SOME CHARACTERIZATIONS OF A CLASS OF UNAVOIDABLE COMPACT SETS
 IN THE GAME OF BANACH
 AND MAZUR

h. Hanani* and M. Reichbach**

1. Introduction. The game of Banach and Mazur is understood here ${ }^{1}$ as follows:

Two players A and B choose alternately nonnegative numbers t_{n}, ($n=0,1,2, \cdots$) in the following manner: B chooses a number t_{0} such that $0 \leqq t_{0}<1$. After $t_{i}(i=0,1, \cdots, 2 n)$ have been chosen, A chooses $t_{2 n+1}$ such that

$$
\begin{equation*}
0<t_{2 n+1}<t_{2 n} \quad \text { (if } t_{0}=0, t_{1} \text { is arbitrary) } \tag{a}
\end{equation*}
$$

and subsequently B a number $t_{2 n+2}$ such that

$$
0<t_{2 n+2}<t_{2 n+1}, \quad(n=0,1,2, \cdots) .
$$

Given a set $S \subset[0,1], A$ will be said to win on S if $s=\sum_{n=0}^{\infty} t_{n} \in S$; otherwise B wins.

We shall deal in this paper with a generalization of this game, consisting in replacing (b^{\prime}) by

$$
\begin{equation*}
0<t_{2 n+2}<k \cdot t_{2 n+1}, \quad(n=0,1,2, \cdots) \tag{b}
\end{equation*}
$$

where $k>0$ will be referred to as the game constant. ${ }^{2}$
We say that the set S is unavoidable, or that B cannot avoid it, if there exists a sequence of functions $t_{1}\left(t_{0}\right), t_{3}\left(t_{0}, t_{1}, t_{2}\right), \cdots, t_{2 n+1}\left(t_{0}, t_{1}, \cdots, t_{2 n}\right), \cdots$, satisfying (a) and such that $s=\sum_{n=0}^{\infty} t_{n} \in S$ whenever (b) holds. If, on the other hand, there exists a sequence of functions $t_{0}, t_{2}\left(t_{0}, t_{1}\right), \cdots$, $t_{2 n}\left(t_{0}, t_{1}, \cdots t_{2 n-1}\right), \cdots$ satisfying (b) and such that $s=\sum_{n=0}^{\infty} t_{n} \notin S$, whenever (a) holds, then S is said to be avoidable.

The sets. In this paper we shall consider closed subsets of $[0,1]$ exclusively. Let S be an arbitrary closed set on the interval $f=[0,1]$

[^0]and suppose that 0 and 1 belong to S^{3}. The complement $[0,1] \sim S=$ $\bigcup_{n=1}^{\infty} g_{n}$ is a union of open and disjoint intervals g_{n}. Denote by g the greatest of them. (If several such intervals of the same length exist, g will denote the one lying to the right of all others). Then $f \sim g=$ $f_{0} \cup f_{1}$ is a union of two closed intervals f_{0} and f_{1}, where f_{0} denotes the left and f_{1} the right one. Suppose now the closed intervals $f_{\delta_{1}, \ldots \delta_{n}}$, $\delta_{1}=0,1$ are already defined and denote by $g_{\delta_{1}, \cdots, \delta_{n}}$ the greatest of the intervals g_{n} contained in $f_{\delta_{1}, \cdots, \delta_{n}}$ (if any). The set $f_{\delta_{1}, \cdots, \delta_{n}} \sim g_{\delta_{\delta}, \cdots, \delta_{n}}=$ $f_{\delta_{1}, \cdots, \delta_{n}, 0} \cup f_{\delta_{1}, \cdots, \delta_{n}, 1}$ is a union of two closed intervals, where $f_{\delta_{1} \cdots, \delta_{n}, 0}$ denotes the left and $f_{\delta_{1}, \cdots, \delta_{n}, 1}$ the right interval (Fig. 1)

Fig. 1
It is clear that $S=\bigcap_{n=0}^{\infty} \bigcup_{\delta_{i}=0,1} f_{\delta_{1}, \cdots, \delta_{n}} i=1,2, \cdots, n\left(\left(f_{\delta_{1}, \cdots, \delta_{n}}\right)_{n=0}\right.$ denotes the interval $f=[0,1]$).

The class C of sets satisfying ${ }^{4}$
(c) $\frac{|g|}{\left|f_{0}\right|}=\frac{\left|g_{\delta_{1}, \cdots, \delta_{n}}\right|}{\left|f_{\delta_{1}, \cdots, \delta_{n}, 0}\right|}=c_{1}>0$ and $\frac{|g|}{\left|f_{1}\right|}=\frac{\left|g_{\delta_{1}, \cdots, \delta_{n}}\right|}{\left|f_{\delta_{1}, \cdots, \delta_{n}, 1}\right|}=c_{2}>0$
where c_{1} and c_{2} are constants (independent of $\delta_{1}, \cdots, \delta_{n}$) is called the Cantor class.

Evidently, each set belonging to C is perfect and its Lebesguemeasure is 0 (it is consequently also nowhere dense). We shall denote $x=\left|f_{0}\right|, y=|g|$ and $\alpha=1-x-y=\left|f_{1}\right|$. We can establish a one-toone correspondence between the sets of C and the points of the triangle: $0<x<1,0<y<1-x$ (see Fig. 2). A set of C corresponding to (x, y) is denoted by $S_{x, y}$. The sets $S_{x, y}$ of C for which $\left|f_{0}\right|=\left|f_{1}\right|$, i.e. the sets for which $y=1-2 x$, are called symmetric sets. In particular, the Cantor discontinuum $S_{1 / 3,1 / 3}$ is a symmetric set.

Outline of results. S. Banach posed the problem of finding necessary and sufficient conditions which make a set S unavoidable.

In § 2 we find for every $k \geqq 1$ sufficient conditions for an arbitrary compact set S to be unavoidable for the constant k. These conditions are also necessary if the following additional condition (\bar{a}) is stipulated. (a) $t_{1} \leqq \varepsilon$, where $\varepsilon>0$ is a number chosen by B such that $\left(t_{0}, t_{0}+\varepsilon\right] \cup S \neq 0$.

The condition ($\overline{\mathrm{a}}$) implies a uniform structure (from the point of view of the game) of the set S; and under this restriction a solution of the problem of Banach in the case of compact sets is given.

[^1]

Fig. 2
In § 3 we give moreover a numerical solution of the problem of Banach for sets belonging to the Cantor class C. Namely, we define a function $\bar{k}(x, y)$:

$$
\bar{k}(x, y)= \begin{cases}0 & \text { for } \quad y \geqq x \\ \frac{\alpha\left(1-x \alpha^{p}\right)}{y+x \alpha^{p+1}} & \text { for } \quad x \alpha^{p+1} \leqq y<x \alpha^{p}, \quad(p=0,1,2, \cdots)\end{cases}
$$

($\alpha=1-x-y, 0<x<1,0<y<1-x$), such that the set $S_{x, y}$ is unavoidable if, and only if, the game-constant k satisfies $k \leqq \bar{k}(x, y)$. It can be easily seen that the lines $y=x \alpha^{p},(p=0,1, \cdots)$ are lines of discontinuity of this function and that a necessary and sufficient condition for a set $S_{x, y}$ of C to be avoidable for every $k>0$ is that the point
(x, y) be on or above the diagonal $y=x$. In this sense the line $y=x$ separates the avoidable sets for every k from the others, and especially the Cantor discontinuum $S_{1 / 3,1 / 3}$ has this property with regard to the symmetric sets. The results of this section also include a generalization of a result obtained in [2], where, in answer to a question by H. Steinhaus, an unavoidable perfect set of measure 0 with the game-constant $k=1$ was constructed. Since, as it turns out this is a set $S_{1 / 2,1 / 8}$ and $\bar{k}\left(\frac{1}{2}, \frac{1}{8}\right)=$ $39 / 25$, it is unavoidable if, and only if, $k \leqq 39 / 25$.

Notation. We denote by $\rho\left(h_{1}, h_{2}\right)$ the distance between the intervals h_{1} and h_{2}; by $l(h)$ and $r(h)$ the left and right endpoints of the interval h; we also put $s_{n}=\sum_{j=0}^{n} t_{j}$.

Furthermore introduce the following definition:
(d) Let z be any point of the set S and $\left\{g^{n}\right\}_{n=0,1} \ldots$ a sequence of open intervals defined as follows $g^{0}=(1, \infty)$ and g^{n+1} the greatest interval g_{k} lying between z and g^{n} (if several such intervals of the same length exist, g^{n+1} will denote the one lying to the right of all the others). The sequence $\left\{g^{n}\right\}$ and $\left\{f^{n}\right\}$ (where $f^{n}=\left[r\left(g^{n+1}\right), l\left(g^{n}\right)\right]$) may be finite e.g. if $z=l\left(g_{m}\right)$ for some m. The most interesting case is however when the sequence $\left\{g^{n}\right\}$ is infinite. It converges then to some point z^{\prime} of $S, z^{\prime} \geqq z$ and will be referred to as a descending sequence: $g^{n} \rightarrow z^{\prime}$.
2. Arbitrary compact sets. In this section we consider arbitrary compact sets S in the interval [0,1]. In addition to the assumptions (a) and (b) we also assume that (a) holds. For every game-constant $k \geqq 1$, we shall give necessary and sufficient conditions for the set S to be unavoidable. We shall namely prove, that the three properties $\left(p_{1}\right),\left(p_{2}\right)$ and $\left(p_{3}\right)$, defined below, are equivalent. By means of a small modification of the proof it can be shown that $\left(p_{2}\right)$ and $\left(p_{3}\right)$ are equivalent for every $k>0$ (not only $k \geqq 1$).

By g, \widetilde{g} (with or without subscripts (or superscripts)) we denote the open intervals g_{n} and the two intervals $(-\infty, 0)$ and $(1, \infty)$. We now choose a fixed $k \geqq 1$ and define for it the properties $\left(p_{1}\right),\left(p_{2}\right)$ and $\left(p_{3}\right)$. $\left(p_{1}\right)$ A compact set S is said to have the property $\left(p_{1}\right)$ if the following conditions (p_{1}^{\prime}) and ($\mathrm{p}_{1}^{\prime \prime}$) hold.
(p_{1}^{\prime}) If \tilde{f} is an interval lying between two intervals g^{\prime} and $g^{\prime \prime}$ at least one of which is other than $(-\infty, 0)$ and $(1, \infty)$ such that $r\left(g^{\prime}\right)=l(\tilde{f})$ and $r(\tilde{f})=l\left(g^{\prime \prime}\right)$ then either $k \cdot\left|g^{\prime}\right| \leqq|\widetilde{f}|$ or $\left|g^{\prime \prime}\right|<|\widetilde{f}|$ (Fig. 3)

Fig. 3
($\mathrm{p}_{1}^{\prime \prime}$) If $g^{n} \rightarrow z$, then there exist infinitely many integers n such that for every $m, m<n$ either $k \cdot \rho\left[z, r\left(g^{n}\right)\right] \leqq \rho\left(g^{n}, g^{m}\right)$ or $\left|g^{m}\right|<\rho\left(g^{n}, g^{m}\right)$.

Regarding sets having property (p_{1}) we note:
(1) If S satisfies (p_{1}) and \tilde{f} is a segment lying between the intervals g^{n} and g^{n-1} which belong to some descending sequence $\left\{g^{n}\right\}_{n=0,1, \cdots}$ then $\rho\left(g^{n}, \widetilde{g}\right)>|\widetilde{g}|$ holds for every interval \widetilde{g} contained in \widetilde{f}.

Indeed, let f^{\prime} be the interval defined by $f^{\prime}=\left[r\left(g^{n}\right), l(\widetilde{g})\right]$ (i.e. the interval lying between g^{n} and \widetilde{g}). If $k \cdot\left|g^{n}\right|>\left|f^{\prime}\right|$ then by (p_{1}^{\prime}) there is $|\widetilde{g}|<\left|f^{\prime}\right|=\rho\left(g^{n}, \widetilde{g}\right)$. If however $k \cdot\left|g^{n}\right| \leqq\left|f^{\prime}\right|$ then by the definition (d) of a descending sequence of intervals $|\widetilde{g}|<\left|g^{n}\right|$ and by the assumption $k \geqq 1$ we have $|\widetilde{g}|<\left|f^{\prime}\right|=\rho\left(g^{n}, \widetilde{g}\right)$.

We now introduce the following definition:
(h) A set S is said to have the property (h) in the interval $(z, z+\varepsilon)$ if for each interval \hat{g} such that $\hat{g} \cap(z, z+\varepsilon) \neq 0$ there is $\rho(z, \hat{g})>|\hat{g}|$.

We define the property
$\mathrm{p}\left({ }_{2}\right)$ A set S is said to have the property $\left(\mathrm{p}_{2}\right)$ if the following two conditions (p_{2}^{\prime}) and ($\mathrm{p}_{2}^{\prime \prime}$) are satisfied:
(p_{2}^{\prime}) The set S has the property (h) in each interval $(r(\widetilde{g}), r(\widetilde{g})+k \cdot|\widetilde{g}|)$.
($\mathrm{p}_{2}^{\prime \prime}$) For each $z \in S$ and $z \neq l(\widetilde{g})$ there exists a point $z^{\prime}>z$ arbitrarily close to z and such that S has the property (h) in the interval $\left(z^{\prime}, z^{\prime}+k \cdot \rho\left(z, z^{\prime}\right)\right)$.

Finally
$\left(p_{3}\right)$ A set S is said to have the property $\left(p_{3}\right)$ if it is unavoidable (for the game constant k).

We shall now prove that for compact sets S the properties $\left(p_{1}\right),\left(p_{2}\right)$ and $\left(p_{3}\right)$ are equivalent. This will be done by proving the implications $\left(p_{1}\right) \rightarrow\left(p_{2}\right) \rightarrow\left(p_{3}\right) \rightarrow\left(p_{1}\right)$.

$$
\begin{equation*}
\left(\mathrm{p}_{1}\right) \longrightarrow\left(\mathrm{p}_{2}\right) \tag{2}
\end{equation*}
$$

Indeed, let \hat{g} and \widetilde{g} be intervals such that $\hat{g} \cap(r(\widetilde{g}), r(\widetilde{g})+k|\widetilde{g}|) \neq 0$. Thus $\rho(\widetilde{g}, \hat{g})<k \cdot|\widetilde{g}| ;\left(p_{2}^{\prime}\right)$ holds by the condition (p_{1}^{\prime}) used for $g^{\prime}=\widetilde{g}$, $g^{\prime \prime}=\hat{g}$ and $\tilde{f}=[r(\widetilde{g}), l(\hat{g})]$. Thus $\left(\mathrm{p}_{1}\right) \rightarrow\left(\mathrm{p}_{2}^{\prime}\right)$. It remains to prove ($\mathrm{p}_{2}^{\prime \prime}$). Let $z \in S$ be a point such that $z \neq l(\widetilde{g})$. If S contains an interval with the left endpoint ${ }^{5}$ in z, then choosing z^{\prime} sufficiently close to z, ($p_{2}^{\prime \prime}$) is satisfied in a trivial way. We therefore may assume that there exists an infinite sequence $g^{n} \rightarrow z$. By ($\mathrm{p}_{1}^{\prime \prime}$) there are points $z^{\prime}=r\left(g^{n}\right)$ arbitrarily close to z such that for each interval g^{m} lying to the right of z^{\prime} there is either $k \rho\left(z, z^{\prime}\right) \leqq \rho\left(z^{\prime}, g^{m}\right)$ or $\left|g^{m}\right|<\rho\left(z^{\prime}, g^{m}\right)$. Let $m<n$ be the greatest integer such that $\left|g^{m}\right| \geqq \rho\left(z^{\prime}, g^{m}\right)$. Such a number exists, since for example there is always $\left|g^{0}\right| \geqq \rho\left(z^{\prime}, g^{0}\right)$. We have then by ($\left.p_{1}^{\prime \prime}\right): k \rho\left(z, z^{\prime}\right) \leqq$ $\rho\left(z^{\prime}, g^{m}\right)$ and for each t such that $m<t<n,\left|g^{t}\right|<\rho\left(z^{\prime}, g^{t}\right)$. By (1) we thus conclude, that S has the property (h) in the interval ($z^{\prime}, z^{\prime}+\rho\left(z^{\prime}, g^{m}\right)$) which contains $\left(z^{\prime}, z^{\prime}+k \rho\left(z, z^{\prime}\right)\right)$. Thus $\left(\mathrm{p}_{1}\right) \rightarrow\left(\mathrm{p}_{2}^{\prime \prime}\right)$, and (2) is proved.

We now prove that

[^2]\[

$$
\begin{equation*}
\left(\mathrm{p}_{2}\right) \longrightarrow\left(\mathrm{p}_{3}\right) \tag{3}
\end{equation*}
$$

\]

Indeed, let $0 \leqq t_{0}<1$ be an arbitrary number chosen by B. We then show that A can choose a number t_{1} satisfying (a) and ($\left.\overline{\mathrm{a}}\right)$ such that $s_{1} \in S$ and that(h) holds in $\left(s_{1}, s_{1}+k t_{1}\right)$: If $t_{0} \in \widetilde{g}$ or $t_{0}=l(\widetilde{g}) A$ can choose $s_{1}=r(\widetilde{g})$ and our condition is satisfied by (p_{2}^{\prime}). In the case $t_{0} \in S$ and $t_{0} \neq l(\widetilde{g})$, A chooses $s_{1}=z^{\prime}$ and ($p_{2}^{\prime \prime}$) applies. Similarly A may after each step $t_{2 n}$ of B (satisfying (b)), choose $t_{2 n+1}$, obtaining in particular $s_{2 n+1} \in S$. By the compactness of S we then have $s=\lim _{n \rightarrow \infty} s_{2 n+1} \in S$ and thus (p_{3}) holds.

Remark 1. Note that the assumption $k \geqq 1$ is not used in the proof of (3). Hence, by (3) the property (p_{2}) (for $k>0$ and not only for $k \geqq 1$) suffices for the unavoidability of the compact set S. It is easy to see, using (\bar{a}), that the condition (p_{2}) is also necessary for $k>0$.

Before proving the implication $\left(p_{3}\right) \rightarrow\left(p_{1}\right)$ we note that
(4) If for some n there is $s_{2 n-1} \notin S$ or $s_{2 n-1}=l(\widetilde{g})$ then B can avoid S, by choosing the numbers $t_{2 n}, t_{2 n+2}, \cdots$ sufficiently small.

We finally prove that

$$
\begin{equation*}
\left(\mathrm{p}_{3}\right) \longrightarrow\left(\mathrm{p}_{1}\right) . \tag{5}
\end{equation*}
$$

The proof is indirect. If (p_{1}^{\prime}) does not hold, then there exists an interval $\tilde{f}=\left[r\left(g^{\prime}\right), l\left(g^{\prime \prime}\right)\right]$. (Fig. 3) such that $k \cdot\left|g^{\prime}\right|>|\tilde{f}|$ and $\left|g^{\prime \prime}\right| \geqq|\tilde{f}|$. B can choose $t_{0}=l\left(g^{\prime}\right)$ and $\varepsilon=\left|g^{\prime}\right|$. Then by ($\left.\overline{\mathrm{a}}\right)$ and (4) A has to choose $s_{1}=r\left(g^{\prime}\right)$. Now B chooses $t_{2}=|\tilde{f}|<k\left|g^{\prime}\right|=k t_{1}$ and from $\left|g^{\prime \prime}\right| \geqq|\widetilde{f}|$ and (a) follows $s_{3} \in g^{\prime \prime}$. Hence by (4) B avoids S.

If, on the other hand, $\left(\mathrm{p}_{1}^{\prime \prime}\right)$ does not hold, then there exists a point z, a sequence $g^{n} \rightarrow z$ and an integer n_{0}, such that for every $n \geqq n_{0}$ there exists $m=m(n)<n$ with the property: $k \rho\left(z, r\left(g^{n}\right)\right)>\rho\left(g^{n}, g^{m}\right)$ and $\left|g^{m}\right| \geqq \rho\left(g^{n}, g^{m}\right) . \quad B$ chooses $t_{0}=z$ and $\varepsilon<\rho\left(z, g^{n_{0}}\right)$. By (4) it is sufficient to consider the case $r\left(g^{n+1}\right) \leqq s_{1}<l\left(g^{n}\right)$ (Fig. 4) for some $n \geqq n_{0}$. In this case, however, B can, choosing $t_{2}=\rho\left(s_{1}, g^{m}\right)$, satisfy (b) and by (a) there must be $s_{3} \in g^{m}$. Thus by (4) the set S is avoidable.

Fig. 4
From (2), (3) and (5) we obtain
Theorem 1. The properties $\left(p_{1}\right),\left(p_{2}\right)$ and $\left(p_{3}\right)$ are equivalent.
This theorem solves the Banach problem in the case of compact sets on the additional assumption ($\overline{\mathrm{a}}$).
3. Sets of the Cantor class. In this section we deal with sets $S_{x, y}$ of the Cantor-class C, only. We find for them a function $\bar{k}(x, y)$ defined
within the triangle $0<x<1 ; 0<y<1-x$, such that the set $S_{x, y}$ is unavoidable if, and only if, the game-constant k satisfies: $k \leqq \bar{k}(x, y)$.

We begin with a few remarks. Denoting, as in the introduction, $x=\left|f_{0}\right|, y=|g|$ and $\alpha=1-x-y=\left|f_{1}\right|$ we obtain by (c) (s. Fig. 1) (6) $\left|f_{\delta_{1}, \cdots, \delta_{n}}\right|=x^{\nu} \alpha^{\mu}$ and $\left|g_{\delta_{1}, \cdots, \delta_{n}}\right|=y x^{\nu} \alpha^{\mu}$ where $\mu=\sum_{i=1}^{n} \delta_{i}$ and $\nu=n-\mu$; it follows

$$
\begin{equation*}
\left|g_{\delta_{1}, \cdots, \delta_{n}}\right|>\left|g_{\delta_{1}, \cdots, \delta_{n}, \delta_{n+1}}\right|, \quad(n=0,1, \cdots) \tag{7}
\end{equation*}
$$

Hence, if $g^{n} \rightarrow z$ and for some $m, g^{m}=g_{\delta_{1} \cdots, \delta_{t_{m}}}$ then $g^{m+1}=g_{\delta_{1}, \cdots, \delta_{t_{m}}, 0,1 \cdots \underbrace{}_{q_{m}}}$ where $q_{m} \geqq 0$ (i.e. the interval g^{m+1} is obtained from g^{m} by adding one 0 , or one 0 and several 1's, to the subscripts $\delta_{1}, \cdots, \delta_{t_{m}}$ of $\left.g^{m}\right)$.

By (c) we also have
(8) If $y<x$, then for every interval g_{k} contained in $f_{\delta_{1}, \cdots, \delta_{n}}$ there is $\left|g_{k}\right|<\rho\left[l\left(f_{\delta_{1} \cdots \delta_{n}}^{\prime}\right), g_{k}\right]$.

We now introduce the following definition:
($\overline{\mathrm{d}) ~ L e t ~} g^{n} \rightarrow z$ be a descending sequence such that there exist two infinite sequences $\left\{m^{\prime}\right\}$ and $\left\{m^{\prime \prime}\right\}$-of integers with the property $\left|f^{m}\right| \leqq\left|g^{m}\right|$ for $m \in\left\{m^{\prime}\right\}$ and $\left|f^{m}\right|>\left|g^{m}\right|$ for $m \in\left\{m^{\prime \prime}\right\}$, and such that for sufficiently large integers $m, m \in\left\{m^{\prime}\right\}$ implies $m+1 \in\left\{m^{\prime \prime}\right\}$ and $m-1 \in\left\{m^{\prime \prime}\right\}$. Hence there exist an integer m_{0} and an infinite sequence $\left\{r_{j}\right\}$ of integers such that $m_{0} \in\left\{m^{\prime}\right\},\left(m_{0}+i\right) \in\left\{m^{\prime \prime}\right\},\left(1 \leqq i \leqq r_{1}\right),\left(m_{0}+r_{1}+1\right) \in\left\{m^{\prime}\right\}$, $\left(m_{0}+r_{1}+1+i\right) \in\left\{m^{\prime \prime}\right\},\left(1 \leqq i \leqq r_{2}\right),\left(m_{0}+r_{1}+r_{2}+2\right) \in\left\{m^{\prime}\right\}$, and so on. If $\overline{\lim } r_{j}=r$ is finite, then z is said to be a point of order r. If otherwise, $\varlimsup r_{j}=\infty$ then z is called a point of order ∞.

We prove now the following lemma.

Lemma. Let $g^{n} \rightarrow z$ and $y<x$. Denote by p the integer satisfying

$$
\begin{equation*}
x \cdot \alpha^{p+1} \leqq y<x \cdot \alpha^{p} \tag{9}
\end{equation*}
$$

and put

$$
\bar{k}=\bar{k}(x, y)=\frac{\alpha\left(1-x \alpha^{p}\right)}{y+x \alpha^{p+1}}
$$

then
(10) at any arbitrarily small distance from the point z there exists a point $z^{\prime}>z$ such that the inequality $\rho\left(z^{\prime}, g_{k}\right)>\left|g_{k}\right|$ holds for each interval g_{k} satisfying the condition

$$
\left.g_{k} \cap\left(z^{\prime}, z^{\prime}+\bar{k} \cdot \rho\left(z, z^{\prime}\right)\right) \neq 0, \quad \text { (i.e. }\left(p_{2}^{\prime \prime}\right) \text { holds }\right)
$$

Proof. By definition of the intervals g^{m} and f^{m},

$$
\begin{align*}
& \text { if } \quad g^{m}=g_{\delta_{1}, \cdots, \delta_{t_{m}}} \text { then } f^{m}=f_{\delta_{1}, \cdots, \delta_{t_{m}}, 0,1 \cdots 1} \underbrace{}_{q_{m}+1}, q_{m} \geqq 0 \tag{11}\\
& \text { and } \quad g^{m+1}=g_{\delta_{1}, \cdots, \delta_{t_{m}}, 0,1 \cdots 1}^{q_{m}}
\end{align*}
$$

From (7) follows that $|g_{\delta_{1}, \cdots, \delta_{t_{m}}, 0, \underbrace{0,1}_{q_{m}-1}}|>\left|g^{m+1}\right|$ for $q_{m}>0$ and for $q_{m}=0$ holds $|\widetilde{g}|>\left|g^{m+1}\right|$ where \widetilde{g} is the interval satisfying $r(\widetilde{g})=l\left(f_{\delta_{1}, \cdots, \delta_{t_{m}}}\right)$. In any case we have

$$
\begin{equation*}
z \in f_{\delta_{1}, \cdots, \delta_{t_{m}}, 0,1 \cdots,}{\underset{q}{q_{m}}}^{l} \tag{12}
\end{equation*}
$$

The following cases will be considered:
(a) For infinitely may $m, q_{m}>p$.
(b) For every sufficiently large $m, q_{m} \leqq p$
(ba) For every sufficiently large $m, q_{m}=p$
(bb) For every sufficiently large $m, q_{m}<p$
(bc) There are two infinite sequences M^{\prime} and $M^{\prime \prime}$ of integers such that for $m \in M^{\prime}, q_{m}=p$, and for $m \in M^{\prime \prime}, q_{m}<p$.
By (11), (6) and (9) follows that

$$
\begin{align*}
& q_{m}=p \text { is equivalent to }\left|f^{m}\right| \leqq\left|g^{m}\right| \tag{13}\\
& q_{m}<p \text { is equivalent to }\left|f^{m}\right|>\left|g^{m}\right| . \tag{14}\\
& \text { (bca) for infinitely many } m \text { holds } \\
& m \in M^{\prime \prime} \text { and } q_{m} \geqq 1 \tag{15}
\end{align*}
$$

(bcb) for every sufficiently large $m \in M^{\prime \prime}, q_{m}=0$
(bcba) For infinitely many m,

$$
m+1 \in M^{\prime} \quad \text { and } \quad m+2 \in M^{\prime}
$$

(bcbb) For every sufficiently large m, from

$$
m+1 \in M^{\prime} \text { follows } m+2 \in M^{\prime \prime}
$$

We shall now prove the lemma for each of the above cases separately:

$$
=\frac{\alpha\left(1-x \alpha^{p}\right)}{y+x \cdot \alpha^{p+1}}\left|f_{\delta_{1}, \cdots, \delta_{t_{m}}}\right| \cdot\left(x \alpha^{q_{m}}+y\right) .
$$

Thus for m satisfying $q_{m}>p$,

$$
\bar{k} \cdot \rho\left(z, f_{\delta_{1}, \cdots, \delta_{t_{2}}, 1}\right)<\alpha\left|f_{\delta_{1} \cdots, \delta_{t_{m}}}\right|=\left|f_{\delta_{1}, \cdots, \delta_{t_{m_{1}}}}\right|
$$

If moreover m is sufficiently large then the distance $\rho\left(z, f_{\delta_{1}, \cdots, \delta_{t_{m}, 1}}\right)$ is arbitrarily small and thus choosing $z^{\prime}=l\left(f_{\delta_{1}, \cdots, \delta_{t_{m}}, 1}\right)$ we conclude by (8) that (10) holds.
(ba) By (13) and (11) we have for m sufficiently large

$$
f^{m}=f_{\delta_{1}, \cdots, \delta_{t_{m}}, 0, \underbrace{\cdots 1}_{p+1}}, g^{m+1}=g_{\delta_{1}, \cdots, \delta_{t_{m}}, 0,1 \cdots 1} \underbrace{}_{p}
$$

and $g^{m+\mu+1}(\mu \geqq 0)$ is obtained from $g^{m+\mu}$ by adding one 0 and p 's to the subscripts of $g^{m+\mu}$. Hence

$$
\begin{aligned}
& \rho\left(z, f_{\delta_{1}, \cdots, \delta_{t_{m}, 1}}\right)=\left|g_{\delta_{1}, \cdots, \delta_{t_{m}}}\right|+\left|f_{\delta_{1}, \cdots \delta_{t_{m^{\prime}}, 0,}^{1 \cdots \cdots 1}}\right|+|g_{\delta_{1}, \cdots, \delta_{t_{m}, 0,1}, \underbrace{}_{p} \cdots 1}|+ \\
& \quad+\left|f_{\delta_{1}, \cdots, \delta_{t_{m^{0}}, 0,1 \cdots 1,0,1 \cdots, 1} \mid+\cdots=}^{p+1}\right|+\cdots= \\
& = \\
& \left|f_{\delta, \cdots, \delta_{t_{m}}}\right|\left(y+x \alpha^{p+1}+y x \alpha^{p}+x^{2} \alpha^{2 p+1}+\cdots\right)=\left|f_{\delta_{1}, \cdots, \delta_{t_{m}}}\right| \cdot \frac{y+x \alpha^{p+1}}{1-x \alpha^{p}} .
\end{aligned}
$$

Therefore $\bar{k} \cdot \rho\left(z, f_{\delta_{1}, \cdots, \delta_{t_{m}}{ }^{1}}\right)=\alpha\left|f_{\delta_{1}, \cdots, \delta_{t_{m}}}\right|=\left|f_{\delta_{1}, \cdots, \delta_{t_{m^{1}}}}\right|$. Thus taking m sufficiently large (i.e. $f_{\delta_{1}, \cdots, \delta_{t_{m}}{ }^{1}}$ sufficiently near to z) and putting $z^{\prime}=l\left(f_{\delta_{1}, \cdots, \delta_{t_{m^{\prime}}}}\right)$ we see, by (8), that (10) holds.
(bb) By (14) there exists a number μ_{0}, such that for $m \geqq \mu_{0},\left|f^{m}\right|>\left|g^{m}\right|$. Now take $m \geqq \mu_{0}$ such that $\bar{k} \rho\left(z, l\left(f^{m}\right)\right) \leqq\left|f^{\mu_{0}}\right|$. Thus putting $z^{\prime}=l\left(f^{m}\right)$ and taking m sufficiently large we obtain that (10) holds for every interval $g_{k}=g^{n}$ where $m \geqq n \geqq \mu_{0}$. Now for other intervals g_{k} (i.e. for $g_{k} \subset f^{n}$ ($m \geqq n \geqq \mu_{0}$)) (10) evidently holds by (8). Hence (10) holds in general. (bca) Let m satisfy (15) and let r be the smallest integer such that $m+r \in M^{\prime}$ (evidently $r \geqq 1$). Then, by (11) it follows that f^{m+i}, ($1 \leqq i \leqq r$) are of the form
where $0 \leqq q_{m+i}<p$ for $1 \leqq i<r$ and $q_{m+r}=p$, and the g^{m+j} are of the form $g^{m+j}=g_{\delta_{1}, \cdots, \delta_{t_{m}}, 0,}^{\underbrace{}_{m}} \underbrace{1,0,1 \cdots 1,0, \cdots, 0,}_{q_{m}} \underbrace{1 \cdots 1}_{q_{m+1}}$ for $1 \leqq j \leqq r$. By analogy with (12) we have

Therefore by (6)

$$
\begin{align*}
\rho \stackrel{\text { def. }}{=} \rho\left(z, f^{m+r-1}\right) & \leqq\left|f_{\delta_{1}, \cdots, \delta_{t_{m}}}\right| \cdot\left(x^{r+1} \alpha^{p+{ }_{i}=0}{ }_{i}^{r-1} q_{m+i}\right. \tag{16}\\
& <\left|f_{\delta_{1}, \cdots, \delta_{t_{m}}}\right|\left(x^{2} \cdot \alpha^{p+q_{m}}+y x \alpha^{r} \cdot \alpha_{i=0}^{r-1}{ }_{i}^{q_{m}}\right)
\end{align*}
$$

Now evidently

$$
\begin{align*}
\left|f_{\delta_{1}, \cdots, \delta_{t_{m}, 1}}\right|+ & \sum_{i=0}^{r-1}\left(\left|g^{m+i}\right|+\left|f^{m+i}\right|\right) \geqq\left|f_{\delta_{1}, \cdots, \delta_{t_{m}, 1}}\right|+\left|g^{m}\right|+\left|f^{m}\right| \tag{17}\\
& =\left|f_{\delta_{1}, \cdots \delta_{t_{m}}}\right|\left(\alpha+y+x \alpha^{q_{m}+1}\right)
\end{align*}
$$

By (15)

$$
\alpha\left(1-x \alpha^{p}\right)\left(x^{2} \cdot \alpha^{p+q_{m}}+y x \alpha^{q_{m}}\right)<\left(\alpha+y+x \alpha^{q_{m}+1}\right)\left(x \alpha^{p+1}+y\right)
$$

holds. Dividing both sides by $y+x \alpha^{p+1}$ we obtain

$$
\bar{k}\left(x^{2} \alpha^{p+q_{m}}+y x \alpha^{q_{m}}\right)<\alpha+y+x \alpha^{q_{m}+1}
$$

and therefore by (16) and (17)

$$
\bar{k} \rho \leqq\left|f_{\delta_{1}, \cdots \delta_{t_{m^{\prime}}}}\right|+\sum_{i=0}^{r-1}\left(\left|g^{m+i}\right|+\left|f^{m+i}\right|\right) .
$$

Thus, putting $z^{\prime}=l\left(f^{m+r-1}\right)$ we see, by $\left|f^{m+i}\right|>\left|g^{m+i}\right|$ for $0 \leqq i<r$ and (8), that (10) holds.

In the case (bcb) we have for every sufficiently large $m \in M^{\prime \prime}$

$$
\left|g^{m}\right|=\left|g_{\delta_{1}, \cdots, \delta_{t_{m}}}\right|<\left|f_{\delta_{1}, \cdots, \delta_{t_{m}}, 0,1}\right|=\left|f^{m}\right| .
$$

Now turn to the case
(bcba) By (11) and (13) we have

$$
\begin{aligned}
& g^{m+1}=g_{\delta_{1}, \cdots, \delta_{t_{m}}, 0}, f^{m+1}=f_{\delta_{1}, \cdots, \delta_{t_{m}}, 0,0,1 \cdots \underbrace{}_{p+1}}, \\
& g^{m+2}=g_{\delta_{1}, \cdots, \delta_{t_{m}}, 0,0, \underbrace{1 \cdots 1}_{p}},
\end{aligned}
$$

and

$$
f^{m+2}=f_{\delta_{1}, \cdots, \delta_{t^{m}}, 0,0} \underbrace{}_{p} \cdots, \underbrace{1,0 .}_{p+1}
$$

Therefore, as in (12)

$$
z \in f_{\delta_{1}, \cdots, \delta_{t_{m}}, 0,0,}^{\underbrace{1 \cdots 1,0,1 \cdots 1}_{p}} \underbrace{}_{p} .
$$

Thus

$$
\begin{equation*}
\rho\left(z, f^{m}\right) \leqq\left|f_{\delta_{1}, \cdots, \delta_{t_{m}}}\right| \cdot\left(x^{3} \cdot \alpha^{2 p}+y x^{2} \alpha^{p}+x^{2} \alpha^{p+1}+y x\right) \tag{18}
\end{equation*}
$$

Now, since for $p \geqq 1, x^{3} \alpha^{2 p+1}<x^{2} \alpha^{p+2}$, we have

$$
\alpha\left(x^{3} \alpha^{2 p}+y x^{2} \alpha^{p}+x^{2} \alpha^{p+1}+y x\right)<\left(y+x \alpha^{p+1}\right)(x \alpha+y+\alpha) .
$$

Dividing both sides by ($y+x \alpha^{p+1}$) we obtain from (18) (since $1-x \alpha^{p}<1$) that

$$
\bar{k} \cdot \rho\left(z, f^{m}\right)<\left|f^{m}\right|+\left|g^{m}\right|+\left|f_{\delta_{1}, \cdots, \delta_{t_{m}}{ }^{1}}\right| .
$$

Taking now m sufficiently large and putting $z^{\prime}=l\left(f^{m}\right)$ we see, by (8), that in this case again (10) holds.

We go over to the case
(bcbb) By (\bar{d}) there are two possibilities
z is a point of order r, z is a point of order ∞.

In the first case let m_{1}, m_{2}, \cdots be the sequence $\left\{m^{\prime}\right\}=M^{\prime}$. By $q_{m_{i}}=p$ we have $f^{m_{i}}=f_{\delta_{1}, \cdots, \delta_{t_{i}},{ }^{0,1} \cdots 1}$. If now for every sufficiently large i, $m_{i+1}-m_{i}=r+1$ then for such i we have in view of (bcb)

$$
\begin{aligned}
\rho\left(z, f^{m_{i}+r}\right) & =\sum_{j=i+1}^{\infty}\left[\sum_{h=0}^{r}\left|g^{m_{j}+h}\right|+\sum_{h=0}^{r}\left|f^{m_{j}+h}\right|\right]= \\
& =x^{r+1} \alpha^{p} \frac{y\left(1+\alpha^{p} \sum_{1}^{r} x^{j}\right)+x \alpha^{p+1} \sum_{0}^{r} x^{j}}{1-x^{r+1} \alpha^{p}}\left|f_{\delta_{1} \cdots, \delta_{m_{i}}}\right|
\end{aligned}
$$

(see Fig. 5 where $\phi=\left|f_{\delta_{1}, \cdots, \delta_{t_{m_{i}}}}\right|$ and $r=3$)

Fig. 5
Generally, there exist infinitely many integers i such that $m_{i+1}-m_{i}=$ $r+1$ and since $r=\rceil$ lim r, we have for such integers i

$$
\rho\left(z, f^{m_{i}+r}\right) \leqq x^{r+1} \alpha^{p} \frac{y\left(1+\alpha^{p} \sum_{1}^{r} x^{j}\right)+x \alpha^{p+1} \sum_{0}^{r} x^{j}}{1-x^{r+1} \alpha^{p}}\left|f_{\delta_{1}, \cdots, \delta_{t_{m_{i}}}}\right|
$$

On the other hand

$$
\rho\left(l\left(f^{m_{i}+r}\right), r\left(f^{m_{i}}\right)\right)=\alpha^{p}\left(y \sum_{j=1}^{r} x^{j}+x \alpha \sum_{j=0}^{r} x^{j}\right) \cdot\left|f_{\delta_{1}, \cdots, \delta_{t_{m_{i}}}}\right|
$$

(see Fig. 5). Hence by $\left\{\left(1-x \alpha^{p}\right) /\left(1-x^{r+1} \alpha^{p}\right)\right\}<1$, we have

$$
\bar{k} \rho\left(z, f^{m_{i}+r}\right)<\rho\left(l\left(f^{m_{i}+r}\right), r\left(f^{m_{i}}\right)\right) .
$$

Putting $z^{\prime}=l\left(f^{m_{i}+r}\right)$ we see, considering $y<x \alpha^{p}$ and (8) that (10) holds.
Let finally z be a point of order ∞. We have $y=y(x+y+\alpha)=$ $x y+y(y+\alpha)$ and hence by (9) $y<x y+x \alpha^{p}(y+\alpha)$, i.e. $y-x y=$ $(1-x) y<y x \alpha^{p}+x \alpha^{p+1}$. Thus for r sufficiently large also $(1-x) y<$ $y x \alpha^{p}+x \alpha^{p+1}-y x^{r+1} \alpha^{p}-x^{r+2} \alpha^{p+1}$ i.e.

$$
\begin{equation*}
y<y x \alpha^{p} \cdot \frac{1-x^{r}}{1-x}+x \alpha^{p+1} \frac{1-x^{r+1}}{1-x}=\alpha^{p}\left(y \sum_{j=1}^{r} x^{j}+x \alpha \sum_{j=0}^{r} x^{j}\right) \tag{19}
\end{equation*}
$$

Since z is a point of order ∞, there exist arbitrarily large integers r and m such that $m \in\left\{m^{\prime}\right\}, m+r+1 \in\left\{m^{\prime}\right\}$ and $m+i \in\left\{m^{\prime \prime}\right\}$ for
$1 \leqq i \leqq r$. Now taking m and r sufficiently large and noting that

$$
\rho\left(l\left(f^{m+r}\right), r\left(f^{m}\right)\right)=\alpha^{p}\left(y \sum_{j=1}^{r} x^{j}+x \alpha \sum_{j=0}^{r} x^{j}\right)\left|f_{\delta_{1}, \cdots, \delta t_{m}}\right|
$$

we obtain by (19) that there exist arbitrarily large integers m and r such that

$$
\begin{equation*}
\left|g^{m}\right|<\rho\left(l\left(f^{m+r}\right), g^{m}\right) \tag{20}
\end{equation*}
$$

We have also

$$
\begin{aligned}
\rho\left(l\left(f^{m+r}\right), r\left(f_{\delta_{1}, \cdots, \delta_{t_{m^{1}}}}\right)\right) & \geqq\left|f_{\delta_{1}, \cdots, \delta_{t_{m}, 1}}\right|+\left|g^{m}\right|+\left|f^{m}\right|= \\
& =\left(\alpha+y+x \alpha^{p+1}\right)\left|f_{\delta_{1}, \cdots, \delta_{t_{m}}}\right|
\end{aligned}
$$

Further by (13) we have, by analogy with (16), (where r should be replaced by $r+1$) that

$$
\rho\left(z, f^{m+r}\right)=\rho\left(z, l\left(f^{m+r}\right)\right) \leqq\left|f_{\delta_{1}, \cdots, \delta_{t_{m}}}\right|\left(x^{r+2} \cdot \alpha^{2 p}+y x^{r+1} \alpha^{p}\right)
$$

and therefore

$$
\bar{k} \rho\left(z, f^{m+r}\right) \leqq \rho\left(l\left(f^{m+r}\right), r\left(f_{\delta_{1}, \cdots, \delta_{t_{m}}, 1}\right)\right) .
$$

Thus putting $z^{\prime}=l\left(f^{m+r}\right)$ we see by (8) and (20) that (10) holds in this case again. The proof is completed.

We are now able to prove the following:
Theorem 2. Let $\bar{k}(x, y)$ be a function defined within the triangle $0<x<1,0<y<1-x$ by the formula:

$$
\bar{k}(x, y)= \begin{cases}0 & \text { for } \quad y \geqq x \\ \frac{\alpha\left(1-x \alpha^{p}\right)}{y+x \alpha^{p+1}} & \text { for } \quad x \alpha^{p+1} \leqq y<x \alpha^{p}\end{cases}
$$

where $\alpha=1-x-y$ and $p=0,1,2, \cdots$
A set $S=S_{x, y} \in C$ is unavoidable if, and only if, the game-constant $k \leqq \bar{k}(x, y)$.

Proof. Proof of necessity: If $y \geqq x, B$ can choose $t_{0}=l(g)$ and wins for every game constant k.

In the case $y<x$, there exists an integer $p \geqq 0$ such that $x \alpha^{p+1} \leqq y>x \alpha^{p}$. We assume that $k>\bar{k}(x, y)$ and prove that B can avoid S. Let $\left\{g^{n}\right\}_{n=0.1, \cdots}$ be a descending sequence of intervals defined as follows:

$$
g^{0}=(1, \infty), g^{1}=g, g^{2}=g_{0,1 \cdots 1}, g^{3}=g_{0,} \underbrace{1 \cdots 1,0,}_{p} \underbrace{1 \cdots 1}_{p}, \cdots
$$

(i.e. g^{n+1} is obtained from g^{n} by adding one 0 and $p 1$'s to the subscripts
of g^{n}). Let now $g^{n} \rightarrow z$. We then have $\bar{k} \rho\left(z, f^{n}\right)=\left|f^{n}\right|$, for $n=0,1, \ldots$ and therefore, by $k>\bar{k}$

$$
\begin{equation*}
k \rho\left(z, f^{n}\right)>\left|f^{n}\right| \tag{21}
\end{equation*}
$$

By $x \alpha^{p+1} \leqq y$, we have

$$
\begin{equation*}
\left|g^{n}\right| \geqq\left|f^{n}\right| \tag{22}
\end{equation*}
$$

Now B chooses $t_{0}=z$. If A makes $s_{1} \in g_{k}$ (for some k) or $s_{1}=l\left(g_{k}\right)$, then B avoids S by choosing t_{2}, t_{4}, \cdots sufficiently small. Otherwise, $s_{1} \in f^{n}$ for some n. B then moves to $s_{2}=r\left(f^{n}\right)$ which by (21) satisfies (b). Evidently $t_{2}<\left|f^{n}\right|$, and therefore from (22) and (a) follows $s_{3} \in g^{n}$. Thus, choosing t_{4}, t_{6}, \cdots sufficiently small, B wins.

Proof of sufficiency. By Remark 1 it suffices to show that the set $S_{x, y}$ satisfies $\left(\mathrm{p}_{2}\right)$. Now, since $y<x$ and $\bar{k} y<\alpha$, (p_{2}^{\prime}) is satisfied and by the lemma also ($p_{2}^{\prime \prime}$) is satisfied. Therefore (p_{2}) holds.

Theorem 2 solves the Banach problem for sets belonging to the Cantor class C. Putting $p=0$ in the theorem we find, in particular, that the sets $S_{x, y}$ for $y \geqq x$ are avoidable for each $k>0$. On the other hand the sets $S_{x, y}$ with $y<x$ are unavoidable for each $k \leqq \bar{k}(x, y)$. This can be formulated as follows:

Remark 2. Sets $S_{x, y}$ for which $y=x$ separate, in the Cantor class C, all sets which are avoidable for every $k>0$ from the others.

Since further, for $p=0$ there is

$$
\bar{k}(x, y)=\frac{(1-x-y)(1-x)}{y+x(1-x-y)}=\frac{1-x-y}{x+y}
$$

we can obtain $\bar{k}(x, y)$ arbitrarily large (it is sufficient to choose x and $y<x$ sufficiently small). From Theorem 2 we thus obtain

Remark 3. For every game-constant $k>0$ there is a set $S_{x, y} \in C$ which is unavoidable.

Considering the symmetric sets, i.e. the sets $S_{x, y}$ for which $y=$ $1-2 x$, then for x sufficiently close to $\frac{1}{2}$ (of course $x<\frac{1}{2}$) the condition $x \alpha^{p+1} \leqq y<x \alpha^{p}$, i.e. the condition $x^{p+2} \leqq 1-2 x<x^{p+1}$ holds for sufficiently large p only (evidently $p=p(x)$). Hence $\bar{k}=\bar{k}(x, y)=\bar{k}(x, 1-2 x)=$ $\left[\left\{x\left(1-x^{p+1}\right)\right\} /\left(1-2 x+x^{p+2}\right)\right] \rightarrow \infty$ for $x \rightarrow \frac{1}{2}$. From Theorem 2 we thus obtain the following

Remark 4. For each $k>0$ there exists a symmetric unavoidable set.

Finally, since the only symmetric set for which $y=x$ is the Cantor
discontinuum $S_{1 / 3,1 / 3}$, we obtain from Remark 2 the following

Remark 5. The Cantor-discontinuum $S_{1 / 3,1 / 3}$ separates, in the class of symmetric sets, the sets which are avoidable for each $k>0$ from the others. The graph of the function $\bar{k}(x, 1-2 x)$ is given in Fig. 6. The

Fig. 6
points of discontinuity of this curve lie on the curves $\bar{k}=(3 x-1) /(2-4 x)$ and $\bar{k}=2 x^{2} /\left(1-x-2 x^{2}\right)$. The points M_{p} and $M_{p}^{\prime},(p=0,1, \cdots)$ are the points of discontinuity of $\bar{k}=\left\{x\left(1-x^{p+1}\right)\right\} /\left(1-2 x+x^{p+2}\right)$ which lie on these curves respectively.

Note also that from the definition of $\bar{k}(x, y)$ it follows (see Fig. 2) that the lines $y=x \alpha^{p}, p=0,1, \cdots$ are lines of discontinuity of this function.

Finally, since for $x=1 / 2, y=1 / 8$ there is $x \alpha^{2} \leqq y<x \alpha$ and thus $\bar{k}(1 / 2,1 / 8)=39 / 25$, we obtain

Remark 6. The set $S_{1 / 2,1 / 8}$ constructed in [2] is unavoidable if and only if $k \leqq 39 / 25$.

References

1. H. Hanani, A generalization of the Banach and Mazur game, Transactions of the A.M.S., 94 (1960), 86-102.
2. M. Reichbach, Ein Spiel von Banach und Mazur, Colloq. Math., 5 (1957), 16-23.

[^0]: Received July 27, 1960.

 * Mathematics Research Center, U. S. Army, Madison, Wisconsin and Technion, Israel Institute of Technology, Haifa. Supported by U. S. Army under Contract No. DA 11-022-ORD-2059.
 ** Technion, Israel Institute of Technology, Haifa.
 ${ }^{1}$ Various variants of the game are described in the so-called "Scottish Book", s. Coll. Math., 1 (1947), p. 57.
 ${ }^{2}$ The case of the constant k replaced by a variable k_{n} is considered in [$\left.\mathbf{1}\right]$.

[^1]: ${ }^{3}$ This will be assumed throughout the paper.
 ${ }^{4}|g|$ denotes the length of the interval g.

[^2]: ${ }^{5} z$ may evidently be also an interior point of some interval contained in S.

