THE CYCLIC CONNECTIVITY OF PLANE CONTINUA

F. Burton Jones

Suppose that p and q are distinct points of the compact plane continuum M. If no point separates p from q in M and M is locally connected, then it is known [5] that M contains a simple closed curve which contains both p and q. But in the absence of local connectivity such a simple closed curve may fail to exist. Even if no point cuts ${ }^{1} p$ from q in M, there does not necessarily exist in M a simple closed curve which contains both p and q. For example, no point of the continuum C indicated in Figure 1 cuts p from q in C, but C contains no simple closed curve whatsoever. However, if M is the continuum obtained by adding to C either of its complementary domains, there does exist in M a simple closed curve which contains both p and q. Here M fails to separate the plane and this is indicative of the general situation.

Fig. 1
Lemma. If p is a point of the compact subcontinuum M^{\prime} of the plane S and L^{\prime} is a nondegenerate compact continuum containing p

[^0]and lying in $\left(S-M^{\prime}\right)+p$ such that $L^{\prime}-p$ is connected, then there exists a connected open subset D^{\prime} of $S-M^{\prime}$ such that
(1) $D^{\prime}+p$ contains L^{\prime},
(2) $D^{\prime}+p$ is a connected, locally connected, complete, metric space, and
(3) $D^{\prime}+p$ is strongly regular (i.e., the author's Axiom $5_{1}{ }^{*}[1$, p. 54] holds true in $D^{\prime}+p$).

Proof. Let q denote a point of $L^{\prime}-p$, let n denote a natural number such that $d(p, q)>1 / n$, and let $R_{0}, R_{1}, R_{2}, \cdots$ denote a sequence of circular regions centered on p of radii $1 / n, 1 / n+1,1 / n+2, \cdots$ respectively. Now for each integer $i(i>-1)$, add to M^{\prime} every open interval I of the boundary C_{i} of R_{i} such that I contains no point of $L^{\prime}+M^{\prime}$ but has both of its end points in M^{\prime}, and call the resulting pointset N. Let D_{1} denote the sum of the components of $(S-N) \cdot\left(S-\bar{R}_{1}\right)$ which contain points of L^{\prime} and for each integer $i>1$, let D_{i} denote the sum of the components of $(S-N) \cdot\left(R_{i-2}-\bar{R}_{i}\right)$ which contain points of L^{\prime}. Furthermore let $D^{\prime}=\sum D_{i}$. Certainly D^{\prime} is open and since $L^{\prime}-p$ is connected, D^{\prime} is connected. Also it is easy to see that $D^{\prime}+p$ contains L^{\prime} and is a connected, complete, metric space. It remains only to show that $D^{\prime}+p$ is strongly regular for it follows that such a space is locally connected [2, p. 623]. Obviously $D^{\prime}+p$ is strongly regular at each point of D^{\prime}. To see that $D^{\prime}+p$ is strongly regular at p (relative to $D^{\prime}+p$, of course) one has merely to observe that if k is a positive integer, the boundary of $p+\sum D_{i}(i>k)$ relative to $D^{\prime}+p$ is a subset of the sum of those components of $\left(S-M^{\prime}\right) \cdot C_{k-1}$ which intersect L^{\prime} and since L^{\prime} contains no point of M^{\prime} except p, this set of components is finite.

Theorem. Let M be a compact subcontinuum of the plane S which does not separate S. Then if p and q are distinct points of M and no point cuts p from q in M, there exists a simple closed curve J lying in M which contains both p and q.

Proof. Three cases arise depending upon the location of p and q. If both p and q are inner points (non-boundary points) of M, then it follows from [3] that both p and q belong to the same component of the set of inner points of M. For this case the theorem is known to hold true (see for example [4], p. 124).

If both p and q are boundary points of M, then the argument outlined in [3] shows that M contains a compact continuum L which contains both p and q such that every point of $L-(p+q)$ is an inner point of M. Since L must contain a subcontinuum irreducible from p to q it is no loss of generality to assume that L itself has this property.

In this case $L-(p+q)$ is a connected subset of a component D of the set of inner points of M and the theorem follows with the help of the lemma in somewhat the same manner as the next case.

Finally, if q is an inner point of M and p is a boundary point of M, it follows from [3] that some component D of the set of inner points of M contains q and has p in its boundary. To show that $D+p$ contains a continuum L containing both p and q requires a modification of the argument given in [3].

Suppose that ε is a positive number such that $\varepsilon<d(p, q)$. Let $C_{p}(\varepsilon)$ denote a circle of radius ε centered on p and let C_{q} denote a straight line through q which is perpendicular to the line $p q$. There exists a simple domain $I(\varepsilon)$ which contains M such that if $J(\varepsilon)$ denotes the boundary of $I(\varepsilon), y$ is a boundary point of M, and z is a point of $I(\varepsilon)+J(\varepsilon)$, then $d[y, J(\varepsilon)]<\varepsilon$ and $d(z, M)<\varepsilon$. There exist $\operatorname{arcs} T_{p}(\varepsilon)$ and $T_{q}(\varepsilon)$ in $C_{p}(\varepsilon)$ and C_{q} respectively such that each is minimal with respect to separating $I(\varepsilon)+J(\varepsilon), q$ belongs to $T_{q}(\varepsilon)$, and $T_{p}(\varepsilon)$ separates p from $T_{q}(\varepsilon)$ in $I(\varepsilon)+J(\varepsilon)$.

Since $T_{p}(\varepsilon)$ and $T_{q}(\varepsilon)$ have only their endpoints in $J(\varepsilon)$, and except for these points lie entirely in $I(\varepsilon)$, there exist in $J(\varepsilon)$ two nonintersecting unique $\operatorname{arcs} A(\varepsilon)$ and $B(\varepsilon)$ such that $T_{p}(\varepsilon)+A(\varepsilon)+T_{q}(\varepsilon)+B(\varepsilon)$ is a simple closed curve $H(\varepsilon)$. Let $D(\varepsilon)$ denote the bounded complementary domain of $H(\varepsilon)$. If z is a point of $D(\varepsilon)+H(\varepsilon)$, then $d(z, M)<\varepsilon$. Any subcontinuum of M which contains $p+q$ contains a subcontinuum irreducible from $T_{p}(\varepsilon)$ to $T_{q}(\varepsilon)$ which lies in $T_{p}(\varepsilon)+D(\varepsilon)+T_{q}(\varepsilon)$.

Now let $L(\varepsilon)$ denote a continuum lying in $T_{p}(\varepsilon)+D(\varepsilon)+T_{q}(\varepsilon)$ which intersects both $T_{p}(\varepsilon)$ and $T_{q}(\varepsilon)$ such that if z belongs to $L(\varepsilon)$, then $d[z, A(\varepsilon)]=d[z, B(\varepsilon)]$. The continuum $L(\varepsilon)$ must exist; for if it did not, the set W of all points of $D(\varepsilon)+H(\varepsilon)$ equidistant from $A(\varepsilon)$ and $B(\varepsilon)$ would be the sum of two mutually separated sets one containing $W \cdot T_{p}(\varepsilon)$ and the other containing $W \cdot T_{q}(\varepsilon)$ and consequently some simple closed curve would separate $T_{p}(\varepsilon)$ from $T_{q}(\varepsilon)$ but at the same time would fail to contain a point of W which involves a contradiction. So there exists a simple infinite sequence α of values of ε such that $D(\varepsilon)+H(\varepsilon)$ converges to a subset of $M, T_{q}(\varepsilon) \rightarrow T_{q}$ and $L(\varepsilon) \rightarrow L$ as $\varepsilon \rightarrow 0$ in α. The set L has the following properties:
(a) L is a continuum containing both p and point of T_{q},
(b) L is a subset of M, and
(c) every point of $L-\left(p+L \cdot T_{q}\right)$ is an inner point of M.

Properties (a) and (b) are evident. So it remains only to prove property (c).

Let x be a point of $L-\left(p+L \cdot T_{q}\right)$. Since x does not cut p from q in M, there exists a subcontinuum K of M which contains $p+q$ but not x. Let δ be a positive number such that $4 \delta=d\left(x, K+T_{q}\right)$ and let
$U_{\delta}(x)$ and $U_{3 \delta}(x)$ be the circular regions centered on x of radius δ and 3δ respectively. When ε (in α) is sufficiently small $\left[T_{p}(\varepsilon)+T_{q}(\varepsilon)\right]$ • $\left[U_{3 \delta}(x)\right]=0$ but $L(\varepsilon) \cdot U_{\delta}(x) \neq 0$. Let y be some point of $L(\varepsilon) \cdot U_{\delta}(x)$, let $r=\delta+d(x, y)$ and let $U_{r}(y)$ be a circular region of radius r and center y. Obviously $U_{3 \delta}(x) \supset U_{r}(y) \supset U_{\delta}(x)$. So $\left[T_{p}(\varepsilon)+T_{q}(\varepsilon)\right] \cdot U_{r}(y)=0$. If $A(\varepsilon) \cdot U_{r}(y) \neq 0$, let f be a point of $A(\varepsilon) \cdot U_{r}(y)$ such that $d(f, y)=d[y$, $A(\varepsilon)]$. But y belongs to $L(\varepsilon)$. Hence there exists in $U_{r}(y)$ a point g of $B(\varepsilon)$ such that $d(g, y)=d[g, B(\varepsilon)]=d(f, y)$. The sum of the straight line intervals $y f$ and $y g$ from y to f and from y to g respectively is an arc T_{y} lying in $U_{r}(y)$, having only its endpoints f and g in $H(\varepsilon)$, and containing the point y of $D(\varepsilon)$. Hence $T_{y}-(f+g) \subset D(\varepsilon)$ for clearly $y f$ cannot intersect $B(\varepsilon)$ and $y g$ cannot intersect $A(\varepsilon)$. But $T_{y} \cdot K=0$ and K contains a continuum lying in $T_{p}(\varepsilon)+D(\varepsilon)+T_{q}(\varepsilon)$ irreducible from $T_{p}(\varepsilon)$ to $T_{q}(\varepsilon)$. Since the points f and g separate $T_{p}(\varepsilon)$ from $T_{q}(\varepsilon)$ in $H(\varepsilon)$ this involves a contradiction [4, Th. 17, p. 167]. Hence $U_{r}(y)$. $H(\varepsilon)=0$ and since y belongs to $D(\varepsilon), U_{r}(y) \subset D(\varepsilon)$; so for sufficiently small values of ε (in α), $U_{\delta}(x) \subset D(\varepsilon)$. Consequently $U_{\delta}(x)$ is a subset of M and x is an inner point of M.

Now let C denote a circle which separates p from T_{q}. Obviously L intersects C. Hence L contains a subcontinuum L^{\prime} irreducible from C to p. Let q^{\prime} denote a point of $L^{\prime} \cdot C$. Clearly $L^{\prime}-p$ is a connected subset of D. Let M^{\prime} denote the boundary of D. Since M^{\prime} is a continuum and contains only the point p of L^{\prime}, by the lemma there exists a connected open subset D^{\prime} of $S-M^{\prime}$ which contains $L^{\prime}-p$ and has the other properties of the set designated as D^{\prime} in the lemma. It now follows from Theorem A of [1] that there exists a simple closed curve J^{\prime} lying in $D^{\prime}+p$ and containing $p+q^{\prime}$. Since D^{\prime} is a connected subset of $S-M^{\prime}$ and contains a point of L, it follows that D^{\prime} is a subset of D and that J^{\prime} is a subset of M. Of course using J^{\prime} it is now easy to construct a simple closed curve J which lies in $D+p$ and contains $p+q$.

Bibliography

1. F. B. Jones, Concerning certain topologically flat spaces, Trans. A.M.S., 42 (1937), 53-99.
2. - Concerning certain linear abstract spaces and simple continuous curves, Bull. A.M.S., 45 (1939), 623-628.
3. _, Another cutpoint theorem for plane continua, Proc. A.M.S., 11 (1960), 550-558.
4. R. L. Moore, Foundations of point Set Theory, A.M.S. Colloquium Publications, vol. 13, New York, 1932.
5. G. T. Whyburn, Cyclicly connected continuous curves, Proc. N.A.S., 13 (1927), 31-38.

University of North Carolina

[^0]: Received August 15, 1960. This research was partially supported by the National Science Foundation through grant NSF-G 9418.
 ${ }^{1}$ A point $x(p \neq x \neq q)$ cuts p from q in M if every subcontinuum of M containing both p and q also contains x. Obviously a separating point is a cut point but for continua in general a cut point is not necessarily a separating point.

