C(S) consists of all continuous real or complex valued func-
tions defined on S and vanishing at infinity. For a regular ^-finite
measure fjt defined on the Baire subsets I of S, we set Lp — LP(S, 21, p).
Suppose T is defined on C(S) n Lp, 1 g p < oo, and bounded when con-
sidered as an operator in either C(S) or Lp. In this case T can also be
thought of as an operator in L^ with its C(S) bound. As such it can
be extended to the simple functions without increasing its bound. (A
simple function takes on only a finite set of values and is different from
zero only on a set of finite measure.) In fact let / be a simple func-
tion. Then / e Lp so that g = Tf e Lp. We shall show that g e L^ and
Iff I ̂  I r|(71/|oo. It is clear that one can construct a sequence {/„} c
C(S) n Lp such that \fn U rg | / U and/w — / i n Lp. Since r /B converges
to g in Lp a, subsequence (which we renumber) will converge almost
everywhere to g. Now | Tfn U £ | T\o \fnU S I T\o | / U , so that g e L .
and IffU^ITItfl/loo which was to be proved. This shows that T is
already defined on the simple functions on £«, with norm | T\o. On the
other hand in the proof of the Riesz convexity theorem for the q = co
case, the Ls extension is obtained from the L^ behavior on simple func-
tions. It therefore follows that Theorem 4.1 also holds with L^ replaced
by C(S).

THEOREM 4.2. For H p ^ g ^ o o suppose that Ap and Aq generate
strongly continuous semi-groups [Sp(t)] and [Sq(t)] of finite local types
o)p and a)q, respectively. For r — p or q let
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®(A0) = [x; x and Arx e Lp n Lq] ,

A.QX — A.rX ,

and suppose that the restrictions of Ap and Aq to S)(A0) are equal.
Finally for all sufficiently large X suppose that the range of (XI — Ao)
is precisely Lp n Lq. Then for s~l — ap~x + fiq*1, a, ft ^ 0, a + j3 = 1,
£/&e smallest closed extension of Ao considered as an operator in Ls

exists and generates a strongly continuous semi-group of finite local
type ^ acop + /3o)q. Actually Sp(t) and Sq(t) are identical on Lp n Lq

and the Ls generated semi-group is simply the smallest closed Ls ex-
tension of the restriction of Sp(t) or Sq(t) to Lpd Lq.

Proof. We first show that the restrictions of Sp(t) and Sq(t) to
Lp n Lq are identical. To this end set R0(X) — (XI — A0)~

l. Then for
sufficiently large X, R0(X) is defined on all LpC\Lq to ^)(AQ) cz Lp f] Lq.
It is also a restriction of both R(X; Ap) and R(X; Aq) which are in norm
^ (X — max (o)p, (oq))~\ Consequently the sum

SQ(X, t)x = e~kt f; J ^ L Q I [i2o(x)]wo; , a? e L p n Lq ,
n=0 nl

converges in both Lp and Lq so that SQ(X, t)[Lp n i>g] c Lp n Lq. Passing
to the limit as X —> oo, it is shown in the proof of the Hille-Yosida
theorem (See [3; Theorem 12.3.1]) that SQ(X, t)x converges in Lp to Sp(t)x
and in Lq to Sq(t)x. Thus for x e LPC\ Lq

Sp(t)x = limxS0(X, t)o; = S0(t)x = iS f l(«)a?pcL,ni9 .

The hypothesis of Theorem 4.1 is therefore satisfied and the Ls exten-
sion of SQ(t) defines a strongly continuous semi-group of operators of
the required local type. Finally it is clear from the hypothesis that
R(X; Ar)[Lp n Lq] = ®(A0) for r equal to both p and q. Thus ®(A0) =
55)O of Remark 1 above and hence the smallest closed extension of Ao in
Ls generates the above defined semi-grup of operators.

REMARK 3. It follows from Remark 2 that Theorem 4.2 also holds
with Loo replaced by C(S).

5. Appendix. We shall now prove a lemma on normed linear
spaces, mentioned earlier, which is useful when considering different
semi inner-products inducing the same norm.

Let X denote any (real or complex) normed linear space, X* its dual.
For any p e l , | p \ = 1, define
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LEMMA 5.1. Let 2) be a dense subset of the unit sphere S of £, and
let Cz denote the weak * closed convex hull of {Wx; x e 2), | x — p < e};
W denoting as before, the mapping from X to £* defined in § 1. Then

Proof. First suppose that x* e -P(p). Then for each £ > 0 there
is a finite set {x{} c 2), | â  — p | < s and numbers a:*, at ^ 0, 2"^ = 1
such that I (p, x*) — (p, ScCiWXi) \ < e. Hence

I (p, a?*) - 11 g s + I (p, Jta, Wa,) - Sat(xif Wx%) \

^ s + I Sa{(p - xif WXi) I ̂  2e .

Thus if a?* e F(p), then (p, x*) — 1 and since clearly | x* \ ̂  1 it follows
that x* e C(p); that is ^(p) c C(p).

Let us now show the converse. F(p) is clearly convex and compact.
One can without loss of generality assume that £ is real. In fact, if
X is a complex normed linear space, let %r denote this space regarded
as real; it is then easily shown that the corresponding Cr{p) is the set
{rex*-, x* e C(p)} and Crz = {rex* : x* e Cs}. Thus, suppose 3c is real and
that x* e C(p) © F(p). Then by an elementary separation theorem for
conpact convex sets there exists y eH such that (y, x*) > 1, {y, x*) ^ 1
for all x* e F(p). Since 2) is dense, there is a y0 e 2) such that
(Vo, Xo) >k^ (y0, x*) for all x* in F(p).

Next we consider the subspace X spanned by p and y0. Since (p, x*) =
(pf x*) = 1 for all x* e F(p), y0 and p are not colinear, and X is actually
two dimensional.

If x is any point on the unit surface S of X, {xn} c 2) may be so
chosen that Wxn, the restriction of Wxn to X, converges so-to-speak to
a support line at x. Hence by considering points on either side of p
on S, it is clear that the two extreme support lines at p belong to the
restriction of F(p) to X, and since F{p) is convex the support line cor-
responding to x* belongs to F(p). But this means that sup [(y0, x*);
x* e F{p) = (y0, x*)] which is contrary to one choice of y0.

COROLLARY. Let T denote a bounded operator on any (real or
complex) normed linear space 36. Consider two mappins Wx and W2,
from X to X* defined as usual. Then the corresponding numerical
ranges of T, W±(T) and W2(T) have the same closed convex hull.

Proof. In fact write C(T) — closed convex hull of {{Tx, x*);
x* 6 C(x), I x I = 1}; we shall show that C(T) is the closed convex hull
of W,{T) (as well as of W2(T)). Clearly W1(T)dC(T). On the other
hand, given x* e C(x), \x\ = 1, then by the previous lemma, we may
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choose {#?} c S, x* —• x (uniformly in i), and Ifi^W^x* -+ a?*, with a? ^ 0,
2^a? = 1. Now I ZiaKTx, Wxxt) - lfiCl(Txn

i9 W&) \ ^ | r|< sup | x - a?? | ->
0 and ZctiiTx, Wfl*)—* (Tx, x*) which thus belongs to the closed convex
hull of WX(T).
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