SOME CHARACTERIZATIONS OF A CLASS OF UNAVOIDABLE COMPACT SETS IN THE GAME OF BANACH AND MAZUR

H. HANANI^{*} AND M. REICHBACH^{**}

1. Introduction. The game of Banach and Mazur is understood here¹ as follows:

Two players A and B choose alternately nonnegative numbers t_n , $(n = 0, 1, 2, \dots)$ in the following manner: B chooses a number t_0 such that $0 \leq t_0 < 1$. After t_i $(i = 0, 1, \dots, 2n)$ have been chosen, A chooses t_{2n+1} such that

(a)
$$0 < t_{2n+1} < t_{2n}$$
 (if $t_0 = 0, t_1$ is arbitrary)

and subsequently B a number t_{2n+2} such that

(b')
$$0 < t_{2n+2} < t_{2n+1}$$
 , $(n = 0, 1, 2, \cdots)$.

Given a set $S \subset [0, 1]$, A will be said to win on S if $s = \sum_{n=0}^{\infty} t_n \in S$; otherwise B wins.

We shall deal in this paper with a generalization of this game, consisting in replacing (b') by

(b)
$$0 < t_{2n+2} < k \cdot t_{2n+1}$$
, $(n = 0, 1, 2, \cdots)$

where k > 0 will be referred to as the game constant.²

We say that the set S is unavoidable, or that B cannot avoid it, if there exists a sequence of functions $t_1(t_0), t_3(t_0, t_1, t_2), \dots, t_{2n+1}(t_0, t_1, \dots, t_{2n}), \dots$, satisfying (a) and such that $s = \sum_{n=0}^{\infty} t_n \in S$ whenever (b) holds. If, on the other hand, there exists a sequence of functions $t_0, t_2(t_0, t_1), \dots, t_{2n}(t_0, t_1, \dots, t_{2n-1}), \dots$ satisfying (b) and such that $s = \sum_{n=0}^{\infty} t_n \notin S$, whenever (a) holds, then S is said to be avoidable.

The sets. In this paper we shall consider closed subsets of [0, 1] exclusively. Let S be an arbitrary closed set on the interval f = [0, 1]

** Technion, Israel Institute of Technology, Haifa.

Received July 27, 1960.

^{*} Mathematics Research Center, U.S. Army, Madison, Wisconsin and Technion, Israel Institute of Technology, Haifa. Supported by U.S. Army under Contract No. DA 11-022-ORD-2059.

¹ Various variants of the game are described in the so-called "Scottish Book", s. Coll. Math., **1** (1947), p. 57.

² The case of the constant k replaced by a variable k_n is considered in [1].

and suppose that 0 and 1 belong to S^3 . The complement $[0,1] \sim S = \bigcup_{n=1}^{\infty} g_n$ is a union of open and disjoint intervals g_n . Denote by g the greatest of them. (If several such intervals of the same length exist, g will denote the one lying to the right of all others). Then $f \sim g = f_0 \cup f_1$ is a union of two closed intervals f_0 and f_1 , where f_0 denotes the left and f_1 the right one. Suppose now the closed intervals $f_{\delta_1,\dots,\delta_n}$, $\delta_1 = 0, 1$ are already defined and denote by $g_{\delta_1,\dots,\delta_n}$ the greatest of the intervals g_n contained in $f_{\delta_1,\dots,\delta_n}$ (if any). The set $f_{\delta_1,\dots,\delta_n} \sim g_{\delta,\dots,\delta_n} = f_{\delta_1,\dots,\delta_n,0} \cup f_{\delta_1,\dots,\delta_n,1}$ is a union of two closed intervals, where $f_{\delta_1,\dots,\delta_n,0}$ denotes the left and $f_{\delta_1,\dots,\delta_n,1}$ the right interval (Fig. 1)

It is clear that $S = \bigcap_{n=0}^{\infty} \bigcup_{\delta_i=0,1} f_{\delta_1,\dots,\delta_n}$ $i = 1, 2, \dots, n$ $((f_{\delta_1,\dots,\delta_n})_{n=0}$ denotes the interval f = [0, 1]).

The class C of sets satisfying⁴

(c)
$$\frac{|g|}{|f_0|} = \frac{|g_{\delta_1,\dots,\delta_n}|}{|f_{\delta_1,\dots,\delta_{n},0}|} = c_1 > 0 \text{ and } \frac{|g|}{|f_1|} = \frac{|g_{\delta_1,\dots,\delta_n}|}{|f_{\delta_1,\dots,\delta_{n},1}|} = c_2 > 0$$

where c_1 and c_2 are constants (independent of $\delta_1, \dots, \delta_n$) is called the Cantor class.

Evidently, each set belonging to C is perfect and its Lebesguemeasure is 0 (it is consequently also nowhere dense). We shall denote $x = |f_0|, y = |g|$ and $\alpha = 1 - x - y = |f_1|$. We can establish a one-toone correspondence between the sets of C and the points of the triangle: 0 < x < 1, 0 < y < 1 - x (see Fig. 2). A set of C corresponding to (x, y)is denoted by $S_{x,y}$. The sets $S_{x,y}$ of C for which $|f_0| = |f_1|$, i.e. the sets for which y = 1 - 2x, are called symmetric sets. In particular, the Cantor discontinuum $S_{1/3,1/3}$ is a symmetric set.

Outline of results. S. Banach posed the problem of finding necessary and sufficient conditions which make a set S unavoidable.

In §2 we find for every $k \ge 1$ sufficient conditions for an arbitrary compact set S to be unavoidable for the constant k. These conditions are also necessary if the following additional condition (ā) is stipulated. (ā) $t_1 \le \varepsilon$, where $\varepsilon > 0$ is a number chosen by B such that $(t_0, t_0 + \varepsilon] \cup S \ne 0$.

The condition (\bar{a}) implies a uniform structure (from the point of view of the game) of the set S; and under this restriction a solution of the problem of Banach in the case of compact sets is given.

³ This will be assumed throughout the paper.

[|]g| denotes the length of the interval g.

In § 3 we give moreover a numerical solution of the problem of Banach for sets belonging to the Cantor class C. Namely, we define a function $\bar{k}(x, y)$:

$$\bar{k}(x, y) = \begin{cases} 0 & \text{for } y \ge x \\ \frac{\alpha(1 - x\alpha^p)}{y + x\alpha^{p+1}} & \text{for } x\alpha^{p+1} \le y < x\alpha^p , \quad (p = 0, 1, 2, \cdots) \end{cases}$$

 $(\alpha = 1 - x - y, \ 0 < x < 1, \ 0 < y < 1 - x)$, such that the set $S_{x,y}$ is unavoidable if, and only if, the game-constant k satisfies $k \leq \overline{k}(x, y)$. It can be easily seen that the lines $y = x\alpha^{p}$, $(p = 0, 1, \cdots)$ are lines of discontinuity of this function and that a necessary and sufficient condition for a set $S_{x,y}$ of C to be avoidable for every k > 0 is that the point (x, y) be on or above the diagonal y = x. In this sense the line y = x separates the avoidable sets for every k from the others, and especially the Cantor discontinuum $S_{1/3,1/3}$ has this property with regard to the symmetric sets. The results of this section also include a generalization of a result obtained in [2], where, in answer to a question by H. Steinhaus, an unavoidable perfect set of measure 0 with the game-constant k = 1 was constructed. Since, as it turns out this is a set $S_{1/2,1/8}$ and $\bar{k}(\frac{1}{2}, \frac{1}{8}) = 39/25$, it is unavoidable if, and only if, $k \leq 39/25$.

NOTATION. We denote by $\rho(h_1, h_2)$ the distance between the intervals h_1 and h_2 ; by l(h) and r(h) the left and right endpoints of the interval h; we also put $s_n = \sum_{j=0}^n t_j$.

Furthermore introduce the following definition:

(d) Let z be any point of the set S and $\{g^n\}_{n=0,1\cdots}$ a sequence of open intervals defined as follows $g^0 = (1, \infty)$ and g^{n+1} the greatest interval g_k lying between z and g^n (if several such intervals of the same length exist, g^{n+1} will denote the one lying to the right of all the others). The sequence $\{g^n\}$ and $\{f^n\}$ (where $f^n = [r(g^{n+1}), l(g^n)]$) may be finite e.g. if $z = l(g_m)$ for some m. The most interesting case is however when the sequence $\{g^n\}$ is infinite. It converges then to some point z' of S, $z' \ge z$ and will be referred to as a descending sequence: $g^n \to z'$.

2. Arbitrary compact sets. In this section we consider arbitrary compact sets S in the interval [0, 1]. In addition to the assumptions (a) and (b) we also assume that (\bar{a}) holds. For every game-constant $k \ge 1$, we shall give necessary and sufficient conditions for the set S to be unavoidable. We shall namely prove, that the three properties $(p_1), (p_2)$ and (p_3) , defined below, are equivalent. By means of a small modification of the proof it can be shown that (p_2) and (p_3) are equivalent for every k > 0 (not only $k \ge 1$).

By g, \tilde{g} (with or without subscripts (or superscripts)) we denote the open intervals g_n and the two intervals $(-\infty, 0)$ and $(1, \infty)$. We now choose a fixed $k \ge 1$ and define for it the properties $(p_1), (p_2)$ and (p_3) . (p_1) A compact set S is said to have the property (p_1) if the following conditions (p'_1) and (p''_1) hold.

(p'_1) If \tilde{f} is an interval lying between two intervals g' and g'' at least one of which is other than $(-\infty, 0)$ and $(1, \infty)$ such that $r(g') = l(\tilde{f})$ and $r(\tilde{f}) = l(g'')$ then either $k \cdot |g'| \leq |\tilde{f}|$ or $|g''| < |\tilde{f}|$ (Fig. 3)

(p'') If $g^n \to z$, then there exist infinitely many integers n such that for every m, m < n either $k \cdot \rho[z, r(g^n)] \leq \rho(g^n, g^m)$ or $|g^m| < \rho(g^n, g^m)$. Regarding sets having property (p_1) we note:

(1) If S satisfies (p_1) and \tilde{f} is a segment lying between the intervals g^n and g^{n-1} which belong to some descending sequence $\{g^n\}_{n=0,1,\cdots}$ then $\rho(g^n, \tilde{g}) > |\tilde{g}|$ holds for every interval \tilde{g} contained in \tilde{f} .

Indeed, let f' be the interval defined by $f' = [r(g^n), l(\tilde{g})]$ (i.e. the interval lying between g^n and \tilde{g}). If $k \cdot |g^n| > |f'|$ then by (p'_1) there is $|\tilde{g}| < |f'| = \rho(g^n, \tilde{g})$. If however $k \cdot |g^n| \le |f'|$ then by the definition (d) of a descending sequence of intervals $|\tilde{g}| < |g^n|$ and by the assumption $k \ge 1$ we have $|\tilde{g}| < |f'| = \rho(g^n, \tilde{g})$.

We now introduce the following definition:

(h) A set S is said to have the property (h) in the interval $(z, z + \varepsilon)$ if for each interval \hat{g} such that $\hat{g} \cap (z, z + \varepsilon) \neq 0$ there is $\rho(z, \hat{g}) > |\hat{g}|$. We define the property

 $p_{(2)}$ A set S is said to have the property (p_2) if the following two conditions (p'_2) and (p''_2) are satisfied:

(p₂) The set S has the property (h) in each interval $(r(\tilde{g}), r(\tilde{g}) + k \cdot |\tilde{g}|)$.

 (p''_z) For each $z \in S$ and $z \neq l(\tilde{g})$ there exists a point z' > z arbitrarily close to z and such that S has the property (h) in the interval $(z', z' + k \cdot \rho(z, z'))$.

Finally

 (p_3) A set S is said to have the property (p_3) if it is unavoidable (for the game constant k).

We shall now prove that for compact sets S the properties (p_1) , (p_2) and (p_3) are equivalent. This will be done by proving the implications $(p_1) \rightarrow (p_2) \rightarrow (p_3) \rightarrow (p_1)$.

$$(2) \qquad (p_1) \longrightarrow (p_2)$$

Indeed, let \hat{g} and \tilde{g} be intervals such that $\hat{g} \cap (r(\tilde{g}), r(\tilde{g}) + k | \tilde{g} |) \neq 0$. Thus $\rho(\tilde{g}, \hat{g}) < k \cdot | \tilde{g} |$; (p'_2) holds by the condition (p'_1) used for $g' = \tilde{g}$, $g'' = \hat{g}$ and $\tilde{f} = [r(\tilde{g}), l(\hat{g})]$. Thus $(p_1) \to (p'_2)$. It remains to prove (p''_2) . Let $z \in S$ be a point such that $z \neq l(\tilde{g})$. If S contains an interval with the left endpoint⁵ in z, then choosing z' sufficiently close to z, (p''_2) is satisfied in a trivial way. We therefore may assume that there exists an infinite sequence $g^n \to z$. By (p''_1) there are points $z' = r(g^n)$ arbitrarily close to z such that for each interval g^m lying to the right of z' there is either $k\rho(z, z') \leq \rho(z', g^m)$ or $|g^m| < \rho(z', g^m)$. Let m < n be the greatest integer such that $|g^m| \geq \rho(z', g^m)$. Such a number exists, since for example there is always $|g^0| \geq \rho(z', g^0)$. We have then by (p''_1) : $k\rho(z, z') \leq \rho(z', g^m)$ and for each t such that m < t < n, $|g^t| < \rho(z', g^t)$. By (1) we thus conclude, that S has the property (h) in the interval $(z', z' + \rho(z', g^m))$

We now prove that

⁵ z may evidently be also an interior point of some interval contained in S.

$$(3) \qquad (p_2) \longrightarrow (p_3)$$

Indeed, let $0 \leq t_0 < 1$ be an arbitrary number chosen by B. We then show that A can choose a number t_1 satisfying (a) and (ā) such that $s_1 \in S$ and that(h) holds in $(s_1, s_1 + kt_1)$: If $t_0 \in \tilde{g}$ or $t_0 = l(\tilde{g}) A$ can choose $s_1 = r(\tilde{g})$ and our condition is satisfied by (p'_2) . In the case $t_0 \in S$ and $t_0 \neq l(\tilde{g})$, A chooses $s_1 = z'$ and (p''_2) applies. Similarly A may after each step t_{2n} of B (satisfying (b)), choose t_{2n+1} , obtaining in particular $s_{2n+1} \in S$. By the compactness of S we then have $s = \lim_{n \to \infty} s_{2n+1} \in S$ and thus (p_3) holds.

REMARK 1. Note that the assumption $k \ge 1$ is not used in the proof of (3). Hence, by (3) the property (p_2) (for k > 0 and not only for $k \ge 1$) suffices for the unavoidability of the compact set S. It is easy to see, using (\bar{a}) , that the condition (p_2) is also necessary for k > 0.

Before proving the implication $(p_3) \rightarrow (p_1)$ we note that (4) If for some *n* there is $s_{2n-1} \notin S$ or $s_{2n-1} = l(\tilde{g})$ then *B* can avoid *S*,

by choosing the numbers t_{2n}, t_{2n+2}, \cdots sufficiently small.

We finally prove that

$$(5) \qquad (p_3) \longrightarrow (p_1) .$$

The proof is indirect. If (p'_1) does not hold, then there exists an interval $\tilde{f} = [r(g'), l(g'')]$. (Fig. 3) such that $k \cdot |g'| > |\tilde{f}|$ and $|g''| \ge |\tilde{f}|$. B can choose $t_0 = l(g')$ and $\varepsilon = |g'|$. Then by (\bar{a}) and (4) A has to choose $s_1 = r(g')$. Now B chooses $t_2 = |\tilde{f}| < k |g'| = kt_1$ and from $|g''| \ge |\tilde{f}|$ and (a) follows $s_3 \in g''$. Hence by (4) B avoids S.

If, on the other hand, (p_1') does not hold, then there exists a point z, a sequence $g^n \to z$ and an integer n_0 , such that for every $n \ge n_0$ there exists m = m(n) < n with the property: $k\rho(z, r(g^n)) > \rho(g^n, g^m)$ and $|g^m| \ge \rho(g^n, g^m)$. B chooses $t_0 = z$ and $\varepsilon < \rho(z, g^{n_0})$. By (4) it is sufficient to consider the case $r(g^{n+1}) \le s_1 < l(g^n)$ (Fig. 4) for some $n \ge n_0$. In this case, however, B can, choosing $t_2 = \rho(s_1, g^m)$, satisfy (b) and by (a) there must be $s_3 \in g^m$. Thus by (4) the set S is avoidable.

From (2), (3) and (5) we obtain

THEOREM 1. The properties (p_1) , (p_2) and (p_3) are equivalent. This theorem solves the Banach problem in the case of compact sets on the additional assumption (\bar{a}).

3. Sets of the Cantor class. In this section we deal with sets $S_{x,y}$ of the Cantor-class C, only. We find for them a function $\bar{k}(x, y)$ defined

within the triangle 0 < x < 1; 0 < y < 1 - x, such that the set $S_{x,y}$ is unavoidable if, and only if, the game-constant k satisfies: $k \leq \bar{k}(x, y)$.

We begin with a few remarks. Denoting, as in the introduction, $x = |f_0|, y = |g|$ and $\alpha = 1 - x - y = |f_1|$ we obtain by (c) (s. Fig. 1) (6) $|f_{\delta_1,\dots,\delta_n}| = x^{\nu} \alpha^{\mu}$ and $|g_{\delta_1,\dots,\delta_n}| = yx^{\nu} \alpha^{\mu}$ where $\mu = \sum_{i=1}^n \delta_i$ and $\nu = n - \mu$; it follows

(7)
$$|g_{\delta_1,\dots,\delta_n}| > |g_{\delta_1,\dots,\delta_n,\delta_{n+1}}|, \qquad (n = 0, 1, \cdots).$$

Hence, if $g^n \to z$ and for some m, $g^m = g_{\delta_1, \dots, \delta_{t_m}}$ then $g^{m+1} = g_{\delta_1, \dots, \delta_{t_m}} \circ \cdots \circ \delta_{t_m} \circ \cdots \circ \delta_{t_m} \circ \cdots \circ \delta_{t_m} \circ \cdots \circ \delta_{t_m}$ where $q_m \ge 0$ (i.e. the interval g^{m+1} is obtained from g^m by adding one 0, or one 0 and several 1's, to the subscripts $\delta_1, \dots, \delta_{t_m}$ of g^m).

By (c) we also have

(8) If y < x, then for every interval g_k contained in $f_{\delta_1, \dots, \delta_n}$ there is $|g_k| < \rho[l(f_{\delta_1}, \dots, \delta_n), g_k].$

We now introduce the following definition:

(d) Let $g^n \to z$ be a descending sequence such that there exist two infinite sequences $\{m'\}$ and $\{m''\}$ —of integers with the property $|f^m| \leq |g^m|$ for $m \in \{m'\}$ and $|f^m| > |g^m|$ for $m \in \{m''\}$, and such that for sufficiently large integers $m, m \in \{m'\}$ implies $m + 1 \in \{m''\}$ and $m - 1 \in \{m''\}$. Hence there exist an integer m_0 and an infinite sequence $\{r_j\}$ of integers such that $m_0 \in \{m'\}$, $(m_0 + i) \in \{m''\}$, $(1 \leq i \leq r_1)$, $(m_0 + r_1 + 1) \in \{m'\}$, $(m_0 + r_1 + 1 + i) \in \{m''\}$, $(1 \leq i \leq r_2)$, $(m_0 + r_1 + r_2 + 2) \in \{m'\}$, and so on. If $\lim r_j = r$ is finite, then z is said to be a point of order r. If otherwise, $\lim r_j = \infty$ then z is called a point of order ∞ .

We prove now the following lemma.

LEMMA. Let $g^n \rightarrow z$ and y < x. Denote by p the integer satisfying

$$(9) x \cdot \alpha^{p+1} \leq y < x \cdot \alpha^{p}$$

and put

$$\overline{k} = \overline{k}(x, y) = \frac{\alpha(1 - x\alpha^p)}{y + x\alpha^{p+1}}$$

then

(10) at any arbitrarily small distance from the point z there exists a point z' > z such that the inequality $\rho(z', g_k) > |g_k|$ holds for each interval g_k satisfying the condition

$$g_{k} \cap (z', z' + \bar{k} \cdot \rho(z, z')) \neq 0$$
, (i.e. (p_{2}'') holds).

Proof. By definition of the intervals g^m and f^m ,

H. HANANI AND M. REICHBACH

From (7) follows that $|g_{\delta_1,\dots,\delta_{t_m},0,1\dots,1}| > |g^{m+1}|$ for $q_m > 0$ and for $q_m = 0$ holds $|\tilde{g}| > |g^{m+1}|$ where \tilde{g} is the interval satisfying $r(\tilde{g}) = l(f_{\delta_1,\dots,\delta_{t_m}})$. In any case we have

(12)
$$z \in f_{\delta_1, \cdots, \delta_{t_m}, 0, 1 \cdots 1 \atop q_m}.$$

The following cases will be considered:

- (a) For infinitely may $m, q_m > p$.
- (b) For every sufficiently large $m, q_m \leq p$
- (ba) For every sufficiently large $m, q_m = p$
- (bb) For every sufficiently large $m, q_m < p$
- (bc) There are two infinite sequences M' and M" of integers such that for m ∈ M', q_m = p, and for m ∈ M", q_m < p. By (11), (6) and (9) follows that
- (13) $q_m = p$ is equivalent to $|f^m| \leq |g^m|$
- (14) $q_m < p$ is equivalent to $|f^m| > |g^m|$.

(bca) for infinitely many m holds

(15)
$$m \in M'' \text{ and } q_m \ge 1$$

(bcb) for every sufficiently large
$$m \in M''$$
, $q_m = 0$

(bcba) For infinitely many m,

$$m+1 \in M'$$
 and $m+2 \in M'$

(bcbb) For every sufficiently large m, from

 $m+1\in M'$ follows $m+2\in M''$.

We shall now prove the lemma for each of the above cases separately:

(a) From (12) follows
$$\overline{k}_l \rho(z, f_{\delta_1, \cdots, \delta_{t_m}, 1}) \leq \overline{k}(|f_{\delta_1, \cdots, \delta_{t_m}, 0, \frac{1}{q_m}}| + |g_m|)$$

$$= \frac{\alpha(1 - x\alpha^p)}{y + x \cdot \alpha^{p+1}} |f_{\delta_1, \cdots, \delta_{t_m}}| \cdot (x\alpha^{q_m} + y) .$$

Thus for *m* satisfying $q_m > p$,

$$\bar{k} \cdot \rho(z, f_{\delta_1, \cdots, \delta_{t_m}, 1}) < \alpha |f_{\delta_1, \cdots, \delta_{t_m}}| = |f_{\delta_1, \cdots, \delta_{t_m}, 1}|$$

If moreover *m* is sufficiently large then the distance $\rho(z, f_{\delta_1, \dots, \delta_{t_m}, 1})$ is arbitrarily small and thus choosing $z' = l(f_{\delta_1, \dots, \delta_{t_m}, 1})$ we conclude by (8) that (10) holds.

(ba) By (13) and (11) we have for m sufficiently large

$$f^m = f_{\delta_1, \cdots, \delta_{t_m}, 0, 1, \cdots, 1}, g^{m+1} = g_{\delta_1, \cdots, \delta_{t_m}, 0, 1, \cdots, 1}$$

and $g^{m+\mu+1}(\mu \ge 0)$ is obtained from $g^{m+\mu}$ by adding one 0 and p 1's to the subscripts of $g^{m+\mu}$. Hence

$$egin{aligned} &
ho(z,f_{\delta_1,\cdots,\delta_{t_m},1}) = |\,g_{\delta_1,\cdots,\delta_{t_m}}| + |f_{\delta_1,\cdots,\delta_{t_m},0,rac{1\cdots 1}{p+1}}| + |\,g_{\delta_1,\cdots,\delta_{t_m},0,rac{1\cdots 1}{p}}| + \ &+ |f_{\delta_1,\cdots,\delta_{t_m},0,rac{1\cdots 1}{p+1}}| + \cdots = \ &= |f_{\delta_1,\cdots,\delta_{t_m}}|\,(y + xlpha^{p+1} + yxlpha^p + x^2lpha^{2p+1} + \cdots) = |f_{\delta_1,\cdots,\delta_{t_m}}| \cdot rac{y + xlpha^{p+1}}{1 - xlpha^p} \end{aligned}$$

Therefore $\bar{k} \cdot \rho(z, f_{\delta_1, \cdots, \delta_{t_m}}) = \alpha |f_{\delta_1, \cdots, \delta_{t_m}}| = |f_{\delta_1, \cdots, \delta_{t_m}}|$. Thus taking msufficiently large (i.e. $f_{\delta_1, \dots, \delta_{t_m}, 1}$ sufficiently near to z) and putting $z' = l(f_{\delta_1, \cdots, \delta_{t_m}, 1})$ we see, by (8), that (10) holds.

(bb) By (14) there exists a number μ_0 , such that for $m \ge \mu_0$, $|f^m| > |g^m|$. Now take $m \ge \mu_0$ such that $\bar{k}\rho(z, l(f^m)) \le |f^{\mu_0}|$. Thus putting $z' = l(f^m)$ and taking m sufficiently large we obtain that (10) holds for every interval $g_k = g^n$ where $m \ge n \ge \mu_0$. Now for other intervals g_k (i.e. for $g_k \subset f^n$ $(m \ge n \ge \mu_0)$ (10) evidently holds by (8). Hence (10) holds in general. (bca) Let m satisfy (15) and let r be the smallest integer such that $m + r \in M'$ (evidently $r \ge 1$). Then, by (11) it follows that f^{m+i} , $(1 \leq i \leq r)$ are of the form

$$f^{m+i} = f_{\boldsymbol{\delta}_1,\cdots\boldsymbol{\delta}_{t_m},\boldsymbol{0}, \underbrace{1\cdots 1}_{q_m}, \underbrace{q_m, 1\cdots 1}_{q_{m+1}}, \underbrace{q_{m+1}, 1\cdots 1}_{q_{m+2}}, \underbrace{q_{m+i+1}}_{q_{m+i}+1}}$$

where $0 \leq q_{m+i} < p$ for $1 \leq i < r$ and $q_{m+r} = p$, and the g^{m+j} are of the form $g^{m+j} = g_{\delta_1, \dots, \delta_{t_m}, 0, \underbrace{1\cdots 1, 0, 1\cdots 1, 0, \dots, 0, \underbrace{1\cdots 1}_{q_m+j}}_{q_m+1}$ for $1 \leq j \leq r$. By analogy with (10)

(12) we have

$$z \in f_{\delta_1, \cdots, \delta_{t_m}, 0, \frac{1 \cdots 1}{q_m}, 0, \frac{1 \cdots 1}{q_m + 1}, 0, \frac{1 \cdots 1}{q_m + r}, 0, \frac{1 \cdots 1}{q_m + r}, \frac{1}{q_m}}$$

Therefore by (6)

(16)
$$\rho \stackrel{\text{def.}}{=} \rho(z, f^{m+r-1}) \leq |f_{\delta_1, \cdots, \delta_{t_m}}| \cdot (x^{r+1} \alpha^{p+\sum_{i=0}^{r-1} q_{m+i}} + yx^r \cdot \alpha^{r-1}_{i=0}) \\ < |f_{\delta_1, \cdots, \delta_{t_m}}| (x^2 \cdot \alpha^{p+q_m} + yx \alpha^{q_m}) .$$

Now evidently

(17)
$$|f_{\delta_1,\dots,\delta_{t_m},1}| + \sum_{i=0}^{r-1} (|g^{m+i}| + |f^{m+i}|) \ge |f_{\delta_1,\dots,\delta_{t_m},1}| + |g^m| + |f^m|$$

= $|f_{\delta_1,\dots,\delta_{t_m}}| (\alpha + y + x\alpha^{q_m+1}) .$

By (15)

$$\alpha(1-x\alpha^{p})(x^{2}\cdot\alpha^{p+q_{m}}+yx\alpha^{q_{m}})<(\alpha+y+x\alpha^{q_{m+1}})(x\alpha^{p+1}+y)$$

holds. Dividing both sides by $y + x\alpha^{p+1}$ we obtain

$$ar{k}(x^2lpha^{p+q_m}+yxlpha^{q_m})$$

and therefore by (16) and (17)

$$ar{k}
ho \leq |f_{\delta_1, \cdots \delta_{t_m}, 1}| + \sum\limits_{i=0}^{r-1} (|g^{m+i}| + |f^{m+i}|)$$
 .

Thus, putting $z' = l(f^{m+r-1})$ we see, by $|f^{m+i}| > |g^{m+i}|$ for $0 \le i < r$ and (8), that (10) holds.

In the case (bcb) we have for every sufficiently large $m \in M''$

$$|g^{m}| = |g_{\delta_{1}, \cdots, \delta_{t_{m}}}| < |f_{\delta_{1}, \cdots, \delta_{t_{m}}, 0, 1}| = |f^{m}|$$

Now turn to the case (bcba) By (11) and (13) we have

$$egin{aligned} g^{m+1} &= g_{m{\delta}_1, \cdots, m{\delta}_{t_m}, 0}, f^{m+1} = f_{m{\delta}_1, \cdots, m{\delta}_{t_m}, 0, 0, \frac{1}{p+1}}, \ g^{m+2} &= g_{m{\delta}_1, \cdots, m{\delta}_{t_m}, 0, 0, \frac{1}{p}} \end{aligned}$$

and

$$f^{m+2} = f_{\delta_1, \cdots, \delta_{t_m}, 0, 0} \underbrace{1 \cdots 1}_{p} \underbrace{1 \cdots 1}_{p+1} \cdot \underbrace{1 \cdots 1}_{p+1} \cdots \underbrace{1}_{p+1} \cdots 1}_{p+1} \cdots 1}_{p+1} \cdots 1}_{p$$

Therefore, as in (12)

$$z \in f_{\delta_1, \cdots, \delta_{t_m}, 0, 0, \frac{1}{p}, \frac{1}{p}, 0, \frac{1}{p}}$$

Thus

(18)
$$\rho(z,f^m) \leq |f_{\delta_1,\cdots,\delta_{t_m}}| \cdot (x^3 \cdot \alpha^{2p} + yx^2\alpha^p + x^2\alpha^{p+1} + yx) .$$

Now, since for $p \ge 1$, $x^3 \alpha^{2p+1} < x^2 \alpha^{p+2}$, we have

$$lpha(x^3lpha^{2p}+yx^2lpha^p+x^2lpha^{p+1}+yx)<(y+xlpha^{p+1})(xlpha+y+lpha)$$
 .

Dividing both sides by $(y + x\alpha^{p+1})$ we obtain from (18) (since $1 - x\alpha^p < 1$) that

$$ar{k} \cdot
ho(z, f^m) < |f^m| + |g^m| + |f_{\delta_1, \cdots, \delta_{t_m}, 1}|$$

Taking now m sufficiently large and putting $z' = l(f^m)$ we see, by (8), that in this case again (10) holds.

We go over to the case

(bcbb) By (\overline{d}) there are two possibilities

$$z$$
 is a point of order r ,
 z is a point of order ∞ .

In the first case let m_1, m_2, \cdots be the sequence $\{m'\} = M'$. By $q_{m_i} = p$ we have $f^{m_i} = f_{\delta_1, \cdots, \delta_{t_{m_i}, 0, \frac{1}{p+1}}}$. If now for every sufficiently large i, $m_{i+1} - m_i = r + 1$ then for such i we have in view of (bcb)

$$egin{aligned} &
ho(z,f^{m_i+r}) = \sum\limits_{j=i+1}^\infty \left[\sum\limits_{h=0}^r |\,g^{m_j+h}\,|\,+\,\sum\limits_{h=0}^r |\,f^{m_j+h}\,|\,
ight] = \ &= x^{r+1}lpha^p \, rac{yigg(1+lpha^p\sum\limits_1^r x^jigg)+xlpha^{p+1}\sum\limits_0^r x^j}{1-x^{r+1}lpha^p} \,|\,f_{\delta_1,\cdots,\delta_{l_{m_i}}}| \end{aligned}$$

(see Fig. 5 where $\phi = |f_{\delta_1, \cdots, \delta_{t_{m_i}}}|$ and r = 3)

$$\cdots \xrightarrow{f^{a_{2}^{2p+1}}}_{f^{m_{i+1}}} y_{\alpha}^{a_{\alpha}p_{\alpha}} \xrightarrow{f^{a_{2}^{p+1}}}_{f^{m_{i+3}}} y_{\alpha}^{a_{\alpha}p_{\alpha}} \xrightarrow{g^{a_{\alpha}p+1}}_{f^{m_{i+2}}} y_{\alpha}^{a_{\alpha}p_{\alpha}} \xrightarrow{g^{a_{2}^{p+1}}}_{g^{m_{i+2}}} y_{\alpha}^{a_{\alpha}p+1} \xrightarrow{y^{a_{\alpha}p_{\alpha}}}_{f^{m_{i+1}}} \xrightarrow{y^{a_{\alpha}p_{\alpha}}}_{g^{m_{i+1}}} \xrightarrow{g^{m_{i+1}}}_{f^{m_{i}}} \xrightarrow{g^{m_{i+1}}}_{g^{m_{i+1}}} \xrightarrow{g^{m_{i+1}}}_{f^{m_{i}}} \xrightarrow{g^{m_{i+1}}}_{g^{m_{i+1}}} \xrightarrow{g^{m_{i+1}}}_{f^{m_{i}}} \xrightarrow{g^{m_{i+1}}}_{g^{m_{i+1}}} \xrightarrow{g^{m_{i+1}}}_{f^{m_{i}}} \xrightarrow{g^{m_{i+1}}}_{g^{m_{i+1}}} \xrightarrow{g^{m_{i+1}$$

Generally, there exist infinitely many integers i such that $m_{i+1} - m_i = r + 1$ and since $r = \overline{\lim} r_j$ we have for such integers i

$$ho(z,f^{m_i+r}) \leq x^{r+1}lpha^p rac{yig(1+lpha^p\sum\limits_1^r x^jig)+xlpha^{p+1}\sum\limits_0^r x^j}{1-x^{r+1}lpha^p} \left|f_{\delta_1,\cdots,\delta_{t_{m_i}}}
ight|.$$

On the other hand

$$\rho(l(f^{m_i+r}), r(f^{m_i})) = \alpha^p \Big(y \sum_{j=1}^r x^j + x \alpha \sum_{j=0}^r x^j \Big) \cdot |f_{\delta_1, \cdots, \delta_{t_{m_i}}}|$$

(see Fig. 5). Hence by $\{(1 - x\alpha^p)/(1 - x^{r+1}\alpha^p)\} < 1$, we have

$$\overline{k}
ho(z, f^{m_i+r}) <
ho(l(f^{m_i+r}), r(f^{m_i}))$$
.

Putting $z' = l(f^{m_i+r})$ we see, considering $y < x\alpha^p$ and (8) that (10) holds.

Let finally z be a point of order ∞ . We have $y = y(x + y + \alpha) = xy + y(y + \alpha)$ and hence by (9) $y < xy + x\alpha^{p}(y + \alpha)$, i.e. $y - xy = (1 - x)y < yx\alpha^{p} + x\alpha^{p+1}$. Thus for r sufficiently large also $(1 - x)y < yx\alpha^{p} + x\alpha^{p+1} - yx^{r+1}\alpha^{p} - x^{r+2}\alpha^{p+1}$ i.e.

(19)
$$y < yx\alpha^{p} \cdot \frac{1-x^{r}}{1-x} + x\alpha^{p+1} \frac{1-x^{r+1}}{1-x} = \alpha^{p} \Big(y \sum_{j=1}^{r} x^{j} + x\alpha \sum_{j=0}^{r} x^{j} \Big).$$

Since z is a point of order ∞ , there exist arbitrarily large integers r and m such that $m \in \{m'\}$, $m + r + 1 \in \{m'\}$ and $m + i \in \{m''\}$ for $1 \leq i \leq r$. Now taking *m* and *r* sufficiently large and noting that

$$\rho(l(f^{m+r}), r(f^m)) = \alpha^p \Big(y \sum_{j=1}^r x^j + x \alpha \sum_{j=0}^r x^j \Big) |f_{\delta_1, \cdots, \delta_{\ell_m}}|$$

we obtain by (19) that there exist arbitrarily large integers m and r such that

(20)
$$|g^m| < \rho(l(f^{m+r}), g^m)$$
.

We have also

$$egin{aligned} &
ho(l(f^{m+r}),\,r(f_{\delta_1,\cdots,\delta_{t_m},1})) \geq |f_{\delta_1,\cdots,\delta_{t_m},1}| + |g^m| + |f^m| = \ &= (lpha + y + xlpha^{p+1}) \, |f_{\delta_1,\cdots,\delta_{t_m}}| \;. \end{aligned}$$

Further by (13) we have, by analogy with (16), (where r should be replaced by r + 1) that

 $\rho(z, f^{m+r}) = \rho(z, l(f^{m+r})) \leq |f_{\boldsymbol{\delta}_1, \cdots, \boldsymbol{\delta}_{t_m}}| \left(x^{r+2} \boldsymbol{\cdot} \alpha^{2p} + y x^{r+1} \alpha^p \right)$

and therefore

$$ar{k}
ho(z,f^{m+r}) \leq
ho(l(f^{m+r}),\,r(f_{\delta_1,\cdots,\delta_{t_m},1}))$$
 .

Thus putting $z' = l(f^{m+r})$ we see by (8) and (20) that (10) holds in this case again. The proof is completed.

We are now able to prove the following:

THEOREM 2. Let $\bar{k}(x, y)$ be a function defined within the triangle 0 < x < 1, 0 < y < 1 - x by the formula:

$$ar{k}(x,y) = egin{cases} 0 & ext{for} \quad y \geq x \ rac{lpha(1-xlpha^p)}{y+xlpha^{p+1}} & ext{for} \quad xlpha^{p+1} \leq y < xlpha^p \end{cases}$$

where $\alpha = 1 - x - y$ and $p = 0, 1, 2, \cdots$

A set $S = S_{x,y} \in C$ is unavoidable if, and only if, the game-constant $k \leq \overline{k}(x, y)$.

Proof. Proof of necessity: If $y \ge x$, B can choose $t_0 = l(g)$ and wins for every game constant k.

In the case y < x, there exists an integer $p \ge 0$ such that $x\alpha^{p+1} \le y > x\alpha^{p}$. We assume that $k > \bar{k}(x, y)$ and prove that B can avoid S. Let $\{g^n\}_{n=0,1,\cdots}$ be a descending sequence of intervals defined as follows:

$$g^{0}=(1,\,\infty),\,g^{1}=g,\,g^{2}=g_{0,\,\underbrace{1\cdots1}{p}},\,g^{3}=g_{0,\,\underbrace{1\cdots1}{p},\,0,\,\underbrace{1\cdots1}{p}},\,\cdots$$

(i.e. g^{n+1} is obtained from g^n by adding one 0 and p 1's to the subscripts

of g^n). Let now $g^n \to z$. We then have $\bar{k}\rho(z, f^n) = |f^n|$, for $n = 0, 1, \cdots$ and therefore, by $k > \bar{k}$

(21)
$$k\rho(z, f^n) > |f^n|.$$

By $x\alpha^{p+1} \leq y$, we have

$$|g^n| \ge |f^n| \; .$$

Now B chooses $t_0 = z$. If A makes $s_1 \in g_k$ (for some k) or $s_1 = l(g_k)$, then B avoids S by choosing t_2, t_4, \cdots sufficiently small. Otherwise, $s_1 \in f^n$ for some n. B then moves to $s_2 = r(f^n)$ which by (21) satisfies (b). Evidently $t_2 < |f^n|$, and therefore from (22) and (a) follows $s_3 \in g^n$. Thus, choosing t_4, t_6, \cdots sufficiently small, B wins.

Proof of sufficiency. By Remark 1 it suffices to show that the set $S_{x,y}$ satisfies (p_2) . Now, since y < x and $\overline{k}y < \alpha$, (p'_2) is satisfied and by the lemma also (p''_2) is satisfied. Therefore (p_2) holds.

Theorem 2 solves the Banach problem for sets belonging to the Cantor class C. Putting p = 0 in the theorem we find, in particular, that the sets $S_{x,y}$ for $y \ge x$ are avoidable for each k > 0. On the other hand the sets $S_{x,y}$ with y < x are unavoidable for each $k \le \overline{k}(x, y)$. This can be formulated as follows:

REMARK 2. Sets $S_{x,y}$ for which y = x separate, in the Cantor class C, all sets which are avoidable for every k > 0 from the others.

Since further, for p = 0 there is

$$\bar{k}(x, y) = \frac{(1 - x - y)(1 - x)}{y + x(1 - x - y)} = \frac{1 - x - y}{x + y}$$

we can obtain $\overline{k}(x, y)$ arbitrarily large (it is sufficient to choose x and y < x sufficiently small). From Theorem 2 we thus obtain

REMARK 3. For every game-constant k > 0 there is a set $S_{x,y} \in C$ which is unavoidable.

Considering the symmetric sets, i.e. the sets $S_{x,y}$ for which y = 1 - 2x, then for x sufficiently close to $\frac{1}{2}$ (of course $x < \frac{1}{2}$) the condition $x\alpha^{p+1} \leq y < x\alpha^p$, i.e. the condition $x^{p+2} \leq 1 - 2x < x^{p+1}$ holds for sufficiently large p only (evidently p = p(x)). Hence $\overline{k} = \overline{k}(x, y) = \overline{k}(x, 1 - 2x) = [\{x(1 - x^{p+1})\}/(1 - 2x + x^{p+2})] \to \infty$ for $x \to \frac{1}{2}$. From Theorem 2 we thus obtain the following

REMARK 4. For each k > 0 there exists a symmetric unavoidable set.

Finally, since the only symmetric set for which y = x is the Cantor

discontinuum $S_{1/3,1/3}$, we obtain from Remark 2 the following

REMARK 5. The Cantor-discontinuum $S_{1/3,1/3}$ separates, in the class of symmetric sets, the sets which are avoidable for each k > 0 from the others. The graph of the function $\bar{k}(x, 1-2x)$ is given in Fig. 6. The

958

points of discontinuity of this curve lie on the curves $\bar{k} = (3x-1)/(2-4x)$ and $\bar{k} = 2x^2/(1-x-2x^2)$. The points M_p and M'_p , $(p = 0, 1, \cdots)$ are the points of discontinuity of $\bar{k} = \{x(1-x^{p+1})\}/(1-2x+x^{p+2})$ which lie on these curves respectively.

Note also that from the definition of $\overline{k}(x, y)$ it follows (see Fig. 2) that the lines $y = x\alpha^{p}$, $p = 0, 1, \cdots$ are lines of discontinuity of this function.

Finally, since for x = 1/2, y = 1/8 there is $x\alpha^2 \le y < x\alpha$ and thus $\bar{k}(1/2, 1/8) = 39/25$, we obtain

REMARK 6. The set $S_{1/2,1/8}$ constructed in [2] is unavoidable if and only if $k \leq 39/25$.

References

1. H. Hanani, A generalization of the Banach and Mazur game, Transactions of the A.M.S., **94** (1960), 86-102.

2. M. Reichbach, Ein Spiel von Banach und Mazur, Colloq. Math., 5 (1957), 16-23.