CONTINUITY AND CONVEXITY OF PROJECTIONS AND
BARYCENTRIC COORDINATES IN CONVEX POLYHEDRA

J. A. KALMAN

If s, +--,s, are linearly independent points of real n-dimensional
Euclidean space R™ then each point x of their convex hull S has a (unique)
representation = >\7_ \(%)s; with () = 0(1=0,+-,n) and 3" N\(x) =1,
and the barycentric coordinates A\, + -, \, are continuous convex functions
on S (cf. [3, p. 288]). We shall show in this paper that given any finite
set sg, +++, 8, of points of R™ we can assign barycentric coordinates
Noy ***, Ny tO their convex hull S in such a way that each coordinate is
continuous on S and that one prescribed coordinate (\, say) is convex on
S (Theorem 2); the author does not know whether it is always possible
to make all the coordinates convex simultaneously (cf. Example 3). In
proving Theorem 2 we shall use certain ‘‘projections’’ which we now
define; these projections are in general distinct from those of [1, p. 614]
and [2, p. 12]. Given two distinct points s, and s of R?”, let s,s be the
open half-line consisting of all points s, + Ms — s;) with A > 0; given a
point s, of R”™ and a closed subset S of R™ such that s, ¢ S, let C(s,, S)
be the ‘‘cone’” formed by the union of all open half-lines s;s with s in
S; and given a point « in such a cone C(s,, S), let n(x) be the (unique)
point of s;& N S which is closest to s,., Then we shall call the function
7« the ‘‘projection of C(s,, S) on S.”” Our proof of Theorem 2 depends
on the fact that if S is a convex polyhedron then 7 is continuous (Theo-
rem 1). This result may appear to be obvious, but it is not immediately
obvious how a formal proof should be given; moreover, as we shall show
(Examples 1 and 2), the conclusion need not remain true for polyhedra
S which are not convex or for convex sets S which are not polyhedra.
The author is indebted to the referee for improvements to Lemma 3,
Example 1, and Example 2, and for the remark at the end of §1.

1. Projections. For any subset A of R™ we shall denote by H(A)
the convex hull of A and by L(A) the affine subspace of R” spanned by
A (cf. [2, pp. 21, 15]). If A={s, ---,s,} we shall write H(A) =
H(s +++,8,) and L(A) = L(s;, +++, s,). Given two points = and y of R"
we shall denote by (¢, y¥) the inner product of x and y and by |z — y|
the Euclidean distance V'(x — ¥, * — ) between x and .

LEMMA 1. Let s, be a point of R*, let S be a closed convex subset
of R™ such that s, ¢ S, and let © be the projection of C(s,, S) on S.
Suppose that points x, s, +++,s, of S and real numbers A\, «++, N, are
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such that © = 32 N8, My >0 (=1, +4,p), SP\ =1, and 7n(x) = 2.
T hen

(i) #y) =y for all y in H(s, ++-, s,); and

(ll) Sy ¢ L(Sl, ey sp)-

Proof. (i) Given y in H(s, +-+,s,) we can find nonnegative real
numbers f,, « -, t, such that y = 32, s, and 332, ¢, = 1. Since each
N; > 0, there exists @ with 0 < @ < 1 such that A, — ay; > 0 for each
1=1,+-+,p. Let

p=_% _ oy =Z<xi—a‘ui>si;

—1—6( l—« i=1 l—«

then z¢e H(s, +++,s,) S S and 2 = ay + (1 — a@)2z. We now use an indi-
rect argument. Suppose that 7(y) # y; then for some B with 0 < B8 < 1
we have 7n(y) = 1 — B)s, + By and

all —B)+ 8 a+ 81— a)

say. It follows from (1) that 2’ € s N S and that |s, — ' | < |s, — 2],
contradicting the hypothesis that m(x) = x. This completes the proof of

@d).

(ii) Suppose that s, € L(s;, +++, s,). Then we can find real numbers
Y, +++, Y, such that s, = >72,v;s, and 37 ,y,=1. Since each »; >0,
there exists ¥ with 0 <7 <1 such that )\, — y(»; — v;) > 0 for each
©t =1, +++,p. But then if

(1) a(l — B)s, + Bx _ ar(y) + B — a)z _ o

w=17s+ (1 —7r= i v — (v — vi)ls;
we have w e spx N S and |s, — w| < |s, — |, contradicting the hypothesis
that w(x) = x. This completes the proof of (ii).
Let s, S, and # be as in Lemma 1. Then we shall call a subset A
of S ‘“m-admissible’” if w(x) = « for all x in H(A).

LEMMA 2. Let s, S, and = be as in Lemma 1, let A be a finite
m-admissible subset of S, and let 7' be the projection of C(s,, H(A)) on
H(A). Then

(i) =w(x) = @'(x) for all x in C(s,, H(A)); and

(i) =" is a continuous mapping of C(s,, H(A)) into H(A).

Proof. (i) Let x be any point of C(s,, H(A)). Then n(z'(x)) = 7'(x)
since A is m-admissible, hence #'(x) is the point of s7'(x) NS =82 NS
which is closest to s,, and hence w(x) = 7'(x).

(ii) Let A={s;, ++-,s,} and let x, = 3./, (1/p)s;; then 7m(x,) = @,
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since A is m-admissible, and hence s, ¢ L(4) by Lemma 1. It follows
that if s, is the point of L(A) which is closest to s, and « is any point
of C(s,, H(A)), then

oy T — Ma)s, _ (@ — sy, So — 8y)
n'(x) = —22220  whe M) = *2 00 .
@) 1 —\x) re (@) [ — 8y [*

Hence 7’ is continuous.

LEmMMA 3. Let s, be a point of R™ and let T be a closed bounded
subset of R"™ such that s,¢ T. Then {s)} U C(s,, T) 15 a closed subset
of R”.

With the help of the Bolzano-Weierstrass theorem it is not difficult
to prove Lemma 3.

THEOREM 1. Let 8,8, **+,S, be points of R"™ such that s,¢
H(s,, -+, s,) = S say, and let w be the projection of C(s,, S) on S. Then
T 18 a continuous mapping of C(s, S) into S.

Proof. Let A, ---, A, be the subsets of {s;, -+-,s,} which are =-
admissible subsets of S. Then each z in C(s,, S) belongs to at least one
C(s,, H(A j)) (1 <4 < q); indeed, given z in C(s,, S), there exist positive
integers (1), ---, #(p) and positive real numbers A\, +--, A\, such that
w(x) = S0y NiSey and 37N, = 1, and then A = {s, ), ***, Sz} Is T-admis-
sible by Lemma 1(i), and = € C(s,, H(A)). For each j =1, :.+,q let =,
be the projection of C(s,, H(A,;) on H(A)).

To prove the theorem it will be enough to show that, if , x,, «,, -
in C(s,, S) are such that # = lim, «;, then it follows that z(x) = lim, z(x,).
Let J be the set of allj (1 < j < q) such that x, € C(s,, H(4,)) for infinitely
many values of k, and for each j in J let j(1) < j(2) < --- be the values
of k such that x, € C(s,, H(A,)). Now, for each j in J, x € C(s,, H(4,))
by Lemma 3, and hence, by Lemma 2, m(x) = z,(x) = lim, 7,(x,,) =
lim, w(x,,). Since all but a finite number of the positive integers are
of the form j(I) for some j in J and some ! =1, 2, ..., it follows that
7(x) = lim, 7(x,), as we wished to prove.

The following example shows that if S is a non-convex polyhedron
in R? and s, ¢ S, then the projection of C(s,, S) on S need not be con-
tinuous.

ExaMPLE 1. Let s,=(0,2), s, = (0,1), s, =(0,0), and s, = (1, 0);
and let S = H(s,, s;) U H(s,, s;). Then the projection of C(s, S) on S is
not continuous at s,.

The following example shows that if S is a closed convex set in R?,
and s, ¢ S, then the projection of C(s,, S) on S need not be continuous.
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ExAMPLE 2. Let s,= (0,0, 2), let s, =(0,0,1), let K be the circle
consisting of all points (£,7,¢) in R? such that (¢ —1)*+7*=1 and
&=0, let S= H({s;} UK), and let = be the projection of C(s,, S) on S.
Then if we set @, = (1 —cosk™,sink™,0) (k=1,2, --+-) we have z, €
C(sp, S) and 7(xy) =, (k=1,2,---). When k— o, z,—(0,0,0) = s,
say, and 7(x,) — s,; since 7(s,) = s,, this shows that = is not continuous
at s,.

REMARK. Theorem 1 is valid for each closed convex set S & R?,
and for each strictly convex closed set S & R”.

2. Barycentric coordinates. Let s, be a point of R", let S be a
closed convex subset of R™ such that s, ¢ S, and let D(s,, S) be the union
of all segments H(s,, s) joining s, to points s of S; then D(s,, S) is a
convex set. Define a real-valued function )\, on D(s,, S) as follows: let
M(So) =1, let M) =0 if 2 e S, and if © #s, and 2 € S let N(x) be
defined by the equation x = M(x)s, + [1 — M(2)]7(x), where 7 is the pro-
jection of C(sy, S) on S; then each x in D(s,, S) has a representation of
the form

(2) ® = M(2)8, + [1 — No(@)]s

with s in S. We shall call )\, the ‘“‘barycentric function of D(s,, S).”
LEMMA 4. Let s, be a point of R™, let S be a closed convex subset

of R™ such that s, ¢ S, and let ), be the barycentric function of D(sy, S).

Then 0 < N\f(x) =1 for all x in D(s,, S) and \, s a convex function on
D(s,, S). If S is a polyhedron them N, ts continuous on D(s,, S).

Proof. It is clear that )(x) <1 for all z in D(s, S); the proof
that M(x) = 0 for all  in D(s,, S) depends on the convexity of S, and
will be left to the reader. To prove that )\, is convex on D(s,, S) we
show that if x, 2’ € D(s,, S) and 0 < @ < 1 then

(3) Max + (1 — a)x’) < an(x) + (1 — a)n(2') .

Let * = ax + (1 — @)z’ and let B = any(®x) + (1 — @)\y(2'); we may assume
that 8 < 1 since otherwise (3) is trivial. Then if v = af1l — M(@)] (1 — B)7,
and s, s’ in S are such that

T = M®)S, + [1 — ()]s, =" = M(2)s + [1 — No(2)]s’
(cf. (2)), we have
(4) s+ (1 — 78 = —B1 —B)s + (1 — B)w*,

and vs + (1 — v)s’ € S since Sis convex. It follows from (4) that «* # s,.
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If «* ¢ S and 7 is the projection of C(s,, S) on S then
T(@*) = —N(@*)1 — No(@™)[ s + [1 — No(@*)[Ta*

and hence by (4) and the definition of 7, \(x*) < B, as asserted by (8).
If 2* € S then (8) is trivial. This completes the proof that X\, is convex
on D(s,, S).

We next show that )\, is continuous at s,. Given ¢ with0 < e < 1,
let 8 = Me, where M > 0 is the shortest distance from s, to S. Then
if xe D(s, S) and 0 < |x —s,| <& we have x + s,, € S, and

M= |7@) — s = [1 = M@)]7 2 — 5| <[1 = N(@)] ' Me,

and hence 0 <1 — \(x) < e. This proves that A\, is continuous at s,.
It remains to prove that )\, is continuous on D(s, S) — {s;} if S is a
polyhedron. For each « in C(s,, S) define p(x) by the equation z =
ﬂo(x)so + [1 - ﬂo(x)]ﬂ(x): then

(5) (@) =1 — |2 —s|/[7@) — s .

It follows that p(x) = 0 if x € S, and that ¢(x) = Ny(x) > 0 if x € D(s,, S),
X+ 8, and x & S; thus

(6) M%) = max [p(x), 0] (x € D(so, S), & # S) -

If S is a polyhedron then y, is continuous on C(s, S) by Theorem 1 and
(5), and hence \, is continuous on D(s,, S) — {s¢} by (6). This completes
the proof of the lemma.

THEOREM 2. Let s, +--,s,, be points of R™, and let S = H(sy, ***, Sn).
Then there exist nonnegative real-valued continuous functions Ny, +++, Ay,
on S, with N, a convex function, such that, for each x in S,

2= (@5, and @) =1.

Proof. We use induction on m. The case m = 0 is trivial. We
assume the theorem to have been proved for m = M — 1 and deduce it
for m =M. Let T = H(s,, +++,84). If s,€ T we may set NM(x) =0
for all # in S, and deduce the existence of )\, ---, N, directly from the
induction hypothesis; we therefore assume that s, ¢ T. By the induction
hypothesis there exist nonnegative real-valued continuous functions
M=+, ty on T such that, for each y in T, y= 21, pi(y)s;, and DL, p(y)=1.
Let )\, be the barycentric function of D(s,, T). Then each 2 in S =
D(s,, T) has a representation of the form x = \(x)s, + [1 — N(%)]s, With
s, in T (cf. (2)), and if we now set \(x) = (s.)[1 — N(®@)] (x € S; 7=
1, ..., M) then it follows that the \;, (¢ =1, --+, M) are well-defined
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functions on S, and, by Lemma 4, that the functions X\, ---, A, satisfy
all the conditions in the statement of the theorem.

To show that the functions \; defined in the proof of Theorem 2
need not all be convex we can let s, s, s,, and s, be the points (0, 2),
1,0),(—1,0), and (0,1) respectively of R* and let S = H(s,, s, S,, S3);
however in this example we obtain convex barycentric coordinates if we
interchange the roles of s, and s,. In the following example some of
the barycentric coordinates determined as in the proof of Theorem 2 fail
to be convex no matter how s, is chosen.

ExaMpPLE 8. Define t, +-+,¢, in R®* as follows: ¢, = (0,0,1), ¢, =
0,1,0), t,=(0, —1,0), t,=(1,0, —1), and ¢ =(—1,0, —1); let S=
H(t, ---,t); and let barycentric coordinates be defined for S as in the
proof of Theorem 2, with

(1) %

(ii) t, or t,, and

(iii) ¢, or t, playing the role of s,. Then if we write 6. for max[+6, 0]
(0 real) we obtain

(i) (0,0)=1[E]t + (& — [ENE + t) + &by + E-2, (IEl=d,

(i) (0,7,0) = 3L — |7ty + ity + 7-t, + A — |9t + t)
(I7] =1), and

(i) (0,0, =8t + 41 —[ENE +t) + 40 +2) (L=,

respectively, and hence in no case are the barycentric coordinates all
convex.

The argument in the proof of Theorem 2 amounts to determining
barycentric coordinates My, +¢+, N\, for H(s,, *++, s,) by first choosing \,
as small as possible, then choosing )\, as small as possible with this choice
of \,, etc. We remark in conclusion that if we first choose )\, as large
as possible, then choose \, as large as possible with this choice of \,, ete.,
we do not in general obtain convex barycentric coordinates; this may be
seen by considering the case of a square in R’.
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