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Introduction* H. Whitney [8, 9] has given a thorough discussion
of the problem of a function of a single real variable whose mth dif-
ference is bounded. Other results along the same lines have been
obtained by J. C. Burkhill [1], H. Burkhill [2] and F. John [5]. Whitney
distinguishes three cases, according to whether the domain of the func-
tion consists of a finite interval, a semi-infinite interval, or the whole
real line. In each case, the object is to show that a function with
bounded mth differences which also has certain regularity properties
such as continuity or measurability or boundedness can be approximated
by a polynomial of degree m — 1, and to obtain the best possible
approximation in terms of the given bound on the mth difference.

In the present paper, an analogous problem will be considered for
a transformation of a cone in a vector space into a Banach space. Our
results correspond to the cases of unbounded intervals considered by
Whitney. So far, we have no results for a transformation acting on a
bounded domain, since our method depends essentially on the assumption
that the domain be unbounded.

Our methods are completely different, and much simpler than those
of Whitney for the unbounded domains considered here. By generalizing
the concept of "polynomial" so as to include all transformations whose
differences of a certain order are identically zero,1 we can remove al
regularity assumptions from our transformations. However, for m > 2,
we seem to require that the mth difference, with m different incre-
ments be bounded, instead of the weaker assumption with equal incre-
ments.

1. Some definitions and known results. Let 9c be a vector space
over the rational numbers and let T be a vector space (over the reals).
Let S denote a convex "cone" in 1 with vertex at the origin. This
means that

( i ) if x and y e S, then x + y e S ;
(ii) if x e Sf then ax e S for all rational numbers a ^ 0. Clearly

these conditions imply that S is rational-convex, in the sense that if x,
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2 This is similar to the definition of a polynomial due to Frechet [3], except that here
we require no regularity assumptions.
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y e S then ax + (1 — a)y e S for 0 ̂  a ̂  1, where a is, of course,
rational.

We shall make use of those results of Mazur and Orlicz [6] which
are contained in the first part of their paper. These have to do with
multi-additive transformations and operators of degree ra of one vector
space into another, and we remark that all these results hold for oper-
ators defined on a vector space X with rational multipliers, and also for
transformations defined on S, rather than on the whole space. Para-
phrasing their definitions, a transformation V(xly x2f • • • xk) defined for
all x3 e S (j — 1, • • • , k), with values in T, will be called k-additive if
it is additive with respect to each x3, for all Xj e S (j = 1, • • •, k). By
the usual device, it follows at once that if V(xu •••,&») is fc-additive
on S then

VfaXu T2X2, • • •, TJPI) = r 2 • • • Tj. V(xlf • • • , < & * )

for all nonnegative rational T3 and all x3 e S.

If V*(xl9 • • •, xk) is fc-additive on S to T, define

Vk(x)=V*(x,.~,x)

for all x e S. Then
Vk(TX) - T«Vk(x)

for all nonnegative rationals r. A transformation Vk(x) defined in this
way will be called a rational-homogeneous form of degree fe, on S,
providing that it does not vanish identically on S.

A transformation V(x) on S to T is said to be at most of the rath
degree providing that

(1) V(x) = V0(x) + V,(x) + . . . + Vm(x) ,

where each Ffc(o;) is a rational-homogeneous form of degree k on S, or
else vanishes identically on S. If Fm(#) does not vanish identically, we
say that V(x) is of degree m. Here V0(x) denotes a constant element
of T.

We denote the (forward) rath difference of V(x), with the same
increment h used at each step, by A*V(x). The rath difference with
different increments h19 '"fhm will be denoted by Ahv..hmV{x). Thus,
for example, AllhV(x) = V(x + ̂  + h2) - V(x + AJ. - V(x + h2) + V(x).

The following results, proved in [6], p. 56 and p. 62, also carry over
without change to our present situation.

THEOREM A. In order that the transformation V{x) on S to T be
at most of the mth degree, it is necessary and sufficient that JJT+1 V(x) = 0
for all x and h in S.
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THEOREM B. If Vm(x) is a rational-homogeneous form of degree
m, then there is a unique symmetric m-additive transformation
V(x19 • • • , - # »

This m-additive transformation is given by the formula

V{xly . . . , a J = -A- <...,„ VJa) .

Note. This multiadditive transformation V is often called the polar
of the transformation Vm.

2. The case m = 2.

THEOREM I. Let S be the "cone" defined in §1 and let B be a
Banach space. If /3 is a fixed positive number and if F is a trans-
formation on S into B satisfying the condition

for all x and h in S, then there exists a transformation V on S into
B with the properties:

(a) V(x + y)= V(x) + V(y) ,
(b) \\V(x)-F(x) + F(0)\\ g / 3 ,
(c) V(x) = limn^n^Finx) ,

for all x and y in S.

Proof. (The proof is similar to that given by the author in [4],
However, it is quite short and will be reproduced here for convenience).
Set g(x) = F(x) - F(Q), so that g(0) = 0 and \\4lg(x)\\ ^ 0 for all x and
h in S. Replacing x by 0 and h by 1/2 x9 and dividing the result by
2, we have

for all x in S. We make the induction assumption:

/ Q ̂  II 9~w/7/Vl n((?~n^*\ 11 <!! /1 9~WW
\ o / I j & yy™/ yy** ™) 11 = v-"- — ** )P >

for all x e S, and show that (3) holds with n replaced by n\+ 1. To
do this, replace x by 2~nx in (2):

( 4) I I i - 0(2-00 ~ ̂ (2—^) I I ̂  i - £ ;
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now divide (3) by 2:

( 5 ) II2—-^(a?) - — g(2~nx)

Thus, on adding (4) and (5) and using the triangular inequality we have

Since by (2), (3) holds for n — 1, the result (3) has been established by
induction.

Next, we put qn(x) = 2~ng(2nx), where n = 1, 2, 3, • • •, and note that

Qn+P(x) - qn(x) - 2-n{2-»g(2n+*x) - g{2^{2n^x))} ,

where p is any positive integer. Applying (3) with x replaced by 2n+px
and with n replaced by p, it follows that

II W « ) - gn(x)|| s* 2 - ( l - 2-)/9 < 2"»/S ,

Thus gw(a;) is a Cauchy sequence, and hence converges to some element
V(x), since B is complete.

Now, for any two elements x and h in S, we form the second
difference at 2nx with the increment 2nh and divide it by 2n. Since the
second difference of g has the bound /3, we get:

\\2~ng[2n(x + 2h)] - 2'2~ng[2n{x + h)] + 2~ng(2nx)\\ g 2^/3 .

Taking limits as n —•> oo, we see that

( 6 ) JlV(x) = 0,

for all cc and h in iS. Thus V is additive on S by Theorem A of § 1.
By using (3) with x replaced by 2nx, one has \\qn{x) — g(x)\\ ^

(1 — 2~w)/3; again taking limits as n —> oo and recalling the definitions
of fif(a;), and F(#) = limw_>oog'w(a?), we obtain

(b) )\V(x)-F(x) + F(0)\\£P.

If we replace x by wx in the last inequality, divide both sides by
n and take the limit as n —* co, there results

(c) V(x) = lira F(nx)ln .
n-*oo

The following corollary to Theorem I is essentially just the result
of [4], Theorem 1, adapted to our present case. It will be useful in
the next section.

COROLLARY. Let F(x) on S to B satisfy the inequality



TRANSFORMATIONS WITH BOUNDED mTH DIFFERENCES 595

||F(x + y)- F(x) - F(y) + F(0)\\ ^ 0

for all x and y in S. Then there exists an additive transformation

V(x) = lim n-'J^FiO) = lim F(nx)ln ,

such that \\F(x) - F(0) - V(x)\\ ^ /3 ,
for all x in S.
(The proof of the corollary is simillar to that of Theorem I except that
the additivity of V may now be proved directly.)

3* The general case.

LEMMA 1. Let F(x) on S to B satisfy the inequality

< 7) \\F(x + y)- F(x) - F(y) + F(0) - Q(x, y) - H(x, y) \\ S 0

for all x and y in S, where H(x, y) is either identically zero or else
is a rational-homogeneous form of degree k — l(fc > 1) in x for each y,
while Q{x, y) is a transformation of degree at most k — 2 in x which
vanishes for x = 0.

Then H(x, x) = kH(x), where H(x) is either identically zero or else
a homogeneous form of degree k which is given by the formula

H(x) = ̂ L- lim -V A

Moreover, H(x, y) is given by the formula

(k — 1)! »-

where g(x, y) = F(x + y) — F(x) .

Proof. By hypothesis there exists a transformation V(x19 • • •, xk-19 y)
which is additive and symmetric in its first k — 1 arguments, such that

(8 ) H(x,y)= * V(x,---,x9y).

We take the (k — l)th difference of the quantity inside the norm
signs on the left side of (7), treating y as a constant, and using the
increments xlf • • •, xk-lm It follows from (7) that

U\...^xVF(x) - 4-U^QO*, V) - ^.x^H(x9 y)\\ £ 2*^/3 .

Since Q(x, y) is of degree at most k — 2 in xf its (k — l)th difference
with respect to x is identically zero, by Theorem A of § 1. Also, from
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(8) it follows that the indicated (k — l)th difference of H(x, y) is just
V(xlf • • •, xk-19 y), by Theorem B of § 1.

Thus we have

( 9 ) \\^1...^1yF(x) - V(xlf . - . , %_,, v) || £ W .

On interchanging ajj with y, where j is any positive integer not exceed-
ing k — 1, and observing that the fcth difference in (9) is symmetric in
all of its increments, we see that

(10) II A\...Xk_iVF{x) - V(xu • • • xs.19 y, xJ+1, • • • xk9 Xj)\\ £ 2 * - ^ .

A combination of the inequalities (9) and (10) results in

(11) || V(x19 • • •, xk-19 y) - V(x19 • • • Xj-19 y , xj+1, • • • xk9 x3) || k 2*/9 .

We were given that V is additive in each of its first k — 1 arguments
and symmetric in these arguments. In order to prove that V is
additive in its last argument and symmetric in all of its arguments,
we distinguish two cases.

Case 1. k = 2. Then (11) becomes

\\V(x,y)-V(y,x)\\£4fi

for all x and y in S9 where V is additive in its first argument. Re-
placing x by nx and dividing by n, where n is any positive integer, we
obtain

II V(x9 y) - n^Viy, nx)\\ ^

and so by letting w tend to infinity,

(110 V(x, y) = lim n~x V(y, nx) .
n-*<x>

Thus

V(a?, yx + y2) = li

= lim n~lV{y19 nx) + lim

= ^(a?, 2/0 + V(x, yt) ,

so that V is additive in its second argument. The symmetry now follows
from (110.

Case 2. k > 2. In this case there is an index i ^ j with
1 <£ i 5g fc — 1, and we may replace x{ by nXi in (11), divide this ine-
quality by n, and take the limit as n—* oo to see that Vis symmetric
in all of its arguments. Obviously V must be additive in its last argu-
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ment.
If we define g(x, y) = F(x + y) — F(x), then from inequality (9) we

have

l l ^ i . ^ O , V) - V(x19 • • •, x*-lf y)\\£ 2*-1/S .

Now take each Xj = nx, divide the last inequality by (k — 1).V~\ and
then let n tend to infinity. By (8) the result is

H{xy y) = 1 • F(x, . . . , a ; , | / ) = 1 lim t r ^ M ^ ^ O , y) .
(/c — 1)1 (A; — 1 ) ! w->oo

In a similar way, if we define H(x) — Ar1 H{x, x) and use the fact
that V is additive in each of its arguments, we obtain from (9) that

(12) H(x) = - 1 - V(x, ...,x) = -±-lim±- dk
nxF{0) ,

k\ k\ n^oo n
k

which completes the proof of Lemma 1.

LEMMA 2. For any k > 1, let F,Q, H satisfy the conditions of
Lemma 1, and put F'(x) — F(x) — H(x). Then the transformation
F\x) satisfies the condition of Lemma 1 with k replaced by k — 1.
That is, there exist a transformation Hr(x, y) which is either identically
zero or a rational-homogeneous form of degree k — 2 in x for each y,
and a transformation Q'(x, y) of degree at most k — 3 in x which
vanishes for x = 0, such that the inequality

\\F'(x + y)- F\x) - F'{y) + ^'(0) - Q'(x, y) - H'(x, y)\\ £/3

is satisfied for all x and y in S.
(Note: In case k = 2, Q'(x, y) = H'(x, y) = 0).

Proof. By hypothesis we have F'{x) — F(x) — H(x), where F
satisfies (7), H(x, y) is related to the multi-additive transformation V
by (8), and H(x) is given by (12). In terms of F', (7) becomes

(13) \\F'(x + y)- F'(x) - F\y) + F'(0) - Q{x, y) - H(x, y)

Now by (12),

H(x - y) - H(x) - H(y) = - i - V(x + yy x + y, . . . , x + y)

"" irV { X f * "$x) ~ i r v { y ' ' "'y)'
and by the analog of the binomial theorem,
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V(x + y , •••, a + y) = V ( x , • • • , & )

•' • x, V,V) + • • • + V(y,

Hence, using (8) we have

ff(a? + y) - ff(a) - H(») = ^ F(x, . . . , x, y) + q{x, y)

= Jff(a?, y) + q{x, y) ,

where q(x, y) is of degree at most k — 2 in #, and vanishes for x — 0.
Substituting the last result into (13), we see that

\\F\x + y) - F'(x) - F'(») + F'(0) - Q(x, 1/) + q(x, y)\\ £ 0 .

Since Q and # are each of degree at most k — 2 in x and since each
vanishes for x = 0, the same properties hold for their difference. It
follows that we may write Q(x, y) — q(x, y) — Q\x, y) + H'(x, y), where
H'(x, y) is either identically zero or else is a rational-homogeneous form
of degree k — 2 in x, and Q'(#, y) is of degree at most k — 3 in x, and
vanishes for a? = 0. This proves Lemma 2.

THEOREM II. Let S be the cone defined m §1 and let B be a
Banach space. If /3 is a fixed positive number and if f is a transfor-
mation on S to B satisfying the inequality

for all x and h5 in S (j = 1, • • •, m), then there exists a transforma-
tion Pm-i(x) on S to B which is of degree at most m — 1, such that
for all x in S,

(a) \\f(x) -

Moreover, Pm_x is given by the formula

(b) P^{x)

where each Hk is either a rational-homogeneous form of degree k or
else identically zero.

Finally, the B.^ are given by the formulas:

= lim \
n-,00 ( m _ 1)1

(c) Hk(x) = lim — ^ Uxf(0) - mf 4 , Hj

/or 1 ^ fc ^ m.— 2 .
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Proof. By Theorem I, Theorem II holds for m = 2, with Hx(x) =
V(x)< We shall proceed by induction. Assuming that the theorem
holds for a given positive integer m, we shall prove it with m replaced
by m + 1. By the hypothesis of the theorem, then,

for all x and h3 in S (j = 1, • • •, m + 1).
Put

(14) G(a, 2/) - Av f{x) = /(a? + y) - /(a?) .

Then, treating i/ as a fixed parameter we take differences with
respect to x and get

so that

(15) II ^v..xmG(a

for each fixed y and all x and x3 in S (j = 1, • • •, ra).
By the induction hypothesis together with (15) it follows that there

exists, for each fixed y e S, a transformation P(x, y) defined for all x
in S which is of degree at most ra — 1 in x, such that

(16) \\G{x,y)-P(x,y)\\£/3

for all x and y in S. Moreover, P(x, y) has the form

(17) P(x9 y) = G(0, y) + Q(x, y) + H(x, y) ,

where H(xf y) is a rational-homogeneous form of degree m - 1 or else
is identically zero, while Q{x, y) is a transformation of degree at most
ra — 2 in x, and Q(0, #) = 0. By substituting (14) and (17) into (16) we
have

(18) \\f(x + y) - /(*) - /(i/) + /(0) - Q(a?, 2/) - ff(s, y) || ^ 0

for all a? and y in S.
Since / satisfies (18), we can apply Lemma 1 to / with k — m, and

put Hm(x) = m~lH{x, a), so that

(19) #m(z) = - i - lim - I - 4* /(0)
ml ŵ ~ nw

is either identically zero or else a homogeneous form of degree m.
According to Lemma 2, if we put

(20) A(x) = f(x) - Hm(x) ,
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then the transformation f^x) satisfies the conditions of Lemma 1 for
k = m — 1; consequently, there exists the transformation i?ra_i(x) given
by

<2D

which is either identically zero or else a homogeneous form of degree
m — 1.

Again by Lemma 2, if we put

(22) /,(*) = fx(x) - H ^ a j ) - f(x) - Hm-X(x) - Hm(x) ,

then f2 satisfies the conditions of Lemma 1 for k — m — 2, which leads
to the existence of the limit

etc.
Continuing in this manner, we finally arrive at a transformation

<23) /._,(*) - /(a?) - H,(») Hm(x) ,

where the HJjx) are given by formula (c) in the statement of our
theorem, and where /m_2 satisfies the inequality

(24) I\fm-,{x + y) - /„_,(&) - fm^(y) + /m_2(0) - h(x,y)\\ ^ fl ,

in which h(x, y) is either identically zero or a homogeneous form of
degree one in x. Applying Lemma 1 once more, and putting H2(x) —
1/2 h(x, x)y we have

2 ! w->o

which, in view of (23), also agrees with formula (c) of the theorem.
Finally, on putting

(25) f^(x)=fm-2(x)
- f(x) - Hix) rr- fT8(a?) - . . . - fl-Ja?) ,

and applying Lemma 2 for the case k — 2, we get the inequality

(26) 1!/ . .^ + y) - fm^(x) - fm^{y) + /^(O)[| ^ 0 ,

for all x and 7/ in >S.
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Since /W_L satisfies (26), it follows from the corollary to Theorem 1
that there exists an additive transformation

(27)
n—»oo

satisfying the inequality

<28) 11 f m ^ ( x ) - f m - M ~ Hx(x) | | ^ / 8

for all x in S. Obviously H^x) agrees with formula (c) by (27) and (25).
By substituting (25) into (28) and observing that /w_i(0) = /(O), we obtain

\\f(x) - / ( 0 ) - Hx(x) - H2(x) - Hm(x)\\ ^/3 ,

which is equivalent to conditions (a) and (b) of our theorem with m
replaced by m 4- 1. Thus the induction proof has been completed and
Theorem II established.

4, Uniqueness*

THEOREM III. Let f be a transformation satisfying the hypothesis
of Theorem II. Then any two transformations of degree at most
m — 1 which satisfy

(a) \\f(x)-Pm^(x)\\^f3

for all x in S differ at most by a constant.

Proof. If PTO_! and Pf
m-± are any two transformations of degree at

most m — 1 which satisfy (a), then their difference Q(x) = PTO_i(a0 —
P^ix) is a transformation of degree at most m — 1 whose norm ||Q(a?)||
is bounded by 2/3 for all x in S. This is easily seen to be impossible
unless Q reduces to a constant.

5* A condition for regularity. Let us consider the special case in
which the domain of our given transformation / is an entire normed
vector spase Ey and where / is bounded in some open set of E.

THEOREM IV. Let E be a normed linear space, B a Banach space,
and j3 a fixed positive number. Let f be a transformation on E to B
satisfying the inequality Wd^..^ f(x)\\ ^ 13 for all x and all h5 in
E (j = 1, • • •, m). If f is bounded in some open set contained in E,
then the transformation PTO_i(a?) of Theorem II is a polynomial of
degree at most m — 1. That is, Pm^ is continuous at each point of
E.

Proof. By Theorem II, the transformation Pm_x satisfies the inequality
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(a) for all x in E. Since / is bounded in some open set it follows
immediately from this inequality that PTO_! is also bounded in this open
set.

By Proposition 11, p. 179 of [7], it follows that Pm-i(%) is continuous
at each point of E.
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