
EXCEPTIONAL REAL LUCAS SEQUENCES

L. K. DURST

1. Introduction. If I and m are any pair of non-zero rational
integers, the sequence

(U): U0 = 0, 0i = l , Un^lU^-mU*-*, n ^ 2 ,

is called the Lucas sequence generated by the polynomial z2 — Iz + m.
If I2 =£ 4m and a, /3 are the roots of the generator of (U),

Un = (an - /3n)/(a - /3) , n ^ 0

(Lucas [6]). Each (U) is a divisibility sequence: n\m implies Un\ Um.
An index n, greater than 2, is exceptional in (U) if every prime divid-
ing Un also divides UXU2U^ ••• CT^. In the study of exceptional indices
it suffices to take I > 0. For if (U) and (Uf) are generated by
#2 — Iz + m and z2 + Iz + m, respectively, then Z7W = (—ly^Ul. In all
that follows we therefore suppose I > 0. If i2 > 4m, (C7) will be called
real.

Birkhoff and Vandiver [1] have shown that when a and /3 are co-
prime rational integers the only (U) with any exceptional indices is the
so-called [6] Fermat sequence generated by z2 — Sz + 2, whose only
exceptional index is six. Carmichael [2, Theorem 23] has shown that
when I and m are co-prime integers, I2 > 4m, the only possible excep-
tional indices are six and twelve and that twelve is exceptional only in
the Fibonacci sequence (I — 1, m = — 1). Lekkerkerker [5] has shown
that even if I and m are not co-prime, provided I2 > 4m, (U) has only
finitely many exceptional indices.

In this paper we show that for (Z, m) = 1 there are infinitely many
real Lucas sequences in which six is exceptional (Theorems 2, 3) and
that for (I, m) > 1 there exist infinitely many real Lucas sequences
with any prescribed finite set of exceptional indices (Theorem 5).

The problem is attacked by reducing it to a study of Lehmer's
divisibility sequences (Lehmer [4]), for which the corresponding problem
has been solved (Ward [8], Durst [3]). In the course of the discussion
we obtain a new proof of Lekkerkerker?s theorem and an extension of
it to Lehmer's sequences (Theorem 4).

If I2 — Am, then m = a2 and Un = net,""1. Here n is exceptional
unless it is a prime not dividing a. For I2 < 4m very little is known.
In particular, it is not known whether any such sequences have infinitely
many exceptional indices.
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2, Lehmer sequences. If L and M are rational integers, L > 0,
the sequence

(P): Po = 0 , Px = 1 , P2W = P ^ - MP2W_2 , P2W+1 - LP2W - MP2n.x

is called the Lehmer sequence generated by the polynomial z2 — Liz + M.
Let K — L — 4M. If if ^ 0 and a, /5 are the roots of the generator of
(P),

P2n = ( a 2 - - /52w)/(a2 - /32) ,

If the Lucas sequence (U) is generated by z2 — Iz + m, then the Lehmer
sequence (P) generated by the same polynomial z2 — L^z + M, L = l2

f

M = m, will be called the Lehmer sequence associated with (?7). Clearly

and

Thus we have the following theorem.

THEOREM 1. An index n is exceptional in (U) if and only if
( i ) n is exceptional in (P), or
(ii) each prime dividing Pn but not Px • • • Pn_x divides I.
Cases (i) and (ii) are treated in § § 3 and 4, respectively.

3. Lucas sequences whose associated Lehmer sequences have excep*
tional indices* If L and M are co-prime and K > 0, the Lehmer sequence
(P) generated by z2 — L^z + M has six as an exceptional index if and
only if

L = 2S+2 - 3K , M = 2* - If ,

where s ^ 1, 2S+2 > 3# , and if is odd (Durst [3]). Since 2S+2 - 3K =
(-l)s(mod 3), L = l2^ 2S+2 - 3if implies s = 2£ and Z = 2C+1 - i , where
3 is odd and 1 g i < 2t+1. But, then 3if = 22C+2 - I* = i(2c+2 - i); and
either j = 3r or 2C+2 — j = 3r, where r is odd, positive, and less than
2*+1/3. Thus

if = r(2 t + 2 - 3r) , L = (2J+1 - 3r)2 , M = (2C - r)(2< - 3r)

and we have the following theorem.

THEOREM 2. If (l,m) = 1 and I2 > 4m, tftew ŝ cc ^s an exceptional
index in both the Lucas sequence (U) and the Lehmer sequence (P)
generated by z2 — Iz + m if and only if
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I = 2t+1 - 3r , m = (2* - r)(2* - 3r) ,

where t ^ 1, 2t+1 > 3r, and r is odd and positive.
Note that for r = t = 1 , (C7) is the Fibonacci sequence (Z = 1,

m = - 1 ) .

4* Lucas sequences whose associated Lehmer sequences have no
exceptional indices* Since Px = P2 = 1 and P6/P3 = L — 3ikf, every prime
dividing P6 but not P3 must divide Q6 = L - 3Af = if + M. But
(L, j|f) = 1 implies (P4P5, P6) = 1 by Theorem 2.1 of [3], and P6 is even
if and only if P3 is. Thus for p an odd prime, p | P6 but p \ P^JPJP^
if and only if p \ Q6. On the other hand, if p \ L, then p\ P2p by Theorem
2.0 of [3], so p I (Q6, L) if and only if L is odd and p = 3. Now Q6 = 2*3W,
I = 3SX, t ^ 0, ^ ^ 1, s ^ 1, and (X, 6) = 1 give 3 I = ; 2 - Q 6 = 32SV - 2f3w

or M = 32S-XX2 - 2t3w~1. But s ^ 1 and (L, M) = 1 imply % = 1. Finally
if = Q6 - M = 2f+2 - S2*-1^2 > 0, and we have the following theorem.

THEOREM 3. If (I, m) = 1 cmd i2 > 4m, then six is an exceptional
index in (U) but not an exceptional index in its associated (P) if and
only if

I = 3SX, , m = 32S-XX2 - 2C

wftere s ^ l , t ^ O , \ = ± 1 (mod 6) and S2S~LX2 < 2t+\
Note tha t for s = X, = 1, ^ = 0, (£7) is the Fermat sequence (I = 3 r

5. Sylvester^s sequences and Lekkerkerker^ theorem* In his study
of Lehmer's sequences, Ward [8] adapted a method originally introduced
by Sylvester [7] in connection with Lucas sequences. With each Lehmer
sequence (P) we associate the Sylvester sequence

( Q ) : Q o = O , Q ! = l , Q , = l , Q n =/3+{n)Cn(all3) , n ^ 3 ,

where Cw(cc) is the wth cyclotomic polynomial. Each Qn is a rational
integer and Pn — UQa, Qn = I7Pf8}, where /̂  is the Mobius function,
8 = w/d, and the products are taken over all divisors d of n. Evidently
an index is exceptional in (P) if and only if it is exceptional in (Q).

Suppose L = DL, M— DM and let (P) and (P) be the Lehmer
sequences generated by z2 — Liz + M and z2 — Liz + iff, respectively,
(Q) and (Q) being their associated Sylvester sequences. Lemma 1 below
is easily proved by induction using the recursion relations. Lemma 2
states that Qn is a homogeneous function of L, M.

LEMMA 1.

P> T)n~\p p — H
2n — -U ±2n f

 rm+\ — U
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LEMMA 2. Qn = Dh+{n)Qn if n > 2 .

Proof. There are three cases: n — m, n — 2m, n = 2rm, where
m is odd and r > 1. In the first case,

Qn = Qm = nPth) (dS = m)

where e(n) = 1 if n = 1, s(w) = 0 if w > 1. In the second and third
cases (n = 2rm, r ^ 1),

Q. = n n JVJ-M = nn (
dS=m

since 8 is odd, ^(28) = — ft(8) and ft(2s8) = 0 if s ^ 2. In the second case
(r = 1) ,

and

Qn = Q,m =

While in the third case (r > 1),

and

If p divides Qw but not QiQ2 • * • Q»-i> P is called1 a primitive factor
of Qw. Clearly different members of (Q) share no primitive factors.
Lemma 2 implies that an index n, greater than 3, is exceptional in (P)
if and only if

( i ) n is exceptional in (P) or
(ii) every primitive prime factor of Qn is a factor of D. Now for

1 By Lehmer [4]. Lucas [6] calls it a diviseur propre, Carmichael [2] a characteristic
factor, and Ward [8] an intrinsic divisor.
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(L, M) = 1 and L > AM, (P) has only finitely many exceptional indices.
(It has at most two of them [3].) Since D has a finite number of
distinct prime divisors, only finitely many indices fall into case (ii), and
we have the following theorem.

THEOREM 4. If L > 4M, the Lehmer sequence (P) generated by
z2 — Liz + M has only finitely many exceptional indices.

As a corollary, we deduce Lekkerkerker's theorem. If (U) is the
Lucas sequence generated by z2 — Iz + m, and (P) its associated Lehmer
sequence,

so that an index n is exceptional in (U) if and only if n is exceptional
in (P), or the primitive prime factors of Qn divide I, (Q) being the
Sylvester sequence associated with (P). In view of Theorem 4, the
number of such indices is finite if I2 > 4m.

6* Exceptional indices for real sequences with (L, M) greater than
one. In this section we show that Theorem 4 and Lekkerkerker's theorem
are the best such theorems possible, in the sense that generally no more
-specific statement can be made regarding the distribution of exceptional
indices of real Lehmer and Lucas sequences.

THEOREM 5. There are infinitely many real Lehmer sequences and
infinitely many real Lucas sequences with any prescribed finite set
{n19 •-•,nN} of exceptional indices.

Proof. Suppose (U) is the Lucas sequence generated by z2 — Iz + in,
where 1 = 1 and m = — 2. Then (U) and its associated Lehmer sequence
(P), which are identical, have no exceptional indices. Suppose (Q) is the
Sylvester sequence associated with (P) and let d = pi1 • • • p°^, where
•«!, •••,a J f are any positive integers and p19 • • • , #* are the primitive
prime factors of Qni, • • • ,Q n y . Since the maximal square-free divisors
of (I2, m) and (I, m) are the same, the Lehmer sequence (P) and the
Lucas sequence (U) generated by z2 — Iz + m, I = dl, m — dm, have
the required exceptional indices.

It is easy to construct real sequences with (I, m) > 1 which have no
exceptional indices. For example, if 1 = 1, m — — 2, then Un = 683,
U22 = 1,398,101, so 23 and 89 are primitive factors of U22. Thus the
sequences (U) and (P) generated by z2 — 23z — 46 have no exceptional
indices since (U) has none.

Given a single example of a complex sequence (£2<4m) known to have
no exceptional indices, it would be possible to extend Theorem 5 to include
complex sequences as well as real sequences. Since no such examples
.seem to be known at present (Carmichael [2], Ward [8]), this extension
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must wait. However, given any sequence, real or complex, the proof
of Theorem 5 provides a method for constructing any number of other
sequences whose sets of exceptional indices contain all those of the given,
sequence as well as any finite set of additional exceptional indices.
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