
MULTIPLIERS OF COMMUTATIVE BANACH ALGEBRAS

JU-KWEI WANG

1. Introduction. In this paper Banach algebras will always mean
complex commutative Banach algebras, with or without a unit. The con-
cept of multipliers of a Banach algebra was introduced by Helgason [5]
as follows: Let A be a semisimple Banach algebra considered as an
algebra of continuous functions over its regular maximal ideal space X.
Then by a multiplier of A is meant a function g over X such that
gA c A. Every multiplier turns out to be a bounded continuous func-
tion, and the set of all multipliers of A under pointwise operations forms
an algebra M(A), called the multiplier algebra of A. In particular, if
A is the algebra of all continuous functions on a locally compact Haus-
dorff space X which vanish at infinity under pointwise operations and
supremum norm, then M(A) is the algebra of all bounded continuous
functions on X. In this case, Buck [2] introduced a topology on M(A),
called the strict topology, with many nice properties. In § 3, we will
see that certain of Buck's results can be generalized to an arbitrary
semisimple Banach algebra A.

The multiplier algebra can also be defined for a more general Banach
algebra, and the strict topology can also be introduced in such a general
case. § 2 will be devoted to discussions in such generality.

Next we narrow down to the case where A is a supremum norm
algebra. In this case there are three natural topologies on M{A), viz.
the norm topology, the strict topology and the topology of uniform con-
vergence on compact subsets of the maximal ideal space of A. It seems
natural to ask when do two of these three topologies coincide. In § 4
we seek such characterizations in terms of topological properties of the
Silov boundary of A. Other problems regarding supremum norm algebras
will be discussed in § 5.

Finally we will identify the multiplier algebras of certain Banach
algebras which arise in harmonic analysis. Let S be an additive semi-
group of positive integers and let A be the algebra of all continuous
functions on the unit circle whose Fourier series involve einx with ne S
only. Let M(S) be the set of all integers m such that m + S c S. By
an application of Fejer's theorem on the Cesaro summability we can
prove that M(A) is the algebra of all continuous functions on the unit
circle whose Fourier series involve eίnx with meM(S) only. In § 6 we
will get a generalization of this result to arbitrary compact and even
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locally compact groups.
Standard terms as those given in Loomis [8] will be used. Several

unsolved problems will be listed in §7.
It is Professor H. L. Roy den who aroused my interest in Banach

algebras and it is Professor Karel deLeeuw who guided me through this
thesis. I wish to express my cordial thanks to them both. Their in-
fluence on me will certainly remain far beyond this thesis.

2 Definition of the multiplier algebra. Let A be a complex com-
mutative Banach algebra with or without a unit. By an absolute zero-
divisor of A we mean an element feA such that fA = {0}. The set
of all absolute zero-divisors of A is evidently a closed ideal contained in
the radical oί A. It will be called the order ideal of A. A is called
without order if its order ideal contains the element 0 only. Obviously
A is without order if either A has a unit or A is semisimple.

Let A be a Banach algebra without order. By a multiplier of A
is meant a mapping T: A~^ A such that

(Tf)g=f(Tg)

whenever /, g e A.

THEOREM 2.1. Every multiplier T on a commutative Banach alge-
bra A without order is a bounded linear operator on the Banach space
underlying A.

Proof. Let /, g, h be arbitrary elements of A and let X and μ be
arbitrary scalars. Then

h T(Xf + μg) = (Xf + μg)Th = XfTh + μgTh

= XhTf + μhTg = (XTf + μTg)-h .

Since A is without order, we see that T(Xf + μg) = XTf + μTg. Hence
T is linear.

To show that T is bounded we use the closed graph theorem. Thus
suppose that fn,f,g are elements in A, n = 1,2,3, , such that

w — / and lim Tfn — g. Then for each he A we have

gh = (lim Tfn)h = \im{Tfn-h) = lim(/n.ϊ%)

Thus g = Tf because A is without order. This shows that T is bounded.
q.e.d.

Note that the proof holds for any commutative topological algebra
without order in which multiplication is separately continuous and for
which the closed graph theorem holds.
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Now consider the set M(A) of all multipliers on A. For each fe A,
define the mapping Tf by Tfg — fg for all g e A. Evidently Tf is a
multiplier. Identifying / with Tf, we get an embedding of A in M(A).
If A has a unit, then A = M(A) under this identification. Hence the
case where A has no unit seems to be more interesting.

The multipliers T on a Banach algebra A without order are char-
acterized by the condition

(Tf)g= T(fg), f,geA.

It is evident that every mapping satisfying this condition is a multiplier.
Conversely suppose that T is a multiplier. Then for all /, g, h e A we
have

T(fg)-h = fgTh - g-fTh = (gTf)h .

Since A is without order, we get T(fg) — (Tf)g. Thus every multiplier
satisfies this condition.

Now let Tλ and T2 be two multipliers on A and let /, g be two
elements of A. Then

f{TxT2)g = (TJ)(T2g) =

= (Γa/)(Γlflf) =

Hence !Z\ίΓ2 is also a multiplier; further it satisfies

But as we remarked before,

= TrT2(fg) .

Hence T,T2{fg) = T2Tλ(fg), or /Ϊ\T2# = fT2Tλg. As A is without order,
it gives ΓxΓa - T2TX.

Also it is evident that the identity operator is a multiplier.
Summarizing, we get the following theorem:

THEOREM 2.2. For any commutative Banach algebra A without
order, M(A) is a commutative operator algebra with unit including
an isomorphic image of A as an ideal.

The algebra M(A) will be called the multiplier algebra of A. It
is so far not yet topologized. A suitable topology for it is the strong
operator topology, as the following theorem shows:

THEOREM 2.3. Let A be a commutative Banach algebra without
order and let M(A) be its multiplier algebra. Then M(A) is complete
under the strong operator topology.
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Proof. Let TΛ be a Cauchy net in M(A) with respect to the strong
operator topology. Then for each / e A we have

\im\\TΛf-Tβf\\ = 0.

As A is complete, there exists an element TfeA such that

lim ΎJ = Tf .

Now we show that T is a multiplier. For this, take f,geA. Then

flfΓ/ - g lim Γ,/ - lim gΎJ =

Hence T is a multiplier. By our definition, T is the strong limit of the
net Ta. Hence we proved our theorem. q.e.d.

Thus M(A) is a strongly closed operator algebra over A. Following
Buck [2], the strong topology on M(A) will also be called the strict
topology. It is the locally convex topology defined by the seminorms
|| T\\f = II Γ/||, where / runs over A.

As M(A) is strongly closed, it is also uniformly closed. Since
A c M{A), elements x in A also have operator norms

III T* III — C I T Π II TOI IIIII ju in — b u p ii juy || .
\\y\\=i

With respect to the operator norm, A is a normed algebra. Later we
will give an example showing that A is not necessarily complete with
respect to the operator norm 111 111. Evidently A is complete with respect
to HI ||| if and only if ||| ||| and || || are equivalent.

Let A be a Banach algebra, then a net {/*} in A is called an ap-
proximate unit if /«/—*/ for all feA. Many algebras in harmonic
analysis have approximate units. It is easy to show

THEOREM 2.4. A Banach algebra A without order is strictly dense
in its multiplier algebra M(A) if and only if A has an approximate
unit.

The following observation, due to Devinatz and Hirschman, is
curious:

THEOREM 2.5. If A is a Banach algebra without order and if
T:A—>A is a bijective (i.e., one-to-one and onto) multiplier, then T'1

is also a multiplier.

Proof. (Γ-yjflf - T^TKT-Wg] - T'^TT'^g] = T'\fg) .
q.e.d.

Thus the set of all bijective multipliers coincides with the set of
the multipliers invertible in the multiplier algebra, and the spectrum
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of an element in M(A) remains the same when M(A) is extended to the
full non-commutative algebra of bounded linear operators in A.

3. Multipliers of semisimple algebras. Let A be a semisimple Banach
algebra and let X be its maximal ideal space. (By the maximal ideal
space of a Banach algebra without unit we mean the space of all regular
maximal ideals). It is well-known that X is a locally compact Hausdorff
space under the weak topology and every element fe A can be considered
as a continuous function on X vanishing at infinity. The norm | | / | | of
/ in general exceeds its supremum norm H/IU = sup|/(α?) ( when con-

vex
sidered as a function. When A is thus realized, every multiplier of A
can also be realized as a bounded continuous function, as the following
theorem shows:

THEOREM 3.1. Let A be a semisimple Banach algebra with maximal
ideal space X and let T be a multiplier of A. Then there is a bounded
continuous function g on X such that

(Tf)(x) = g(x)f(x)

for all feA and all xeX. Further \\g |U ^ || T\\.

Proof. Let xeX be an arbitrary point. If flff2eA and fλ{x) Φ 0,
f2(x) Φ 0, then by the assumption that T is a multiplier we have

For each xeX select feA with f(x) Φ 0. Then define

The previous considerations show that this is independent of the selection
of / and defines a continuous function g on X. Further

(Tf)(x) = g(x)f(x)

holds identically even if f(x) ~ 0. Hence we have only to show that g
is bounded and \\ g |U g || Γ | | .

To prove this, let

Kx = sup I f(x) I

for x e X, fe A. Then 0 < Kx ^ 1. Thus

\g(x)f(x)\ ^ Kx\\gf\\ = Kx\\ Tf\\ ^ Kx\\ T\\\\f\\
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for all feA, in particular, for all / satisfying | | / | | = 1. Therefore

£ inf Kj]TJ KΛTJ[inf j]J J[
i i/i i-i /(a?) I sup \f(x)

11/11=1

As this holds for all x e X, we have

as desired. q.e.d.
By this theorem we can identify g with T and consider M(A) as

the set {g: gA c A} of complex-valued functions on X. Thus M(A) is
the largest function algebra on X containing A as an ideal. This was
the original definition given by Helgason [5], There he mentioned that
H. Mirkil pointed out to him that every g e M(A) is a bounded continuous
function, but no explicit proof was given.

One of the advantages of the abstract definition of multipliers is
that it works equally well for function algebras not necessarily over the
maximal ideal space. Thus if A is a separating algebra over a locally
compact space S, e.g. the Silov boundary of A, then M(A) is isomorphic
to the set of functions g on S such that gA a A.

As M(A) is a Banach algebra with respect to its operator norm, it
has its own maximal ideal space Y. Let H be the hull of A in Y and
let K — Y\H. As A c M(A), and as the homomorphisms corresponding
to the maximal ideals in K do not take all of A to 0, the intersections
of A and the elements of K are regular maximal ideals of A,

Suppose that φx and φ2 are homomorphisms of M(A) onto the complex
field with the same non-zero restrictions on A. Then for g e M(A) and
feA we have

<Pi(f)Φi(g) - φ1(fg) = <p*(fg) = <ptf)<p>{g).

Select feA such that φx(f) = φt(f) Φ 0. Then <p,{g) = <p%(g). Since g
is arbitrary, we see that ψx = φ2. Hence no two distinct elements of K
can have the same intersection with A. On the other hand, if φ is a
homomorphism of A onto the complex field, and if feA satisfies φ(f) = 1,
then for each g e M(A) we can define φ(g) = φ(gf) unambiguously. The
mapping φ acting on M(A) is easily shown to be a homomorphism. Thus
every regular maximal ideal of A can be extended to a unique element
in K. Thus k <—> k Π A establishes a one-to-one correspondence between
K and X.

Now we show that this correspondence is a homeomorphism. Since
the topology on K is induced by the elements of M(A) and since these
elements are automatically continuous functions on X, the topology
on K is coarser than the topology on X On the other hand, since
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AdM(A) and the topology on X is induced by the functions in A, we
see in turn that topology on K is finer than that on H. Hence the
correspondence is a homeomorphism, and X is thus topologically em-
beddable in Y.

The null set of each function in A over Y is closed. Hence the
intersection H of such null sets is closed, and therefore compact, because
M(A) has a unit.

Summarizing, we get

THEOREM 3.2. Let X and Y be the maximal ideal spaces of a
semisimple Banach algebra A and its multiplier algebra M(A) respec-
tively, both endowed with the weak topology. Then we can write

Y^H\J K,

where H is compact, and there exists a natural homeomorphism from
K onto X.

When Y is endowed with the hull-kernel topology, X is dense in Y.

THEOREM 3.3. Let X and Y be the maximal ideal spaces of a semi-
simple Banach algebra A and its multiplier algebra M(A) respectively.
Then when X is embedded in Y as in Theorem 3.2, X is dense in Y
with respect to the hull-kernel topology.

Proof. If g e kernel X c M(A), then g = 0 identically. Thus every
point y e Y is in the hull of the kernel of X. q.e.d.

The situation is completely different with the weak topology:

EXAMPLE. There is a semisimple Banach algebra A such that
( i ) the maximal ideal space X of A is not dense in the maximal

ideal space Y of M(A) with respect to the weak topology,
(ii) A is a *-algebra but M(A) is not.
(iii) A is regular but M(A) is not.

CONSTRUCTION. Let G be a locally compact abelian group and let A
be the L1 group algebra of G. Then M(A) is the algebra of all complex-
valued finite regular Borel measures on G, with convolution as multipli-
cation. It is well-known that A is a regular semisimple *-algebra.
Williamson proved in [10] that M(A) is also a *-algebra if and only if
G is discrete. Thus in case G is not discrete, M(A) is not a *-algebra.
By an argument of Hewitt [7, Theorem 6.1], we see that Xis not dense
in Y. Applying Theorem 3.3, M(A) cannot be regular.

Of course if G is discrete, A has an identity, and M(A) = A. Nothing
of this sort will happen.
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In § 2 we introduced the operator norm for A. The following
theorem locates roughly the closure of A in M(A) with respect to the
operator norm:

THEOREM 3.4. Using the notation of Theorem 3.2, the closure of A
in M(A) with respect to the operator norm is contained in kernel H.

Proof. Suppose that g is in the closure of A in M(A) with respect
to the operator norm. For any ε> 0 there is an feA such that
III 9 — f III < ε Now f(x) = 0 for every xeH. Hence we have

Hence g(x) = 0 for each'xeif. Thus gekernel H. q.e.d.

EXAMPLE. There is a semisimple Banach algebra A with the follow-
ing properties:

( i ) the operator norm 111 111 is not equivalent to the algebra norm
ll ll in A.

(ii) the closure of A with respect to the operator norm in M(A) is
properly contained in kernel H.

(iii) there is a function in M(A)\A vanishing at infinity.

CONSTRUCTION. Let φ(x) be a real-valued function on the real line
such that φ(x) Ξ> 1 and \\mx^±ΰOφ{x) = + oo. Let A be the set of all
continuous functions / on the real line such that

| | / | | =ZXφ\f(x)φ(x)\ < oo .
X

Under point wise operations, A becomes a Banach algebra. The properties
(i)-(iii) are easy to verify.

Next we consider the strict closure B of A in M(A). As B is closed
with respect to the operator norm, it is also a Banach algebra.

THEOREM 3.5. If A is a semisimple Banach algebra and if B is
its strict closure in M(A), then M(A) c M(B).

If further A is equal to the norm closure of A2, then M(A) — M(B).

Proof. We first prove that M(A) c M(B). Let g e M(A) and h e B.
Then there is a net fa—*h strictly, with faeA. Since multiplication
is separately continuous with respect to the strict topology, we have
0f* —+ Φ strictly. As gfΛ e A for each a, we have gh e B. Hence
g e M(B). This proves that M(A) c M(B).

Now suppose that A is equal to the norm closure of A2, and suppose
that g e M(B); f19 f2 e A. Then gf, e B c M(A) and thus gfj2 e A. As
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elements of the form fλf2 generate A, g e M(A). As g is arbitrary,
M(B) c M(A). This combined with the previous paragraph gives the
desired result. q.e.d.

4, The multipliers of a supremum norm algebra* A semisimple
Banach algebra A is called a supremum norm algebra if

| | / | | = | |/H- = sup |/(aθ I
xex

for all feA, where X denotes the maximal ideal space of A. The
multiplier algebra of a supremum algebra is specially easy to handle.
To start with, we have

THEOREM 4.1. If A is a supremum norm algebra, then so is M(A)
with its operator norm.

Proof. Take geM(A). Let ||flr|| denote the operator norm of g.
Then HflrlU S \\g\\. But

= sup Hfljf iμ ^ sup II
"Ί =1 11/11 = 1

Hence || g || = || g W^. q.e.d.
Notice that in this theorem we did not specify whether \\ g \\«,

denotes sup | g(x) | over the maximal ideal space X of A or over the
maximal ideal space Y of M(A). It holds equally true. Further, as
both the supremum norm topology and the strict topology are complete,
it follows from the open mapping theorem that these topologies coincide
if and only if the strict topology is metrizable.

If A is a supremum norm algebra, in addition to these two topologies
on M(A) there is another interesting topology, viz., the topology of
uniform convergence on compact subsets of the maximal ideal space X
of A. Following Buck [2], we will denote the supremum norm topology,
the strict topology and the topology of uniform convergence on compact
subsets by σ, β, and K respectively. The topology tc can be described
by the seminorms || g \\κ = supxeiΓ | g(x) |, where K runs over all com-
pact subsets of X. The following theorem compares the fineness of these
topologies.

THEOREM 4.2. a is finer than β and β is finer than K.

Proof. The first statement is obvious. To show that β is finer
than Λ:, take a set S c M(A). Let B and C be the β- and /̂ -closures
of S respectively. We have only to show that B c C. For this, take
g0 e By and let U be a / -̂neighborhood of g0 given by
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U={ge M(A): | g(x) - go(x) | < ε for all x e K) ,

where K is a fixed compact subset of X and ε> 0. For each xoeK
there is a function feA such that \f(x) | > 1 in a neighborhood of xQ.
Cover K with a finite number of such neighborhoods corresponding to
the functions flf /2, , fn e A. Let

V={geM(A): sup || (g - g^ | | < ε} .
ΐ = l , 2 , ,W

The V is a /3-neighborhood of g0. Since #0 € J5, we can find an element
geS Π F. But then

s u p I g(x) - gQ(x) I ̂  s u p \\(g - go)fi II < ε,
« 6 K i=1.2. ,Λ

and hence # e Ϊ7. Thus g o ^ C and hence B d C. q.e.d.
In a locally convex topological space, a set is called bounded if each

seminorm defining the topology assigns a bounded set of values to it.

THEOREM 4.3. (i) In M(A) every σ-bounded set is β-bounded and
every β-bounded set is abounded.

(ii) The β-closure and the tc-closure of a σ-bounded set in M(A)
coincide; in other words, the topologies β and tc agree on σ-bounded
sets.

Proof, (i) It is evident that every σ-bounded set is also ^-bounded.
Let now S be a ^-bounded set. Take an arbitrary compact set KaX.
Cover K with a finite number of open sets corresponding to the func-
tions fl9 /2, , fn e A as was described in the proof of Theorem 4.2. Then
|| g \\κ <̂  sup<=1>2,...in || gfi \\ for all geS. As S is β-bounded, the right-
hand side of the inequality is a bounded set of numbers. Hence S is
also yc-bounded.

(ii) Let B and C be the β- and /c-closures of S respectively. By
4.2, B c C. Now suppose geC and let {gω} be a net in S /c-converging
to g. Let feA and ε > 0 be given. Since / vanishes at infinity,
there is a compact set K c X such that | f(x) \ < ε f or x 0 K. Then

II g»f - gf II = sup | gΛ(χ)f(χ) - g(χ)f(χ)

^ llff.-flr|lr 11/11 + llff.-
X$K

The first term is small when a is large and the second term is small
when ε is small and S is σ-bounded. Then geB and hence B = C.

q.e.d.
Recall that the Silov boundary of a separating supremum norm

algebra A of continuous functions on a locally compact space X is the
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smallest closed set of X on which every function in A assumes its
maximal modulus. The Silov boundary of A in X will be denoted by
^C(A; X). The behaviors of the topologies oy β, K on M(A) are closely
related to the topological properties of the Silov boundary ^£{A\ X).

THEOREM 4.4. Let A be a supremum norm algebra. Then

); X) = ^ ( A ; X) .

Proof. Take g e M(A). Then gfeA whenever feA, and by 4.1
we have

|| 171|= sup || 0/||
11/11=1

= sup sup I g(x)f{x) | ^ sup | g(x) \ .

Hence

,,//(M(A);X) c ^//(A X) .

The reversed inequality is evident. q.e.d.

THEOREM 4.5. For the multiplier algebra M(A) of a supremum
norm algebra A, the topologies σ and β coincide if and only if ^/f(A; X)
is compact.

Proof. If ^^f(A) X) is compact, the topology tc is finer than the
topology σ. Comparing this result to Theorem 4.2, we see that if
^&{A\ X) is compact, then σ = β = tc.

Conversely suppose that σ = β. Then there exist fuf2, , /» 6 A
and ε> 0 such that for all geM(A),

< e , i = 1,2,

imply || # || < 1. As each / f vanishes at infinity, the set

is compact. Now suppose that ^?f(A; X) is not compact. Then there
is a function geAaM(A) such that || g \\κ < 1, and || g \\ = flf(a?0) = 1 for
some £oe^/r(A; X)\if. By raising g to a sufficiently high power, we
may assume without loss of generality that

\g\\κ <
sup I I / { | | + 1

Then I g(x)Mx) \<ε for all xe^f(A; X). Thus || gft || < ε and
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|| # | | = 1. This contradicts our choice of ε. Hence Λ(A\X) must be
compact. q.e.d.

Examining our proof again, we see that even more has been
proved; namely, for a supremum norm algebra A, ̂ €(A\X) is compact
if and only if the topology on A induced by β coincides with the norm
topology.

Obviously the condition that ^£{A\X) is compact is also necessary
and sufficient in order that σ — tc. We would also like to get topological
conditions on ^//(A\X) so that β — tc. We call a topological space X
countably precompact if X is locally compact and Hausdorff, and if every
countable union of compact sets in X has a compact closure. We con-
jecture that β = tc if and only if ^/f(A; X) is countably precompact.
The following considerations support this conjecture:

THEOREM 4.6. Let A be a supremum norm algebra with maximal
ideal space X. If the restriction of every function in A to
^//{A\ X) has a compact support, then the topologies β and tc for M(A)
coincide.

Proof. Let {ga} be a net in M(A) /c-converging to a function
geM(A). We have only to show that {ga} also converges to g in the
topology β. Thus take fe A and let K be the support of the restriction
of / to ^f{A; X). By assumption, K is compact. Thus the net {gaf}
converges uniformly on K, hence also uniformly on X, to gf. Thus
β = tc. q.e.d.

For feA, the set {x:f(x) Φ 0} is always a σ-compact set. This
proves the following corollary:

COROLLARY 4.7. Let A be a supremum norm algebra with maximal
ideal space X. If ^/?{A\ X) is countably precompact, then the topologies
β and tc coincide.

Our conjecture can be proved in the following two special cases:

THEOREM 4.8. Let X be a locally compact Hausdorff space and let
A be ' the supremum norm algebra of all complex-valued continuous
functions on X which vanish at infinity. In this case ^£ (A; X) = X
and M(A) is the algebra of all bounded continuous functions on X.
Then the following conditions are equivalent:

( i ) the topologies β and tc are equivalent.
(ii) every function in A has a compact support.
(iii) X is countably precompact

Proof. Suppose that (ii) does not hold, and let fe A be a function
with a non-compact support. For any compact set K there is a point
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xκ$K where / does not vanish. Define a function gκ such that gκeA,
gκ(x) = 1 for x e K and

Then the net {gκ} ordered by inclusion of the compact set K converges
in the topology it to the constant 1. But

II Qκf-f\\ ^ I QΛXK) I \f(χκ) I - l l / l l >

Hence {gκ} does not converge strictly. This shows that (i) implies (ii).
That (ii) implies (iii) is evident and that (iii) implies (i) is a special

case of Corollary 4.7. q.e.d.

THEOREM 4.9. Let Abe a supremum norm algebra with a σ-compact
maximal ideal space X. Then the topologies β and tc for M(A) coincide
if and only if ^{A\ X) is compact.

Proof. We have only to show that if ^{A\ X) is not compact,
then β Φ tc. As X is σ-compact, there are compact sets Kxc. K2a
such that X = \Jζ=xKn. Without loss of generality we can choose these
sets in such a way that each Kn is included in the interior of Knhl. As
^y/f(A;X) is not compact, for each n there is a function hneA such
that || hn || > || hn \\Kn. By raising hn to a sufficiently high power and
then multiplying the resulting function with a suitable constant, we
obtain a function fn such that \\fn || = n and \\fn \\Kγι < (1/n). Thus {/„}
is an unbounded /c-Cauchy sequence. It cannot converge in the topology
tc to a bounded function. As β is complete, we see that K is different
from β. q.e.d.

Let us return to Theorem 4.8. In general the topology tc for M(A)
is not complete. The completion of M(A) with respect to tc is the alge-
bra of all continuous functions on X. Hence tc is complete if and only
if X is pseudocompact. (For the definition and basic properties of
pseudocompact spaces, see Glicksberg [4]). This fact together with Theorem
4.8 shows that every countably precompact space is pseudocompact. The
converse of this statement is in general false, as the following example
shows:

EXAMPLE. There is a pseudocompact space which is not countably
precompact.

CONSTRUCTION. Let ω be the set of all ordinals up to and including
the first infinite one and let Ω be the set of all ordinals up to but ex-
cluding the first uncountable one, both endowed with the order topology.
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Define X = ω x Ω. It is obvious that X is locally compact and Haus-
dorff. By a theorem of Henriksen and Isbell [6], X is pseudocompact.

Let A be the algebra of all continuous functions on X which vanish
at infinity. Using Theorem 4.8, to show that X is not countably pre-
compact, we have only to show that β Φ K for the algebra M(A).

For each ae Ω define the function g* e M(A) by

n if n is finite and β = a is not a limit ordinal;

0 if otherwise.

When Ω is naturally ordered, the net {gΛ} ^-converges to 0. Now define
a function f on X such that

il/n if n is finite and β is not a limit ordinal;

(0 if otherwise.

Then the net {gaf} converges to 0 point wise, but not strictly. Hence
fc φ β for M(A). Thus X cannot be countably precompact.

In this example, both tc and β are complete topologies, and β is
strictly finer than ic. This shows the that the ordinary version of the
open mapping theorem cannot be true for β.

5» Multipliers of supremum norm algebras — continued• In this
section we collect together assorted results on supremum norm algebras.
We start with

THEOREM 5.1. Let A be a supremum norm algebra strictly dense
in M(A) and let X be the maximal ideal space of A. If g is a bounded
function on X such that gA c M(A), then geM(A).

Proof. By Theorem 2.4, A has an approximate unit {/*}. Consider
the net {f*g}. Since g is assumed to be bounded {fag} is strictly Cauchy
and converges to an element h e M(A). Since strict convergence implies
pointwise convergence, we get g — heM(A). q.e.d.

Next we consider measures on the Silov boundary to represent
maximal ideals. Thus let A be a supremum norm algebra with maximal
ideal space X and Silov boundary ^/f(A; X). It is well-known that cor-
responding to each xe X there is a regular Borel measure μx on ^/ί (A; X)
with total mass 1 such that

f(x) - [ f(s)dμx(s)
J ^/(A\ X)

for all feA. (See Arens and Singer [1]). This measure is not neces-
sarily unique. We wish to find conditions under which one such measure
exists such that
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g(%) = \ g(s)dux(s)

holds for all geM(A).

THEOREM 5.2. The above formula holds for all g e M(A) if either
of the following two conditions is satisfied:

( i ) ^f{A) X) is compact;
(ii) there is a uniformly bounded sequence {fn} c A such that

limn̂ oo/n(a?) = 1 for each xeX.

Proof, ( i ) If ^(A; X) is compact, we may easily show that

\ X) = ΛT(M{A)\ Y) ,

where Y is the maximal ideal space of M(A). Select the measure [ix

according to the algebra M(A), and the formula is trivially satisfied.
(ii) Let {/„} be the uniformly bounded "pointwise approximate unit"

whose existence is assumed by the given condition. For g e M{A), we
have gfneA, and thus

g(s)fn(s)dμx(s) = g(x)fM = ΰ(x) \fn(s)dμx(s)

Let n —> co and apply the Lebesgue bounded convergence theorem, we
get

g(x) = I g(s)dμx{s) . q.e.d.
J ^g{A\ X)

Now we are going to consider a different class of "supremum norm
algebras". Honestly they are not supremum norm algebra in the sense
of the term hitherto used, and they occur here simply because no other
place is more suitable for them.

Thus let B be a given Banach algebra without order and let Ω
be a compact Hausdorίf space. We are going to consider the alge-
bra A — C(Ω, B) of all continuous functions from Ω into B. If feA,
define | | / | | = supωeΩ\\f(ω) | |. It is easy to prove that under this norm
A becomes a Banach algebra without order. B can be isometrically
embedded in A if we identify an element x in B with the function
which takes on the value x identically. We want to find out what the
multiplier algebra M(A) is.

THEOREM 5.3. Using these notations, M(A) = C(Ω; M(B)), the alge-
bra of all continuous functions from Ω into M(B), where M(B) is
endowed with the strict topology.
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Proof. To show that C(Ω; M(B)) c M(A), take geC(Ω; M{B)) and
feA. Then for each ωsΩ, g(ώ)f(ω)eB. We have only to show that
g(ω)f(ω) is continuous in ω. Thus let {ωa} be a net in Ω tending to α>0.
Then g(ωΛ) —> #(ω0) strictly, and /(ωα) —>/(ω0) in norm. By the uniform
boundedness principle, there is a constant IT such that || giω^x || < K \\ x \\
for all a and all #el?. Thus

| | g(ωa)f(ωΛ) - g(ωo)f(ωQ) \\

£ K\\f(ωΛ) - f(ω0) | | + | | [g(ωΛ) - g(ωQ)]f(ω0) \\ -> 0 .

Hence gfeA.
Conversely let TeM(A). Take fl9f2eA such that jf̂ α)) =/2(ω) for

some ωeΩ. We want to show that (Tf^{ω) = (Tf2)(ω). Suppose not,
since 2? is without order, there is an element y e B such that

- 0 .

This is a contradiction. As B can be embedded in A, every value of 2?
is assumed at every point of Ω by some function in A. Thus Tf = #/
for some function g: Ω —> M(B).

We still have to show that g is continuous. Let {o)a} c β b e a net
converging to a point ω0. Since for all xe B, g(ω)x is a continuous
function of ω, we see that g(ωa)x-^ g(ωo)x. As this holds for every
x e By g(ωa) —> #(ω0) in the strict topology of M{B). This proves the
continuity. q.e.d.

6* Multipliers of semigroups of characters* Let G be a locally
compact abelian group and let X be the character group of G, both
written additively. Then by a semi-group of characters of G is meant
a subset S a X which is closed under addition. Let S be a semi-group
of characters of G. Then we define the multipliers of S to be those
elements χeX which satisfy χ + S c S. The set M(S) of all multipliers
of S evidently forms a semi-group of characters containing S as an ideal.
If 0 e S, then M(S) = S. Also if S closed, so is M(S). In this section
we will study how the multiplier semi-group and the multiplier algebra
are connected. The special case where G is the circle group was men-
tioned in § 1. As noted there, the tool for our proof is Fejer's theorem
on the Cesaro summability. Hence in order to get a generalized version
we look for a generalization of Fejer's theorem.

Fortunately such a generalization exists for compact groups G. It
can be formulated as follows: There exists a net {(χ?, , χ%): aeA} of
finite sequences of characters and a net {(p?, , p%)} of finite sequences
of complex numbers such that for each continuous function f on G
the net
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where

μ being the Haar measure, converges to / uniformly. (For proof, see
Silov [9]).

LEMMA 6.1. Let S be a set of characters of a compact group G.
Then the set of all continuous functions on G uniformly approximable
by finite linear combinations of characters χ e S is identical with
the set of all continuous functions whose Fourier series involve χ e S
only.

Proof. Denote the two sets under consideration by A and B re-
spectively. By the above-mentioned generalization of Fejer's theorem,
we have B a A. As every finite linear combination of elements of S
lies in B, we see that B is dense in A. We have only to show that B
is uniformly closed. Thus let {fn} be a sequence in B converging uni-
formly to a function /. Then / is continuous, and

for each character χ. As </n, χ> = 0 if χ0S, we see that feB. This
finishes the proof. q.e.d.

Now we come to the theorem announced before.

THEOREM 6.2. Let S be a semi-group of characters of a compact
group G and let M(S) be the multiplier semi-group of S. Let A and
B be the algebras of all functions on G uniformly approximable by
finite linear combinations of characters in S and M(S) respectively.
Then B = M(A).

Proof. Evidently M(S) c M(A). Hence B c M(A), since M(A) is
uniformly closed.

Conversely suppose that geM(A). We want to show that geB.
Suppose that χ is a character not in M(S). Then there is a character
φeS such that χ + φφS. Let / = gφ. Then feA and </, χ + φ) = 0.
Now

= \f{t)χ{t)φ{t)dμ{t)

= \g(t)ψ(t)χ(t)φ(t)dμ(t)

= <9, x> •
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Hence <g, X) = 0. Thus by Lemma 6.1, g e B. q.e.d.
Considering the almost periodic compactification, this theorem can

also be formulated as a theorem on the almost periodic functions on a
locally compact group. Compare e.g., Loomis [8, Ch. VIII]. There is
also a generalization of this theorem to locally compact groups G, and
the special case where G is compact provides an alternative proof of
Theorem 6.2. First we define the spectrum of a continuous function /
on G as follows: It will be a subset σ(f) of the character group X of
G. A point Xo e X\σ(f) if and only if χ0 has a neighborhood V such that

\χ(f)X(9)dv(χ) = 0

for all functions g e U (G) the support of whose Fourier transform lies
in V, v being the Haar measure of X. We will make use of the follow-
ing facts about the spectra of functions (see [3]):

LEMMA 6.3. The spectra of functions satisfy

( i ) σ(fg) c [σ(f) + σ(g)]
(ii) if χeX> then σ(χg) - χ + σ(g) .

Having this, we can now prove

THEOREM 6.4. Let G be a locally compact abelian group with char-
acter group X. Let S be a closed subsemi-group of X. Further let A
and B be the linear subspaces of all bounded continuous function on
G whose spectra lie in S and M(S) respectively. Then

B = M(A) .

Proof. If geB, then σ(g) c M(S). For any fe A,

°(gf) c [σ(g) + σ(f)\ c [M(S) + S) c S .

Hence gf e A, and geM(A).
Conversely if g f B, then there exists a character χ in σ(g)\M(S). We

can find a character φ e S c A such that χ + φ $ S. Now

= Ψ

Hence χ2σ(φg) and φg $ A. Thus g<βM(A). q.e.d.

7. A list of some unsolved problems* As a postscript, we list here
several unsolved problems.

( i ) Give satisfactory descriptions of the closure of a Banach algebra
A without order in M(A) with respect to the different topologies.
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(ii) Let A be a *-algebra. Under what conditions is M(A) also a
*-algebra? Same problem for regular algebras.

(iii) Describe the closure of the maximal ideal space of a semi-
simple algebra A in the maximal ideal space of M(A).

(iv) Prove or disprove the conjecture mentioned before Theorem 4.6.
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