PHYSICAL INTERPRETATION AND STRENGTHENING OF M. H. PROTTER'S METHOD FOR VIBRATING NONHOMOGENEOUS MEMBRANES; ITS ANALOGUE FOR SCHRÖDINGER'S EQUATION

JOSEPH HERSCH

The origin of this work lies partly in M. H. Protter's method [7], [8], partly in two papers [3], [5], developing the idea, found in *Payne-Weinberger* [6], of auxiliary one-dimensional problems; the physical interpretation in § 3 rejoins that of [2] and [4].

1. We consider the first eigenvalue λ_1 of a nonhomogeneous membrane with specific mass $\rho(x, y) \ge 0$ covering a plane domain D and elastically supported (elastic coefficient k(s)) along its boundary Γ :

$$arDelta u + \lambda
ho(x,y) u = 0 ext{ in } D$$
 , $rac{\partial u}{\partial n} + k(s) u = 0 ext{ along } \Gamma$,

where \vec{n} is the outward normal.

Every continuous and piecewise smooth function v(x, y) furnishes an upper bound for λ_1 : By Rayleigh's principle

$$\lambda_1 = \mathrm{Min}_{v} rac{D(v) + \oint_F k(s) v^2 ds}{ \iint_D
ho v^2 dA}$$

where ds is the length element, dA the element of area, and D(v) the Dirichlet integral $\iint_{D} \operatorname{grad}^2 v \, dA$. The Minimum is realized if $v = u_1(x, y)$ (first eigenfunction, satisfying $\varDelta u_1 + \lambda_1 \rho u_1 = 0$).

In the opposite direction, we are here in search of a Maximum principle for λ_1 , from which we could calculate lower bounds.

2. Let us consider in D a sufficiently regular vector field \vec{p} (we shall discuss presently what discontinuities are allowed), satisfying the condition

(1)
$$ec{p} \cdot ec{n} \leq k(s)$$
 along \varGamma .
 $\operatorname{grad}^2 u_1 + (ec{p}^2 - \operatorname{div} ec{p}) u_1^2 = -\operatorname{div} (u_1^2 ec{p}) + \operatorname{grad}^2 u_1 + u_1^2 ec{p}^2 + 2u_1 \operatorname{grad} u_1 \cdot ec{p}$
 $= -\operatorname{div} (u_1^2 ec{p}) + (\operatorname{grad} u_1 + u_1 ec{p})^2 \geq -\operatorname{div} (u_1^2 ec{p})$.

Let us integrate this inequality:

Received October 10, 1960. Battelle Memorial Institute, Geneva, and Swiss Federal Institute of Technology, Zürich.

$$egin{aligned} 0&\leq D(u_1)+\oint u_1^2ec p\cdotec nds\,+ \iint (ec p^2-\operatorname{div}ec p)u_1^2dA\ &\leq D(u_1)+\oint k(s)u_1^2ds\,+ \iint (ec p^2-\operatorname{div}ec p)u_1^2dA= \iint (\lambda_1
ho+ec p^2-\operatorname{div}ec p)u_1^2dA\ , \end{aligned}$$

whence the lower bound

(2)
$$\lambda_1 \ge \inf_{D} \left(\frac{\operatorname{div} \vec{p} - \vec{p}^2}{\rho} \right).$$

We have equality if (and only if) $\vec{p} = -\operatorname{grad} u_1/u_1$, whence the Maximum principle

(3)
$$\lambda_1 = \operatorname{Max}_{\vec{p}} \cdot \vec{n} \leq k(s) \operatorname{along}_{\Gamma} \operatorname{inf}_{D} \left(\frac{\operatorname{div} \vec{p} - \vec{p}^2}{\rho} \right).$$

Allowed discontinuities (see also [5]): the same as in Thomson's principle for boundary value problems. — If D is cut into subdomains D_1, D_2, \dots, D_n by analytic arcs, it is sufficient that the vector field \vec{p} be continuous and differentiable in each D_i and that its normal component be continuous across all those analytic arcs; the tangential component need not be continuous. — Other sufficient condition: $\vec{p} = \{p_1, p_2\}, p_1$ continuous in x and differentiable with respect to x, p_2 continuous in y and differentiable with respect to y.

Two properties of a "good" concurrent vector field: One should try to construct \vec{p} such that $\vec{p} \cdot \vec{n} = k(s)$ along Γ and $(\operatorname{div} \vec{p} - \vec{p}^2)/\rho =$ const in D (such is the case for the extremal field $\operatorname{-grad} u_1/u_1$); the examples calculated in [5] show that such a "good" field may be easy to construct.

REMARK. For a fixed boundary $(u = 0 \text{ along } \Gamma)$, $k \equiv \infty$ and condition (1) falls off. — A "good" field will then be singular along Γ .

3. A physical interpretation.

3.1. One verifies immediately that the nonhomogeneous membrane upon D, with specific mass $= \lambda_1 \rho(x, y)$ and elastic coefficient k(s), vibrates with ground eigenfrequency 1: $\Delta u_1 + 1 \cdot (\lambda_1 \rho) u_1 = 0$.

We shall presently establish the following theorem: Given an admissible vector field \vec{p} in *D*, the nonhomogeneous membrane with specific mass $\tilde{\rho}(x, y) = \operatorname{div} \vec{p} - \vec{p}^2$ in *D* and elastic coefficient $\tilde{k}(s) = \vec{p} \cdot \vec{n}$ along Γ , vibrates with ground frequency ≥ 1 .

The inequality (2) follows as a corollary: according to two general principles regarding vibrating systems (cf. [1], pp. 354 and 357), a homo-

972

geneous membrane with specific mass $\leq \tilde{\rho}$ and elastic coefficient $k(s) \geq \tilde{k}(s)$ vibrates a fortiori with ground frequency ≥ 1 ; whence (2).

3.2. The above theorem will be established by proving the following statement to be true: If we *cut* the membrane (specific mass $\tilde{\rho}(x, y) = \operatorname{div} \vec{p} - \vec{p}^2$, elastic coefficient $\tilde{k}(s) = \vec{p} \cdot \vec{n}$) into slices D_j of infinitesimal breadth along all trajectories of \vec{p} , it then vibrates with ground frequency 1.

Indeed: Each slice D_j has the first eigenfrequency 1: Call s the arc length along the trajectory (measured from an arbitrary origin on D_j); we define in D_j a function $f(x, y) = f(s) = c_j \exp\left\{-\int_{s=0}^s \vec{p} \cdot \vec{ds}\right\}$, $c_j > 0$ arbitrary. Then grad $f = -f\vec{p}$;

$$arDelta f = -f \operatorname{div} ec p - ec p \cdot \operatorname{grad} \, f = (ec p^2 - \operatorname{div} ec p) f = - \widetilde{
ho} f$$
 ,

 $\frac{\partial f}{\partial n} = -(\vec{p} \cdot \vec{n})f = \begin{cases} -\tilde{k}f \text{ on } \Gamma_j \text{ (infinitesimal part of } \Gamma \text{ bounding } D_j); \\ 0 \text{ along the cuts;} \end{cases}$

f > 0 in D. Thus, our function f is the first eigenfunction of the vibrating slice D_j with specific mass $\tilde{\rho}$, free along the cuts and with elastic coefficient \tilde{k} on Γ_j ; its first eigenfrequency is 1, because $\Delta f + 1 \cdot \tilde{\rho}f = 0$: this proves the theorem and justifies our physical interpretation of (2).—The light in which the Maximum principle is viewed here, is in agreement with [2] and [4].

4. An inequality of M. H. Protter.

Let $\vec{p} = \frac{\vec{t}}{a} - \frac{\operatorname{grad} a}{2a}$, where $\vec{t}(x, y)$ is a vector field and a(x, y) > 0

a scalar field. Then

$$\operatorname{div} ec{p} - ec{p}^2 = rac{\operatorname{div} ec{t}}{a} - rac{ec{t}^2}{a^2} - rac{\varDelta a}{2a} + rac{\operatorname{grad}^2 a}{4a^2} \geq rac{\operatorname{div} ec{t}}{a} - rac{ec{t}^2}{a^2} - rac{\varDelta a}{2a}$$

For a membrane with fixed boundary, Condition (1) falls off, so we have by (2)

(4)
$$\lambda_{1} \geq \inf_{D} \left[\frac{\operatorname{div} \vec{t} - \frac{\vec{t}^{2}}{a} - \frac{\mathcal{A}a}{2}}{a\rho} \right]$$

This is M. H. Protter's inequality [7], [8] (if we write $\vec{t} = \{P, Q\}$) —although he requires P(x, y) and Q(x, y) to be C^1 in D, which is unnecessarily restrictive (cf. also [5] and [3]): P might be discontinuous in y and Q in x.

M. H. Protter indicates in [8] very interesting applications of (4) to comparison theorems between ground eigenfrequencies of two non-homogeneous membranes spanning the same domain D.

Critical remark.—In the proof of (4) we neglected the positive term $\operatorname{grad}^2 a/4a^2$: equality is impossible in (4) unless $a(x, y) = \operatorname{const}$, in which case (4) reduces back to (2) with $\vec{p} = \vec{t}/a$.

5. Strengthening of Protter's inequality. Let first (a little more generally) $\vec{p} = \frac{\vec{t}}{a} + \vec{v}$ with $\vec{t}(x, y)$, $\vec{v}(x, y)$, a(x, y) > 0; div $\vec{p} - \vec{p}^2 = \frac{\operatorname{div} \vec{t}}{a}$ $-\frac{\vec{t}^2}{a^2} + \operatorname{div} \vec{v} - \vec{v}^2 - \frac{\operatorname{grad} a}{a^2} \cdot \vec{t} - 2\frac{\vec{v}}{a} \cdot \vec{t}$; in order that the two last terms may cancel everywhere, let (with Protter) $\vec{v} = -\frac{\operatorname{grad} a}{2a} = -\frac{\operatorname{grad} \sqrt{a}}{\sqrt{a}}$; then div $\vec{v} - \vec{v}^2 = -\frac{4\sqrt{a}}{\sqrt{a}}$; let $\sqrt{a(x, y)} = b(x, y) > 0$ in D, i.e. $\vec{p} = \frac{\vec{t}}{b^2} - \frac{\operatorname{grad} b}{b}$; div $\vec{p} - \vec{p}^2 = \frac{\operatorname{div} \vec{t}}{b^2} - \frac{\vec{t}^2}{b^4} - \frac{4b}{b}$. Under the condition (5) $\frac{\vec{t} \cdot \vec{n}}{b^2} - \frac{1}{b} \frac{\partial b}{\partial n} \leq k(s)$ (identically satisfied if $k \equiv \infty$),

we have the lower bound

(6)
$$\lambda_1 \ge \inf_{D} \left[\frac{1}{\rho} \left(\frac{\operatorname{div} \vec{t}}{b^2} - \frac{\vec{t}^2}{b^4} - \frac{\varDelta b}{b} \right) \right]$$

with equality whenever $\frac{\vec{t}}{b^2} - \frac{\operatorname{grad} b}{b} = -\frac{\operatorname{grad} u}{u}$, as no term has been neglected.—If, for example, we take $\vec{t} \equiv 0$, we get an inequality of Barta-Pólya $\lambda_1 \geq \inf_D \left(-\frac{\Delta b}{\rho b}\right)$.—[In fact, if $\frac{\partial b}{\partial n} + k(s)b = 0$ on Γ, λ_1 is comprised between the two Barta-Pólya bounds

$$\inf_{\mathcal{D}}\left(-\frac{\varDelta b}{\rho b}\right) \leq \lambda_{1} \leq \sup_{\mathcal{D}}\left(-\frac{\varDelta b}{\rho b}\right).$$

The expression in square brackets in (6) is larger than that in (4), because

$$-\frac{\varDelta a}{2a} = -\frac{\varDelta (b^2)}{2b^2} = -\frac{\operatorname{div} (b \operatorname{grad} b)}{b^2} = -\frac{\varDelta b}{b} - \frac{\operatorname{grad}^2 b}{b^2};$$

this does not diminish M. H. Protter's merit, as his inequality (4)

contains (2) as a special case, whence (6) follows.

6. Applications.

6.1. The inequalities obtained by M. H. Protter in [8] may be sharpened by using (6) instead of (4).

6.2. Small variation of the elastic coefficient along the boundary. First case: $\rho(x, y)$, k(s); λ_1 , $u_1(x, y)$. Second case: $\tilde{\rho}(x, y) = \rho(x, y)$, $\tilde{k}(s) = k(s) + \varepsilon K(s)$; $\tilde{\lambda}_1$, $\tilde{u}_1(x, y)$. By Rayleigh's principle,

(7)
$$\tilde{\lambda}_1 \leq \frac{D(u_1) + \oint \tilde{k} u_1^2 ds}{\iint \rho u_1^2 dA} = \lambda_1 + \varepsilon Q \text{, where } Q = \frac{\oint K u_1^2 ds}{\iint \rho u_1^2 dA}$$

We now introduce $b = u_1(x, y)$ into (6):

 $\widetilde{\lambda}_1 \geq \lambda_1 + \inf_D \left\{ \frac{1}{\rho} \left(\frac{\operatorname{div} \vec{t}}{u_1^2} - \frac{\vec{t}^2}{u_1^4} \right) \right\}$ under the condition $\frac{\vec{t} \cdot \vec{n}}{u_1^2} \leq \varepsilon K(s)$, whence $\iint \operatorname{div} \vec{t} dA = \oint \vec{t} \cdot \vec{n} ds \leq \varepsilon \oint K u_1^2 ds = \varepsilon Q \iint \rho u_1^2 dA$.—There exists a vector field \vec{t} such that

div $\vec{t} = \varepsilon Q \rho(x, y) u_1^2$ in D and $\vec{t} \cdot \vec{n} = \varepsilon K(s) u_1^2$ along Γ : indeed, we can even impose the supplementary condition rot $\vec{t} = 0$, $\vec{t} = \text{grad } v$; v (determined up to an additive constant) is the solution of the Poisson-Neumann problem

$$arDelta v = arepsilon Q
ho(x,\,y) u_{\scriptscriptstyle 1}^{\scriptscriptstyle 2} \,\, ext{in} \,\, D \,\, ext{and} \,\, rac{\partial v}{\partial n} = arepsilon K(s) u_{\scriptscriptstyle 1}^{\scriptscriptstyle 2} \,\, ext{along} \,\, arGamma \,\, .$$

Clearly, v and \vec{t} are proportional to ε . Thus,

(7')
$$\widetilde{\lambda}_1 \geq \lambda_1 + \varepsilon Q - \sup_D \left(\frac{\vec{t}^2}{\rho u_1^4} \right) = \lambda_1 + \varepsilon Q - O(\varepsilon^2) .$$

(7) and (7) give

(7")
$$\widetilde{\lambda}_1 = \lambda_1 + \varepsilon Q - O(\varepsilon^2)$$
.

The first perturbation calculus gives $\tilde{\lambda}_1 = \lambda_1 + \varepsilon Q$; we thus verify that this is the tangent to the exact curve $\tilde{\lambda}_1 = \tilde{\lambda}_1(\varepsilon)$.

6.3. Small variation of the specific mass $\rho(x, y)$. First case: $\rho(x, y)$, k(s); λ_1 , $u_1(x, y)$. Second case: $\tilde{\rho}(x, y) = \rho(x, y) + \varepsilon \sigma(x, y)$, $\tilde{k}(s) = k(s)$; $\tilde{\lambda}_1$, $\tilde{u}_1(x, y)$. By Rayleigh's principle,

(8)
$$\widetilde{\lambda}_1 \leq \frac{D(u_1) + \oint k(s)u_1^2 ds}{\iint \widetilde{\rho} u_1^2 dA} = \frac{\lambda_1}{1 + \varepsilon R}$$
, where $R = \frac{\iint \sigma u_1^2 dA}{\iint \rho u_1^2 dA}$

We now introduce again $b = u_1(x, y)$ into (6):

 $\tilde{\lambda}_1 \ge \inf_D \left\{ \frac{1}{\tilde{\rho}} \left(\frac{\operatorname{div} \vec{t}}{u_1^2} - \frac{\vec{t}^2}{u_1^4} + \lambda_1 \rho \right) \right\}$ under the condition $\vec{t} \cdot \vec{n} \le 0$ along Γ ; we want to use a vector field \vec{t} such that $\vec{t} \cdot \vec{n} = 0$ along Γ and $\frac{1}{\tilde{\rho}} \left(\frac{\operatorname{div} \vec{t}}{u_1^2} + \lambda_1 \rho \right) = c = \operatorname{const} \operatorname{in} D$, so div $\vec{t} = u_1^2 (c \tilde{\rho} - \lambda_1 \rho)$; the constant cis determined by the condition

$$0=\ointec{t}\cdotec{n}ds=\int\!\!\int\mathrm{div}\,ec{t}dA=c\!\int\!\!\int\!\!\widetilde
ho u_{1}^{2}\!dA-\lambda_{1}\int\!\!\int\!\!
ho u_{1}^{2}\!dA$$
 ,

whence

$$c=rac{\lambda_1}{1+arepsilon R} ext{ ; } ext{ div } ec{t}=\lambda_1 u_1^2 \Bigl(rac{
ho+arepsilon\sigma}{1+arepsilon R}-
ho\Bigr)=arepsilon\lambda_1 u_1^2 rac{\sigma-
ho R}{1+arepsilon R} ext{ ; }$$

such a vector field \vec{t} exists: we can even request that it be a gradient field; $\vec{t} = O(\varepsilon)$.

(8')
$$\widetilde{\lambda}_1 \geq \frac{\lambda_1}{1+\varepsilon R} - \sup_D \left(\frac{\overline{t}^2}{\widetilde{\rho}u_1^4}\right) = \frac{\lambda_1}{1+\varepsilon R} - O(\varepsilon^2).$$

(8) and (8') give

(8")
$$\widetilde{\lambda}_1 = \frac{\lambda_1}{1 + \varepsilon R} - O(\varepsilon^2) .$$

7. Schrödinger's equation.

7.1. We consider an equation of Schrödinger's type in 3-space:

with some boundary conditions not specified here, but which must permit partial integrations analogous to those of § 2; $W = \frac{2m}{\bar{h}^2} V(x, y, z)$, $\lambda_1 = \frac{2m}{\bar{h}^2} E_1$, where V is the potential, and E_1 the lowest energy level.

Rayleigh's principle:

976

(10)
$$\lambda_1 = \operatorname{Min}_v \frac{D(v) + \iiint W(x, y, z) v^2 d\tau}{\iiint v^2 d\tau} ,$$

with, possibly, a supplementary term at the numerator, owing to the boundary conditions; $d\tau$ is the volume element.—The Minimum is realized for the first eigenfunction $u_1(x, y, z)$ of the differential equation.

7.2. An argument almost identical to that of $\S 2$ (cf. also [5]) gives the Maximum principle:

(11)
$$\lambda_1 = \operatorname{Max}_{\vec{p}} \inf_{D} \{ W(x, y, z) + \operatorname{div} \vec{p} - \vec{p}^2 \}$$

where the concurrent vector fields \vec{p} must satisfy corresponding boundary conditions.—The Maximum is realized for $\vec{p} = -\text{grad } u_1/u_1$.—Allowed discontinuities: cf. § 2 (continuity of the normal derivative, etc.).—To get a good lower bound, one should try to construct a vector field \vec{p} such that $W(x, y, z) + \text{div } \vec{p} - \vec{p}^2 = \text{const.}$

7.3. A physical interpretation.—For expository purposes, we shall consider here equation (9) for 2 dimensions only.—This is exactly the equation of a vibrating homogeneous membrane covering a plane domain D, on which each area element dxdy (at the point (x, y)) is pulled towards its equilibrium position u = 0 by a weak spring of infinitesimal elastic coefficient W(x, y)dxdy.—We suppose that the membrane's boundary Γ is also elastically supported with elastic coefficient $k(s): \partial u/\partial n + k(s)u = 0$ along Γ .

Analogously to § 3.1, we verify immediately: The homogeneous membrane covering D, with specific mass $\equiv \lambda_1$ and "interior springs" W(x, y), vibrates with the ground eigenfrequency 1.

Let us now consider another vibrating system: Given in D an admissible vector field \vec{p} with $\vec{p} \cdot \vec{n} \leq k(s)$, we study the system formed by:

(a) A nonhomogeneous membrane covering a copy D_a of D, with specific mass = (div $\vec{p} - \vec{p}^2$) and elastic coefficient = $\vec{p} \cdot \vec{n}$ along Γ ;

(b) Another copy D_b of D, without any "transversal elasticity", where every area element dxdy contains a mass W(x, y)dxdy vibrating independently under the action of a spring with elastic coefficient W(x, y)dxdy.

According to §3, the nonhomogeneous membrane (a) has ground eigenfrequency ≥ 1 ; each infinitesimal mass of the system (b) vibrates

with the exact frequency $\omega = 1$, as this mass is equal to the spring coefficient.—Therefore 1 is the ground eigenfrequency of the system (a) + (b).

By superposing D_a and D_b and welding, in each point (x, y), the two masses there placed, we synthesize a nonhomogeneous membrane with specific mass $W(x, y) + \operatorname{div} \vec{p} - \vec{p}^2$, elastic coefficient $= \vec{p} \cdot \vec{n}$ along Γ , and "interior springs" W(x, y).—As the addition of supplementary constraints (welding!) can only make the ground eigenfrequency higher ([1], p. 354), our "synthetic" membrane vibrates with a ground frequency ≥ 1 .

Consider now the homogeneous membrane with specific mass $\equiv \inf_{D} [W(x, y) + \operatorname{div} \vec{p} - \vec{p}^2]$, elastic coefficient k(s) along Γ , and the same "interior springs" W(x, y); this membrane has smaller masses and greater constraints: therefore ([1], pp. 354 and 357), its ground frequency is a fortiori ≥ 1 .

As our initial membrane [specific mass $\equiv \lambda_1$; elastic coefficient = k(s); interior springs W(x, y)] has ground eigenfrequency 1, its specific mass λ_1 must be $\geq \inf_D [W(x, y) + \operatorname{div} \vec{p} - \vec{p}^2]$, which explains (11).

7.4. (Analogous to § 5): Let $\vec{p} = \frac{\vec{t}}{b^2} - \frac{\operatorname{grad} b}{b}$; we get

(12)
$$\lambda_1 \geq \inf_D \left\{ W(x,y,z) + \frac{\operatorname{div} \vec{t}}{b^2} - \frac{\vec{t}^2}{b^4} - \frac{\varDelta b}{b} \right\} \quad |,$$

where adequate boundary restrictions must be imposed on the concurrent vector fields $\vec{t}(x, y, z)$ and scalar fields b(x, y, z).

7.5. An application.—Small variation of the potential; boundary conditions on the surface Γ of D: $\partial u/\partial n + k(X)u = 0$ ($X \in \Gamma$).

Boundary conditions to be satisfied by \vec{t} and b:

(5')
$$\frac{\vec{t} \cdot \vec{n}}{b^2} - \frac{1}{b} \frac{\partial b}{\partial n} \leq k(X) \text{ on } \Gamma.$$

First case:

$$W(x, y, z)$$
, $k(X)$; λ_1 , $u_1(x, y, z)$.

Second case:

$$\widetilde{W}(x, y, z) = W(x, y, z) + \varepsilon w(x, y, z)$$
, $\widetilde{k}(X) = k(X); \ \widetilde{\lambda}_1, \ \widetilde{u}_1(x, y, z).$

By Rayleigh's principle (10),

(13)
$$\widetilde{\lambda}_1 \leq \frac{D(u_1) + \iiint \widetilde{W} u_1^2 d\tau}{\iiint u_1^2 d\tau} = \lambda_1 + \varepsilon U \,, \quad \text{where} \quad U = \frac{\iiint w u_1^2 d\tau}{\iiint u_1^2 d\tau} \,.$$

Now let $b = u_1(x, y, z)$ into (12): $\tilde{\lambda}_1 \ge \lambda_1 + \inf_D \left[\varepsilon w + \frac{\operatorname{div} \vec{t}}{u_1^2} - \frac{\vec{t}^2}{u_1^4} \right]$ under the condition $\vec{t} \cdot \vec{n} \le 0$ on Γ . We want to use a vector field \vec{t} such that $\vec{t} \cdot \vec{n} = 0$ and $\frac{\operatorname{div} \vec{t}}{u_1^2} + \varepsilon w = c = \operatorname{const}$, $\operatorname{div} \vec{t} = u_1^2(c - \varepsilon w)$; the constant c is determined by the condition $0 = \oint \oint \vec{t} \cdot \vec{n} dS = \iiint \operatorname{div} \vec{t} d\tau = c \iiint u_1^2 d\tau - \varepsilon \iiint u_1^2 d\tau$, where dS is the surface element; hence, $c = \varepsilon U$; $\operatorname{div} \vec{t} = \varepsilon u_1^2(U - w)$; there exists such a vector field \vec{t} : we can even impose that it be a gradient field; \vec{t} is proportional to ε .

(13')
$$\widetilde{\lambda}_1 \geq \lambda_1 + \varepsilon U - \sup_D (\tilde{t}^2/u_1^4) = \lambda_1 + \varepsilon U - O(\varepsilon^2);$$

(13) and (13') give

(13")
$$\widetilde{\lambda}_1 = \lambda_1 + \varepsilon U - O(\varepsilon^2).$$

The first approximation $\tilde{\lambda}_1 = \lambda_1 + \varepsilon U$ of the perturbation calculus is, as we see, the tangent to the exact curve $\tilde{\lambda}_1 = \tilde{\lambda}_1(\varepsilon)$.

Post-scriptum. For the case $k \equiv \infty$ and $\rho \equiv 1$, the inequality (2), written for the components $\vec{p} = \{\varphi(x, y), \psi(x, y)\}$ instead of vectorially, was known (except for the allowed discontinuities) to E. Picard as early as 1893: Traité d'Analyse, t. II, p. 25-26, and to T. Boggio: Sull'equazione del moto vibratorio delle membrane elastiche, Atti Accad. Lincei, ser. 5, vol. 16 (2° sem., 1907), 386-393, especially p. 390.—They also chose φ and ψ to be continuous in the domain, which is criticized here and in [5] as an unnecessary restriction.—In contrast with M. H. Protter, both Picard and Boggio seem to have under-estimated the importance of inequality (2): it just incidentally appears (in the quoted places) in the course of demonstrations for very simple monotony properties.

BIBLIOGRAPHY

1. R. Courant and D. Hilbert, Methoden der mathematischen Physik, vol. I, Springer, Berlin (1931).

^{2.} J. Hersch, Une interprétation du principe de Thomson et son analogue pour la fréquence fondamentale d'une membrane. Application. C. R. Acad. Sci. Paris, **248** (1959), 2060.

3. Un principe de maximum pour la fréquence fondamentale d'une membrane, C. R. Acad. Sci. Paris, **249** (1959), 1074.

4. Sur quelques principes extrémaux de la physique mathématique, L'Enseignement Math., 2e série, 5 (1959), 249-257.

5. Sur la fréquence fondamentale d'une membrane vibrante: évaluations par défaut et principe de maximum, ZAMP, **11** (1960), 387-413.

6. L. E. Payne and H. F. Weinberger, Lower bounds for vibration frequencies of elastically supported membranes and plates, J. Soc. Indust. Appl. Math., 5 (1957), 171-182.

7. M. H. Protter, Lower bounds for the first eigenvalue of elliptic equations and related topics, Tech. Report No. 8, AFOSR, University of California, Berkeley (1958).

8. Vibration of a nonhomogeneous membrane, Pacific J. Math., 9 (1959), 1249-1255.

INSTITUT BATTELLE, GENEVA SWITZERLAND