THE GROUP OF AUTOMORPHISMS OF
THE HOLOMORPH OF A GROUP

Na1-cHAO Hsu

1. Introduction. If G = HK where H is a normal subgroup of the
group G and where K is a subgroup of G with the trivial intersection
with H, then G is said to be a semi-direct product of H by K or a
splitting extension of H by K. We can consider a splitting extension
G as an ordered triple (H, K;$) where ¢ is a homomorphism of K into
the automorphism group A(H) of H. The ordered triple (H, K; ¢) is the
totality of all ordered pairs (&, k), h ¢ H, It ¢ K, with the multiplication

(h, kYR, K'Y = (hpi(R'), KE') .

If ¢ is a monomorphism of K into A(H), then (H, K; ¢) is isomorphic
to (H, $(K); ¢) where ¢ is the identity mapping of ¢(K), and therefore
G is the relative holomorph of H with respect to a subgroup $(K) of
A(H). If ¢ is an isomorphism of K onto A(H), then G is the holomorph
of H.

Let H be a group, and let G be the holomorph of H. We are con-
sidering H as a subgroup of G in the usual way. Gol’fand [1] studied
the group A,(G) of automorphisms of G each of which maps H onto
itself, the group J(G) of inner automorphisms of G, and the factor group
AL(G)/I(G). In case H is abelian, this factor group is isomorphic to the
first cohomology group of A(H) acting on H, as Mills [4] mentioned. In
§ 2, we generalize Gol’fand’s results by dealing with a relative holomorph
instead of with the holomorph. The fact that ¢ is a monomorphism is
essential for the proof. Hence this generalization of Gol’fand’s theory
is in some sense the best possible one. Gol’fand [1], Miller [3], Mills
[4], Peremans [5] and Specht [6, pp. 101-102] discussed the group of auto-
morphisms of the holomorph of some groups. In §3 and 4, we discuss
the group of automorphisms of the holomorph of some other uncomplic-
ated groups. As applications we can describe the group of automorphisms
of the holomorph of symmetric groups and the group of automorphisms
of the holomorph of subgroups of the additive group of rational numbers.

We set up our basic device which determines all automorphisms of a
splitting extension G = (H, K; ¢) in terms of mappings of H and K. It
also enables us to compute the product of two automorphisms of G.
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LEMMA 1.1. Let G =(H, K; ¢) and let M be the set of all quadruples
4 g] where' A e Map (H, H), B e Map (H, K), C e Map (K, H) and

D e Map (K, K) satisfying the following conditions:

(1.1.1) For all h,kh' e H, A(RK') = A(h)dsm (AR)).

(1.1.2) For all h,h' e H, B(hh') = B(h)B(h').

(1.1.8) For all k, kK ¢ K, C(kk') = C(k)pp,(C(E')).

(1.1.4) For all k, k'e K, D(kk') = D(k)D(¥').

(1.1.5) For all he H, ke K, B(¢,(h))D(k) = D(k)B(h).

(1.1.6) For all he H, ke K, A(u(h))bss,m(Ck)) = Ck)ppu(A(R)).

(1.1.7) For any (F', k') € G, there exists a unique (h, k) € G satisfy-
tng (A(M)$sm(C(k)), B()D(k)) = (W', k).
Then there is a one-to-one correspondence between the automorphism

group W(G) of G and M under the correspondence o — [‘é IC)] defined
by

a(h, e) = (A(h), B(h)) and afe, k) = (C(k), D(k)) .
Further, if

Aw ij AB Cﬂ ABw CBm
- , B— nd - ,
* I:Bm -Dw.l B |:BB DB:| ¢ Ba I:BBw Dﬂwjl

where Ba denotes the automorphism, arising by first applying a and
then B, then

Apall) = Ap(Au(P) sy, m(Co(Bulh))
Bga(h) = Be(Aa() De(Bah)
Coalk) = Aﬁ(Cw(k))(i’Bwa(m>(Cﬂ(Dw(k)))

and,
Dg (k) = Bg(C,(k))Do(D,(k)) .

Because of the one-to-one correspondence described above, we identify
an element of A(G) with the corresponding element of 9. As the mul-
tiplication formula in A(G) we have

Ag Cs} |:Aw Cw} _ [AsAw + b554,CoBa ApCa+ ¢BﬁﬂwCBDw:'
Bs Ds||B. D.| |B:A.+ DB, BC,+ D:D, '

Let X be a group and Y a subgroup of X. By {x>y, we denote
the inner automorphism of X induced by xze X. By <{(x)>;/Y, we denote
the restriction of (x>, to Y. By Z(X) and N(Y, X), we denote the
center of X and the normalizer of Y in X, respectively.

1 If X and Y are two groups, by Map (X, Y) is meant the set of all mappings of X
into Y. The same sort of self-explanatory notations such as Hom (X, Y), End (X) will also
be employed.
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In the following definitions?, let H be a group and K a subgroup of
A(H).

A mapping U of K into H is called a crossed character of K into
H if and only if, for all k, k'€ K,

Ukk') = Uk)(UK"))" .

Here and hereafter a symbol like A* is used as substitute for k(h).
A crossed character U of K into H is called regular if and only if
the correspondence

k — {U(k)) uk

is an automorphism of K. That <U(k)>y<c K for every ke K is an im-
plicit requirement of the definition.

A mapping U of K into H is called a principal character of K into
H if and only if there exists h € H such that for all ke K

Uk) = h(h) .

In this case, U is said to be defined by h.
A principal character U of K into H defined by k€ H is called regular
if and only if

Khyg e N(K, A(H)) .

A principal character U of K into H defined by he H is called
superregular if and only if

{hyrpe K.

By € and €7, we denote the set of all crossed characters of K into
H and the set of all regular crossed characters of K into H, respectively.
B, P and P°, we denote the set of all principal characters of K into
H, the set of all regular principal characters of K into H and the set
of all superregular principal characters of K into H, respectively.

The following facts are readily verified.

ProposITION 1.2. Every principal character of K into H is a
crossed character of K into H,

ProrosiTiON 1.8. Let U be a principal character of K into H. Then
U is a regular principal character of K into H if and only if Uisa
regular crossed character of K into H.

2. Gol’fand’s theory for a relative holomorph. By E and 0, we
denote the identity mapping and the trivial mapping, respectively, with

2 Cf. [1].
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suitable domain and range. By specializing ¢ =¢, B=0 and C =0 in
(1.1), we have

PROPOSITION 2.1. Let G = (H, K:). Then [*3 %]ear(a) if and
only if

Ae NK,NH)) and D=<A>4K
hold, where N stands for N(K, A(H)).

By Uy x(G), we denote the set of all automorphisms of G each of
which maps each of H and K onto themselves. It follows from (2.1)
that

ProPOSITION 2.2. Let G = (H, K;¢). Then
Ay x(G) = N(K, A(H))

under the mapping [61 10)]—+A.

On the other hand, by specializing ¢ =¢, A= F and B=0 in (1.1),
we have

PROPOSITION 2.3. Let G = (H, K;2). Then [{f g]eal(G) if and

only if the following conditions are satisfied:
(2.8.1) DeU(K).
(2.3.2) CD'e@,
(2.3.3) <CDMk)ygk = D' (k) for all ke K.

ProposITION 2.4. Let G = (H, K;¢). Then, for any Uec@", there

exists a unique [g" g]e A(G) such that CD* = U.

Proof. For any given Ue€”, we define an automorphism D' of
K by

D(k) = <U(k)y zk

and define a mapping C of K into H by C = UD. Then by (2.3) we

see that [g;' g]e A(R), proving the existence. By (2.3.3) and by our

definition we have the uniqueness.
By LU(G), we denote the set of all automorphisms of G each of
which is an extension of the identity mapping on H.

ProrosiTION 2.5. Let G = (H, K;¢). Then z2(G) is isomorphic to
€ with the multiplication
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(U U) (k) = UKU(k)y z) Ui(k) Uk)

under the correspondence

E C
(2.5.1) [

|=ep-.
0 D

Proof. By (2.3) and (2.4), we see that the correspondence is a one-
to-one mapping of LA(G) onto €". By the help of (2.3.3), we can show
that it is an isomorphism.

PROPOSITION 2.6. Let G = (H, K:¢). If [61 g] e AW (G) and if
Ae N = N(K, A(H)), then

Ded(K),
E CL{AS,K
[0 D<A-1>N/K}GM)’
A 0
[0 <A>N/KJGQI(G)
and
A C] [E CKADNKTA 0
@61 [o D}‘[o D<A-‘>N/KH0 <A>N/KJ'
Proof. Specializing ¢ =¢ and B=0 in (1.1), we have De A(K).
By (2.1)
4 0 Jei’lG)
[o i

and the rest follows immediately.

THEOREM 2.7. Let G = (H, K;¢). Suppose that, for every

A C
IETCE
we have Ae N = N(K, A(H)). Then
A(G) = (67, N; ¢)
with ¢ e Hom(N, A(€")) defined by
¢u(U) = AUCA™)y|K
Sfor Ae N and for Ue@r,
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Proof. By means of (2.6), we can show that UL (G) is a splitting
extension of A(G) by Uy (G). By (2.5) and (2.2), we conclude the
proof.

By (2.3.1) and (2.8.3), we have

ProroSITION 2.8. Let G = (H, K;¢) and suppose [gj g]e A(G).
Then [f)’ g] e (G) if and only if CD=e P
By (1.8), (2.4) and (2.8), we have

PRrOPOSITION 2.9. Let G = (H, K,¢). Then, for any Ue®, there
exists a unique [1(%’ g]GS(G) such that CD™* = U.

THEOREM 2.10. Let G = (H, K;¢). Then P* is a normal subgroup
of €
=G N JG) = P°

and

& AOE) |
T30

Proof. In view of (2.8) and (2.9), the isomorphism (2.5.1) induces
an isomorphism of FU(G) N J(G) onto . The rest follows from this
easily.

Let G = (H, K;¢). By IZ', we denote the set of all automorphisms
of H each of which can be extended to an inner automorphism of G
which maps K onto itself. By definition and by virtue of (2.1), we can
easily verify the following fact:

ProrosiTiON 2.11. Let G = (H, K;¢). Then K is a Asubg'roup of
W(H) lying between K and N(K, A(H)). Further, every A e K determines

[‘g ?)] € J(G) uniquely, ie., D = (A y/K.

THEOREM 2.12. Let G = (H, K;¢). Suppose that, for every

A C
[0 D]eS(G),

we have Ae K. Then
@ = (¥, K; ¢)
where ¢ e Hom(K, A(P*)) defined by ¢,(U) = AUCA™D,/K.
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Proof. Let [‘g ZC)]eﬁ”s(G). Then, by (2.11), Ae N(K, 2(H)), and

therefore the decomposition (2.6.1) is available, from which it follows that

E C<A‘1>N/KJ
[0 DLA™D5 K

is an inner automorphism of G. Hence
J(G) = GAG) N JG) Ax (G) N J(G)) ,

and it is easy to see that J(G) is a splitting extension of LA(G) N JG)
by s <(G) N J(G). By (2.10) and (2.11), we conclude the proof.

THEOREM 2.13. Let G = (H, K;¢). Suppose that, for every

A C
[O D}e%rH(G),

we have Ae K. Then
€ _ WG

P IG)

Proof. Let [§ §]e%u(@. Then, by @11, [§ 40 (]es@.

The decomposition (2.6.1) is available, from which
Ap(G) = AG)I(G)

follows. We conclude the proof by (2.10).
In case H is abelian, the factor group mentioned in the preceding
theorem is isomorphic to the first cohomology group of K acting on H.

3. Application to the holomorph of a complete group.

PRrOPOSITION 3.1. Let G = (H, K;¢) where H is centerless, K C J(H)
and WK) = J(K). Then

6 = .

Proof. By definition and by (1.3), B < €". Conversely, let Ue G,

Then, by (2.4), there exists [ﬁ«] ZC)] e A(G) such that CD* = U, where
De(K) by (2.3). By assumption,
D = dDex

for some d e H with (d>,c K. By (2.3.3) and by the fact that H is
centerless, we have
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CD-(k) = d(d™)*,
which shows that Ue 3, and therefore € C %°.

From this we have

PROPOSITION 8.2. Let G be the holomorph of a complete group H.
Then

Cr =P,
This, together with (2.18), implies

THEOREM 3.3. Let G be the holomorph of a complete group H. Then
Ax(G) = J@G) .

Since G has no center, we have

COROLLARY 3.4. Let G be the holomorph of a complete group H. Then
A (G) =G

THEOREM 38.5.° Let G be the holomorph of a finite complete group
H such that the square of the index of any mnon-trivial normal sub-
group of H is smaller than the order of H. Then W(G) is a splitting
extension of JG) by a group of order 2.

Proof. Since H is a complete group and is a normal subgroup of
G, we have G = H x K where K is the centralizer of H in G [2, vol. 2,
p. 80]. K consists of all elements of the form (27, <{k),) with he H.
Obviously K is isomorphic to H under the mapping (h7, <h>g) — (h, e).
We shall represent every automorphism of G with reference to H x K
by means of (1.1) with ¢ trivial. Suppose that we are given

a:{A C}e%(G)
B D

with A¢A(H). Since H cannot be isomorphic to any of its proper sub-
groups, we have ker A + (¢). If B were not an isomorphism of H onto
K, then we would have either

(@) B(H)#+ K and ker B=(e) or (b) ker B + (e).

Since H and K are isomorphic and since H cannot be isomorphic to any
of its subgroups, (a) is impossible. On the other hand, (b) would imply

8 The referee pointed out that this theorem is an easy consequence of the Krull-Schmidt
theorem.
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[a(H): ()] = [A(H): (e)][B(H): (e)]
= [H: ker A][H: ker B]
=< Max {[H: ker A}}, [ H: ker BJ}
<[H:(o)],

which is absurd. This shows that B is an isomorphism of H onto K.
Similarly, we can show by the help of the fact H = A(H)C(K), a con-
sequence of (1.1.7), that C is an isomorphism of K onto H. From the

assumption that a = [‘g g]e A(G) with D¢ A(K), we derive the same

conclusions. Consequently, we see that if [g g]e A(G) then either

(i) AeAH) and DeA(K) or
(ii) B is an isomorphism of H onto K, and C is an isomorphism
of K onto H.
A 0

Suppose [‘g g] e A(G) with (i). Then [0 D] e A(G), and therefore

A CTA 01* [ E CD™
[B DHO DJ :[BA~1 E’}e%(G)'

Applying (1.1.5) to [ BE - C%Vl], we can show that B=0. On the other

hand, we have C = 0 by (1.1.6). Similarly, we have A =0 and D=0
in case (ii). Consequently, 2(G) is the totality of all quadruples of the
following two types:

(1) [‘3 %] where A e (H) and De A(K).
(I [% g] where B is an isomorphism of H onto K and C is an

isomorphism of K onto H.

Let I, be the subgroup of 2(G) generated by [lg ((’;1] where B, and

C, are defined by B,(h, ‘i) = <hyy) and C, = Bfll. A(G) is a splitting
extension of ,(G) by I,. Using (3.3), we conclude the proof.
As an application we mention

THEOREM 3.6. Let G be the holomorph of the symmetric group S,
of degree n where n =3, n+ 4 and n+ 6. Then, G is centerless, every
automorphism of G which maps S, C G onto itself is inner, and WG)
18 a splitting extension of XG) by a group of order 2.

4. Application to the holomorph (H, K; ¢) of an abelian group H
with respect to an abelian subgroup K of A(H). In this section, we
use the additive notation for the composition in the abelian group H and
the usual notation for each of the compositions in the ring of endomor-
phisms of H. Thus, e.g., by 2 is meant the mapping which carries h
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into 2. In case H is abelian, €" =€, P* =P =P. In the first seven pro-
positions, we do not assume that K is abelian. Very quickly we can verify

ProPoOSITION 4.1. Let G = (H, K;¢) where H is abelian. Suppose
that there exists k,c Z(K) such that k, has mo non-trivial fixed point.
Let Ue@®. Then UeP if and only if Ulk)e (1 — k,)H.

By (4.1) and (1.2), we have

PROPOSITION 4.2. Let G = (H, K;¢) where H 1is abelian. Suppose
that there exists k,c Z(K) such that 1 — k, is an automorphism of H.
Then € = P.

By (4.2), (2.11) and (2.13), we have a well-known result:

PRrROPOSITION 4.3.* Let G be the holomorph of an abelian group H,

and let the mapping 2 be an automorphism of H. Then AH(G)=I(G).
By (1.1.6), we have

ProposITION 4.4. Let G = (H, K:¢) where H 1is abelian. Then
[‘3 ZC)] € A, (G) implies that A e N(K, A(H)).

It is easy to verify

PROPOSITION 4.5. Let G = (H, K;¢) where H 1is abelian. Suppose
that there exists k,e Z(K) such that k, has no non-trivial fixed point.
Let h, be any element of H. Then there exists at most one Ue € such
that U(k,) = h,.

By (1 — K)H, we denote the set of all elements of the form (1 —k)h
for some ke K and some ke H.

ProrosITION 4.6. Let G = (H, K; ¢) where H is abelian and (1 — K)H
18 a subgroup of H. Suppose that there exists k,e Z(K) such that 1—k,
1s an 1somorphism of H onto (1 — K)H. Let h, be any fixed element
of H. Then there exists exactly one Ue € such that U(k,) = h,.

Proof. Define Uk) = (1 — k)1 — k)(h) to show the existence.
The uniqueness follows from (4.5).

THEOREM 4.7. Let G = (H, K;¢) where H is abelian and (1 — K)H
is a subgroup of H. Suppose that there exists k,c Z(K) such that
1—k, its an tsomorphism of H onto (1 — K)H. Then Wz(G) is iso-
morphic to a splitting extension of H by N(K, U(H)). If further we
assume K C Z(N(K, (H))), then

¢ See [5, p. 617].
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4.7.1) N(G) = (H, NK, A(H)); ¢) .
Proof. By (4.4) and (2.7), we see that
Ax(G) = (€, N; 0)

with 6 € Hom(N, A(€)) defined by 6,(U) = AUCA™D,/K for Ae N and
UeC@. By (4.6), the mapping U— U(k,) is an isomorphism of € onto
H. Hence the former statement. To prove the latter part, we observe
that <A™>,/K = E and therefore 0 ,(U) = AU. The mapping (U, 4) —
(U(k,), A) of (€, N; ) into (H, N; ¢) establishes (4.7.1).

As an immediate consequence we have

COROLLARY 4.8. Let G = (H, K; ¢) where H and K are abelian and
(1 — K)H 1is a subgroup of H. Suppose that there exists k,e K such
that 1 — k, is an isomorphism of H onto (1 — K)H. Suppose also that
N(K,(H)) = K. Then

WG =G.
THEOREM 4.9. Let G = (H, K;¢) where H and K are abelian and

1 — K)H 1s a subgroup of H. Suppose that there exists k,c K such
that 1 — k, is an isomorphism of H onto (1 — K)H. Then

JG) =G .

Proof. Let [‘6‘ g]es(G). Then Ae K, and therefore D= E by
(1.1.6). Ae K also implies that [‘5‘ %]eg(a). Hence

E C A ClfA o7
[0 EJ B [0 EHO EJ #3@
Therefore by (2.8) Ce®B. Conversely, suppose we are given Ae K and

Ce . By (2.9), there exists a unique [g Zc)l] e X(G) such that C,D*=C.
By (2.3.3) D, = E and therefore C, = C. Hence

4 C)_TE CI[4 0]_..
[0 EJ—[O EMO EJG“S( ) -

Thus we have shown that J(G) is the totality of all [61 g] with Ae K

and Ce®B. By (4.1), A — k) 'C(k;) can be defined for each Cec .
Define a mapping

A c7, .
[0 ’E}"’ (1 — k)C(ky), 4)
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of (G) into G. By (4.1), (4.5) and (4.6), we see that the mapping is
an isomorphism of J(G) onto G.

THEOREM 4.10. Let G = (H, K; ¢) where H and K are abelian and
(1 — K)H 1is a subgroup of H. Suppose that there exists k,c K such
that 1 — k, is an isomorphism of H onto (1 — K)H. Suppose also that
N(K,(H)) = K. Then

U@ G
G (A —k)H, K; )

where ¢, ke K, is the automorphism of (1 — k,)H obtained by restrict-
ing k to (1 — k)H.

Proof. By (1.1.6), (2.1), (2.3) and (2.6), we see A4(G) is the totality
of all [‘g g] with Ae K and CeG, while 3(G) is the totality of all
[‘61 g] with Ae K and Ce P as we saw in the proof of (4.9). Under
the mapping

[AC
0 K

} — (C(ko), A)

which establishes UA,(G) = (H, K;¢), a particular case of (4.7.1), the
image of XG) is (1 — ky)H, K; ') by (4.1).

THEOREM 4.11. Let G = (H, K;¢) where H and K are abelian and
(1 — K)H is a subgroup of H. Suppose that —1e K and that 2 is an
isomorphism of H onto (1 — K)H. Suppose also that N(K, A(H)) = K.
If [H:2H] = 2, then U (G) is a splitting extension of JG) by a group
of order 2.

Proof. Take h,e H, h,¢ 2H. By (4.6) there exists C, € € such that
C(— 1) = h,. By the proof of the previous theorem, [_OE %’]¢ IG).
It is easy to see that 2,(G) is a splitting extension of (G) by the sub-

group I, generated by [ 0 %’]
As an application of the discussion in this section we prove

THEOREM 4.12. Let G be the holomorph of a mon-zero subgroup H
of the additive group R of rational numbers. Then

WE) = Up(G) = J(G) = G .

In case 2 is an automorphism of H,(G) = J(G). In case 2 is mot an
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automorphism of H, W(G) is a splitting extension of J(G) by a group
of order 2.

Proof. The mapping 2 is an isomorphism of H onto
2H=(1 - AH))H .
Hence, by (4.8) and (4.9), we have
Ap(G) = G = JIG) .

If 2¢A(H), then A,(G) = J(G) by (4.3). On the other hand, if 2 ¢ A(H),
then [H: 2H] = 2 and therefore 2(G) is a splitting extension of J(G) by

a group of order 2 by (4.11). It remains to show that WA(G) = A(G).

Let a = [‘é g]e%{(G). Then by (1.1.2) Be Hom(H, ¥(H)). Therefore

Hlker B = B(H) c A(H). Since H cannot be embedded isomorphically
into A(H), we have ker B + (0). Hence B(H) is a periodic subgroup
of A(H), and therefore B(H)= (1) or B(H)= (1, —1). In case 2¢e(H),
H has no subgroup of index 2, and therefore B(H) = (1). Suppose that
2¢ A(H). In order to prove that B(H) = (1), let us suppose on the
contrary that B(H) = (1, —1). Let s be the smallest positive integer in
H. Suppose that 2 is not a prime factor of s. Let A be the non-
negative integer such that s/2*e H and that s/2*"' ¢ H. Every element
of H can be written in the form sn,/2*n, with (n,, 2) = 1, and sn,/2'n,€ H
is an element of ker B if and only if n, is even. Write n, = 2*n, with
(ns, 2) = 1. By induction on ¢ we can show, by means of (1.1.1), that
A(h) = 0 for every heker B. By (1.1.1) we also have A(h) = A(s/2") for
every hé¢ker B. Consequently a(h) = (A(h), B(h)) assumes at most four
different values as h ranges over H, which is absurd. In case 2 is a
prime factor of s, let —\ be the number of the factor 2 in the prime
factorization of s. The same argument goes through and we have B(H) = (1)
in any case. This proves that (G) = AL(G).
As an immediate consequence of (4.12) we have

COROLLARY 4.13.° Let G be the holomorph of a mon-zero subgroup
of the additive group R of rational numbers. Then G is complete if
and only if 2 is an automorphism of H.
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