STRONGLY CONTINUOUS MARKOV PROCESSES

S. R. Foguel

Introduction. This paper is a continuation of [3]. We deal here with Markov processes with continuous parameter, while in [3] the discrete parameter case was studied. The notion of a "Markov Process" (here and in [3]) is different from the standard one: A stationary probability measure is assumed to exist, but the Chapman-Kolmogoroff Equation is replaced by a weaker condition. The exact definitions are given in § 1.

All problems are discussed from a Hilbert space point of view and convergence will mean, always, either strong of weak convergence.

1. Notation and background. We shall repeat here, for completeness, the notation of [3] and some of the results.

Let (Ω, Σ, μ) be a given measure space where $\mu(\Omega)=1$, and $\mu \geqq 0$. The measure will be called the probability measure. The space of real square integrable functions is denoted by L_{2}.

Let $X_{t}(\omega)$ be a family of measurable real functions where $0 \leqq t<\infty$ and $\omega \in \Omega$. This will be called the Markov process and we assume:

If A is a Borel set on the real line and $t_{1}<t_{2}<t_{3}$ then the conditional probability that $X_{t_{3}} \in A$ given $X_{t_{1}}$ and $X_{t_{2}}$ is equal to the conditional probability that $X_{t 3} \in A$ given $X_{t_{2}}$.

Also we assume that the process is stationary. Namely:

$$
\mu\left(X_{t_{1}+s} \in A_{1} \cap X_{t_{2}+s} \in A_{2}\right)=\mu\left(X_{t_{1}} \in A_{1} \cap X_{t_{2}} \in A_{2}\right)
$$

for all t_{1}, t_{2}, s positive real numbers and $A_{1} A_{2}$ Borel sets.
For any set $\sigma \subset \Omega, \chi_{\sigma}$ denotes the characteristic function of this set. Let B_{t} be the closed subspace of L_{2} generated by the functions $\chi_{x_{t} \epsilon_{A}}$. The self adjoint projection on B_{t} is denoted by E_{t}. Finally, let T_{t} be the transformation from B_{0} to B_{t} defined by

$$
T_{t} \chi_{x_{0} \in A}=\chi_{x_{t} \epsilon_{A}}
$$

where we used additivity to extend it to whole of B_{0}. In [3] the following equations are proved:
1.1

$$
\begin{array}{lr}
E_{t_{1}} E_{t_{2}} E_{t_{3}}=E_{t_{1}} E_{t_{3}} & \text { if } t_{1}<t_{2}<t_{3} . \\
\left\|T_{t} x\right\|=\|x\|, & \text { for } x \in B_{0} .
\end{array}
$$

Received August 3, 1960. This paper was supported by a contract from the National Science Foundation.
b.
$T_{t} B_{0}=B_{t}$.
c.

$$
\left(T_{t_{1}+s} x, T_{t_{2}+s} y\right)=\left(T_{t_{1}} x, T_{t_{2}} y\right), \quad \text { for } x \in B_{0} y \in B_{0}
$$

See Theorem 2.1 and Lemma 2.4.
Let P_{t} be the operator on B_{0} defined by $P_{t}=E_{0} T_{t}$.
Theorem 1.1. The operators P_{t} form a semi group of contractions on B_{0}. The adjoint semi group is given by $P_{t}^{*}=T_{t}^{-1} E_{t}$.

Proof. It is clear that $\left\|P_{t}\right\| \leqq 1$. Let x and y be vectors of B_{0} and choose $z \in B_{0}$ so that $T_{s} z=E_{s} y$. Thus $z=T_{s}^{-1} E_{s} y$. Then

$$
\begin{aligned}
\left(P_{s} P_{t} x, y\right) & =\left(E_{0} T_{s} E_{0} T_{t} x, y\right)=\left(T_{s} E_{0} T_{t} x, y\right) \\
& =\left(T_{s} E_{0} T_{t} x, E_{s} y\right)=\left(E_{0} T_{t} x, z\right)=\left(T_{t} x, z\right) .
\end{aligned}
$$

Where we used Equation 1.2c. On the other hand

$$
\begin{aligned}
\left(P_{s+t} x, y\right) & =\left(E_{0} T_{s+t} x, y\right)=\left(E_{0} E_{s} T_{s+t} x, y\right)=\left(E_{s} T_{s+t} x, y\right) \\
& =\left(T_{s+t} x, E_{s} y\right)=\left(T_{s+t} x, T_{s} z\right)=\left(T_{t} x, z\right)
\end{aligned}
$$

Here we used Equations 1.1 and 1.2c. Now

$$
\left(P_{s} x, y\right)=\left(T_{s} x, y\right)=\left(T_{s} x, E_{s} y\right)=(x, z)=\left(x, T_{s}^{-1} E_{s} y\right)
$$

The fact that P_{t} is a semi group is our version of the ChapmanKolmogoroff Equation.

In most of this paper it will be assumed that the semi group P_{t} is strongly continuous. We shall say, in this case that the Markov process is strongly continuous.

Theorem 2.1. The Markov process is strongly continuous if and only if

$$
\lim _{t \rightarrow 0} \mu\left(X_{0} \in A \cap X_{t} \in A\right)=\mu\left(X_{0} \in A\right)
$$

Proof. Note that

$$
\begin{gathered}
\mu\left(X_{0} \in A\right)=\left\|\chi_{x_{0} \in_{A}}\right\|^{2} \\
\mu\left(X_{0} \in A \cap X_{t} \in A\right)=\left(T_{t} \chi_{x_{0} \in A}, \chi_{x_{0} \in A}\right)=\left(P_{t} \chi_{X_{0} \in A}, \chi_{x_{0} \in_{A}}\right) .
\end{gathered}
$$

Thus

$$
\mu\left(X_{0} \in A\right)-\mu\left(X_{0} \in A \cap X_{t} \in A\right)=\left(\chi_{x_{0} \in A}-P_{t} \chi_{x_{0} \in A}, \chi_{x_{0} \in A}\right)
$$

and this converges to zero if P_{t} converges to the identity operator strongly. On the other hand

$$
\begin{aligned}
\left\|P_{t} \chi_{x_{0} \epsilon_{A}}-\chi_{x_{0} \epsilon_{A}}\right\|^{2} & =\left\|P_{t} \chi_{x_{0} \epsilon_{A}}\right\|^{2}+\left\|\chi_{x_{0} \in_{A}}\right\|^{2}-2\left(P_{t} \chi_{x_{0} \in_{A}}, \chi_{x_{0} \epsilon_{A}}\right) \\
& \leqq 2\left(\left\|\chi_{x_{0} \in_{A}}\right\|^{2}-\left(P_{t} \chi_{x_{0} \in A}, \chi_{\left.x_{0} \epsilon_{A}\right)}\right)\right. \\
& =2\left(\mu\left(X_{0} \in A\right)-\mu\left(X_{0} \in A \cap X_{t} \in A\right)\right) .
\end{aligned}
$$

Thus the condition of the Theorem implies that $P_{t} x$ converges to x for a set of functions, x, that span B_{0} and because $\left\|P_{t}\right\| \leqq 1$ this must hold for every x in B_{0}.
2. Limit of transition probabilities as $t \rightarrow \infty$. This section is an extension of § 3 of [3]. Throughout this section we assume:

CONDITION D. There exist a finite a measure \mathcal{P}, on the real line, and an $\varepsilon>0$ such that if A is a Borel set and $\mathcal{P}(A)<\varepsilon$ then

$$
E_{0} \chi_{x t \in A} \neq \chi_{x t \in A}
$$

This condition was given in 13] and is similar to Doeblin's condition as given in [1] page 192. Another form of the condition is: if $\varphi(A)<\varepsilon$ then

$$
\left\|T_{t} \chi_{x_{0} \in A}\right\|^{2}=\left\|\chi_{x_{0} \epsilon_{A}}\right\|^{2}>\left\|P_{t} \chi_{x_{0} \in_{A}}\right\|^{2}
$$

In this form it is seen immediately that t can be replaced by any larger number. Thus one can choose t to be of the form $n \delta$ for any fixed $\delta>0$. (n a positive integer). For a fixed $\delta>0 X_{n \delta}$ form a discreet Markov process for which a Doeblin condition holds. Let H_{δ} be the space of all functions in B_{0} such that

$$
x \in \bigcap_{n=0}^{\infty} B_{n \delta}, T_{k \delta} x \in \bigcap_{n=0}^{\infty} B_{n \delta} \quad k=1,2, \cdots
$$

In [3] Theorem 3.7 it was proved that if x is orthogonal to H_{δ} then $T_{k \delta} x$ tends weakly to zero as k tends to infinity (k integer).

Theorem 1.2. $x \in H_{\delta}$ if and only if $T_{t} x=x$ for some $t>0$. Thus H_{δ} is the same for all δ and will be denoted by H. The space H is generated by a finite number of disjoint characteristic functions and is invariant under T_{t} for all $t>0$.

Proof. It is enough to prove first statement for the rest follows from Theorem 3.8 and Corollary 2 of Theorem 3.11 of [3].

In Corollary 2 of Theorem 3.11 of [3] it was shown that if $x \in H_{\delta}$ then $T_{k \delta} x=x$ for some x. Thus it is enough to show that if $T_{t} x=x$ for some $t>0$, then $x \in H_{\delta}$. Now if $T_{t} x=x$ then

$$
\left(T_{t+a} x, T_{a} x\right)=\left(T_{t} x, x\right)=\|x\|^{2}=\left\|T_{a} x\right\|^{2}
$$

Thus

$$
T_{t+a} x=T_{a} x
$$

In particlar

$$
x=T_{\imath} x=T_{2 t} x=\cdots
$$

Thus

$$
x \in \bigcap_{k=0}^{\infty} B_{t k}
$$

But by Theorem 2.2 of [3]

$$
\bigcap_{k=0}^{\infty} B_{t k}=\bigcap_{n=0}^{\infty} B_{\delta n}
$$

Now

$$
T_{m \delta} x=T_{m \delta+t} x=T_{m \delta+2 t} x=\cdots
$$

or

$$
T_{m \delta} x \in \bigcap_{k=0}^{\infty} B_{m \delta+k t}=\bigcap_{n=m}^{\infty} B_{n \delta}
$$

Again by Theorem 2.2 of [3]. Thus it suffices to show that $T_{m \delta} x \in B_{0}$ for then $T_{m \delta} x \in \bigcap_{n=0}^{\infty} B_{n \delta}$ by the same Theorem. Now

$$
\begin{aligned}
\sup _{z \in B_{0},\|z\|=1}\left(T_{m \delta} x, z\right) & =\sup _{z^{1} \in B_{k t},\left\|\mid z^{1}\right\|=1}\left(T_{m \delta+k t} x, z^{1}\right) \\
& =\sin _{z^{1} \in B_{k t},\left\|z^{1}\right\|=1}\left(T_{m \delta} x, z^{1}\right)=\left\|T_{m \delta} x\right\|
\end{aligned}
$$

for

$$
T_{m \delta} x \in \bigcap_{n=m}^{\infty} B_{n \delta} \subset B_{k t} \quad \text { if } \quad k t>m \delta
$$

Thus

$$
T_{m \delta} x \in B_{0} \quad \text { and } \quad x \in H_{\delta} .
$$

Notice that on $H P_{t}=T_{t}$, and P_{t} is a unitary operator.
In the rest of the paper we shall assume that the process $\left\{X_{t}\right\}$, is strongly continuous.

Lemma 2.2. On the space $H T_{t}$ is the identity operator for all t.
Proof. Let χ be one of the atoms generating H. Thus χ is a characteristic function that is not the sum of two characteristic functions
in H. Let t be so small that $\left(T_{t} \chi, \chi\right) \neq 0$. Now $T_{t} \chi$ is also a characteristic function in H and $\left\|T_{t} \chi\right\|=\|\chi\|$. Thus $T_{t} \chi=\chi$ because χ is an atom. Also for every $n T_{n t} \chi=P_{n t} \chi=\left(P_{t}\right)^{n} \chi=\chi$, hence $T_{t} \chi=P_{t} \chi=\chi$ for all t.

Theorem 3.2. Let $x \in B_{0}$ and let y be the projection of x on H, then

$$
\text { weak } \operatorname{limit}_{t \rightarrow \infty} P_{t} x=\text { weak } \operatorname{limit}_{t \rightarrow \infty} T_{t} x=y
$$

Proof. By the previous lemma it suffices to show that if x is orthogonal to H then $T_{t} x$ tends weakly to zero. Let $z \in B_{0},\|z\|=1$ be a given vector and let $\varepsilon>0$. Choose δ_{0} so that $\left\|T_{\delta} x-x\right\| \leqq \varepsilon / 2$ if $\delta \leqq \delta_{0}$. By Theorem 3.7 of [3] if n is large enough then

$$
\left|\left(T_{n \delta_{0}} x, z\right)\right| \leqq \varepsilon / 2
$$

Thus

$$
\begin{aligned}
\left|\left(T_{t} x, z\right)\right| & =\left|\left(\left(T_{t}-T_{n \delta_{0}}\right) x, z\right)+\left(T_{n \delta_{0}} x, z\right)\right| \\
& \leqq \varepsilon / 2+\left\|\left(T_{t}-T_{n \delta_{0}}\right) x\right\|
\end{aligned}
$$

Now

$$
\begin{aligned}
\left\|\left(T_{t}-T_{n \delta_{0}}\right) x\right\|^{2} & =2\|x\|^{2}-2\left(T_{t} x, T_{n \delta_{0}} x\right) \\
& =2\|x\|^{2}-2\left(T_{t-n \delta_{0}} x\right)=\left\|T_{t-n \delta_{0}} x-x\right\|^{2}
\end{aligned}
$$

by Equation 1.2.c. If n is so chosen that

$$
t-n \delta_{0}<\delta_{0} \quad \text { then } \quad\left\|\left(T_{t}-T_{n \delta_{0}}\right) x\right\| \leqq \varepsilon / 2
$$

3. Differentiability. In this section we do not assume Condition D. The process $\left\{X_{t}\right\}$ is assumed to be strongly continuous. It is known that in this case the function $P_{t} x$ is differentiable at the origin for x in a dense subset of B_{0}. The derivative, Q, of P_{t} is an unbounded closed operator. Let $D(Q)$ be the domain of Q. The simplest case is when Q is bounded. A necessary and sufficient condition for this is that the semi group P_{t} is continuous in the uniform topology. (See 2 Theorem VIII. 2)

Theorem 1.3. The operator Q is everywhere defined if and only if the expression

$$
1-\frac{\mu\left(X_{0} \in A \cap X_{t} \in A\right)}{\mu\left(X_{0} \in A\right)}
$$

tends to zero uniformly, for all Borel sets A.

Proof. If $\left\|I-P_{t}\right\| \rightarrow 0$ then

$$
1-\frac{\mu\left(X_{0} \in A \cap X_{t} \in A\right)}{\mu\left(X_{0} \in A\right)}=\frac{\left(\chi_{x_{0} \in A}-P_{t} \chi_{x_{0} \in_{A}}, \chi_{X_{0} \in_{A}}\right)}{\left\|\chi_{X_{0} \in A}\right\|^{2}} \leqq\left\|I-P_{t}\right\|
$$

Thus the condition is necessary. Conversely let

$$
x=\sum a_{\imath} \chi_{i} \quad \text { where } \quad \sum a_{i}^{2}\left\|\chi_{\imath}\right\|^{2}=1 \quad \text { and } \quad \chi_{i}=\chi_{x_{0} \in A_{i}}, A_{i} \cap A_{j}=\phi .
$$

Then

$$
\begin{aligned}
& 1-\left(P_{t} x, x\right)=\sum_{i j} a_{\imath} a_{j}\left(\left(\chi_{i}, \chi_{j}\right)-\left(P_{t} \chi_{i}, \chi_{j}\right)\right) \\
& \quad \leqq\left(\sum_{i, j} a_{i}^{2}\left|\left(\chi_{i}, \chi_{j}\right)-\left(P_{t} \chi_{i}, \chi_{j}\right)\right|\right)^{1 / 2}\left(\sum_{i j} a_{j}^{2}\left|\left(\chi_{i}, \chi_{j}\right)-\left(P_{t} \chi_{i}, \chi_{j}\right)\right|\right)^{1 / 2} .
\end{aligned}
$$

By Schwarz's inequality. Let us consider each term separately.

$$
\sum_{i, j} a_{i}^{2}\left|\left(\chi_{i}, \chi_{j}\right)-\left(P_{t} \chi_{i}, \chi_{j}\right)\right|=\sum_{i} a_{i}^{2} \sum_{j}\left|\left(\chi_{i}, \chi_{j}\right)-\left(P_{t} \chi_{i}, \chi_{j}\right)\right|
$$

For a fixed i we have

$$
\begin{aligned}
\sum_{j} \mid & \left(\chi_{i}, \chi_{j}\right)-\left(P_{t} \chi_{i}, \chi_{j}\right) \mid=\sum_{j \neq i}\left(P_{t} \chi_{i}, \chi_{j}\right)+\left\|\chi_{i}\right\|^{2}-\left(P_{t} \chi_{i}, \chi_{i}\right) \\
& =\sum_{j}\left(P_{t} \chi_{i}, \chi_{j}\right)-\left(P_{t} \chi_{i}, \chi_{i}\right)+\left\|\chi_{i}\right\|^{2}-\left(P_{t} \chi_{i}, \chi_{i}\right) \\
& =\left(P_{t} \chi_{i}, 1\right)-\left(P_{t} \chi_{i}, \chi_{i}\right)+\left\|\chi_{i}\right\|^{2}-\left(P_{t} \chi_{i}, \chi_{i}\right)
\end{aligned}
$$

where 1 is the identity function. Now

$$
\left(P_{t} \chi_{i}, 1\right)=\left(T_{t} \chi_{i}, 1\right)=\left(T_{t} \chi_{i}, T_{t} 1\right)=\left(\chi_{i}, 1\right)=\left\|\chi_{i}\right\|^{2} .
$$

Thus the sum over j is equal to

$$
2\left\|\chi_{i}\right\|^{2}\left(1-\frac{\left(P_{t} \chi_{i}, \chi_{i}\right)}{\left\|\chi_{i}\right\|^{2}}\right)
$$

and

$$
\begin{gathered}
\sum_{\imath, j} a_{i}^{2}\left|\left(\chi_{i}, \chi_{j}\right)-\left(P_{t} \chi_{i}, \chi_{j}\right)\right| \leqq 2 \sup _{i}\left(1-\frac{\left(P_{t} \chi_{i}, \chi_{i}\right)}{\left\|\chi_{i}\right\|^{2}}\right) . \\
\sum a_{i}^{2}\left\|\chi_{i}\right\|^{2}=2 \sup \left(1-\frac{\left(P_{t} \chi_{i}, \chi_{i}\right)}{\left\|\chi_{i}\right\|^{2}}\right)
\end{gathered}
$$

For the second term we get

$$
\sum a_{j}^{2}\left|\left(\chi_{i}, \chi_{j}\right)-\left(P_{t} \chi_{i}, \chi_{j}\right)\right|=\sum_{j} a_{j}^{2} \sum_{i}\left|\left(\chi_{i}, \chi_{j}\right)-\left(P_{t} \chi_{i}, \chi_{j}\right)\right|
$$

and

$$
\begin{aligned}
\sum_{\imath} \mid & \left(\chi_{i}, \chi_{j}\right)-\left(P_{t} \chi_{i}, \chi_{j}\right) \mid=\left\|\chi_{j}\right\|^{2}-\left(P_{t} \chi_{j}, \chi_{j}\right)+\sum_{i \neq j}\left(P_{t} \chi_{i}, \chi_{j}\right) \\
& =\left\|\chi_{j}\right\|^{2}-\left(P_{t} \chi_{j}, \chi_{j}\right)+\sum_{i}\left(P_{t} \chi_{i}, \chi_{j}\right)-\left(P_{t} \chi_{j}, \chi_{j}\right) \\
& =\left\|\chi_{j}\right\|^{2}-\left(P_{t} \chi_{j}, \chi_{j}\right)+\left(P_{t} 1, \chi_{j}\right)-\left(P_{t} \chi_{j}, \chi_{j}\right) \\
& =2\left(\left\|\chi_{j}\right\|^{2}-\left(P_{t} \chi_{j}, \chi_{j}\right)\right)
\end{aligned}
$$

And the second term has the same bound. Thus

$$
1-\left(P_{t} x, x\right) \leqq 2 \sup \left(1-\frac{\left(P_{t} \chi_{i}, \chi_{i}\right)}{\left\|\chi_{i}\right\|^{2}}\right)
$$

Now

$$
\begin{aligned}
\left\|P_{t} x-x\right\|^{2} & =\left\|P_{t} x\right\|^{2}+\|x\|^{2}-2\left(P_{t} x, x\right) \\
& \leqq 2\left(\left(I-P_{t}\right) x, x\right) \leqq 4 \sup _{i}\left(1-\frac{\left(P_{t} \chi_{i}, \chi_{i}\right)}{\left\|\chi_{i}\right\|^{2}}\right)
\end{aligned}
$$

By assumption this tends to zero uniformly. Hence $\left\|P_{t} x-x\right\|$ tends to zero uniformly, for x in a dense subset of B_{0}, and hence everywhere because $\left\|P_{t}\right\| \leqq 1$.

Remarks. It is enough to assume the condition of the Theorem for a family of Borel sets, A, such that the functions χ_{A} generate B_{0}. It follows, from the fact that Q is bounded, that

$$
1-\frac{\mu\left(X_{0} \in A \cap X_{t} \in A\right)}{\mu\left(X_{0} \in A\right)} \leqq(\text { const }) t
$$

Theorem 1.3 is well known for processes with countable state space. A brief discussion of this case is given in [1] page 265.

The function $P_{t} x$ is differentiable for many x 's exen if Q is unbounded. In order to study this we will need:

Lemma 2.3. Let R_{t} be strongly continuous semi group of operators, defined on a reflexive space X. If $x \in X$ then $R_{t} x$ is differentiable if the expression $(1 / t)\left\|R_{t} x-x\right\|$ is bounded for all t.

This is included in Theorem 10.7.2 of [4]
Let $y \in L_{2}$ and Ω_{1} be a subset of Ω such that $\chi_{{\rho_{1}} \in_{B_{0}}}$. Then

$$
\left\|E_{0} y\right\|^{2}=\left\|\chi_{\Omega_{1}} \cdot E_{0} y\right\|^{2}+\left\|\chi_{\Omega_{2}} \cdot E_{0} y\right\|^{2}
$$

where $\Omega_{2}=\Omega-\Omega_{1}$. Now $\chi_{\eta_{1}} \cdot E_{0} y$ is the projection of y on the subspace generated by characteristic function, in B_{0}, of subsets of Ω_{1}. Thus

$$
\begin{aligned}
\left\|\chi_{\Omega_{1}} \cdot E_{0} y\right\|= & \sup \left\{\sum\left(y, \chi_{i}\right) \alpha_{i} \mid \chi_{i}=\chi_{x_{0} \in A_{i}} \in B_{0} \text { and } A_{i}\right. \text { are disjoint } \\
& \text { Borel sets, such that } \left.X_{0} \in A_{i} \subset \Omega_{1}, \text { and } \sum a_{i}^{2}\left\|\chi_{i}\right\|^{2}=1\right\} .
\end{aligned}
$$

But

$$
\left|\Sigma\left(y, \chi_{i}\right) a_{i}\right| \leqq \sum \frac{\left|\left(y, \chi_{i}\right)\right|}{\left\|\chi_{i}\right\|}\left|a_{i}\right|\left\|\chi_{i}\right\| \leqq\left(\sum \frac{\left(y, \chi_{i}\right)^{2}}{\left\|\chi_{i}\right\|^{2}}\right)^{1 / 2}
$$

Hence

$$
\begin{aligned}
&\left\|\chi_{\Omega_{1}} \cdot E_{0} y\right\|^{2}=\sup \left\{\left.\sum \frac{\left(y, \chi_{i}\right)^{2}}{\left\|\chi_{i}\right\|^{2}} \right\rvert\, \chi_{i}=\chi_{x_{0} \in A_{i}} \in B_{0}\right. \\
&\left.A_{i} \text { disjoint Borel sets and } X_{0} \in A_{i} \subset \Omega_{1}\right\}
\end{aligned}
$$

A similar expresion holds for $\left\|\chi_{\Omega_{2}} \cdot E_{0} y\right\|^{2}$.
Theorem 3.3. Let A be a Borel set. The function $P_{t} \chi_{x_{0} \epsilon_{A}}$ is differentiable at zero if and only if the two expressions below, are bounded:

1. $\frac{1}{t^{2}} \sup \left\{\left.\sum \frac{\mu\left(X_{t} \in A \cap X_{0} \in A_{i}\right)^{2}}{\mu\left(X_{0} \in A_{i}\right)} \right\rvert\, A_{i}\right.$ disjoint Borel sets and $\left.A_{i} \cap A=\phi\right\}$.
2. $\frac{1}{t^{2}} \sup \left\{\left.\sum \frac{\left(\mu\left(X_{t} \in A \cap X_{0} \in A_{i}\right)-\mu\left(X_{0} \in A_{i}\right)\right)^{2}}{\mu\left(X_{0} \in A_{i}\right)} \right\rvert\, A_{i}\right.$ disjoint

$$
\text { Borel sets and } \left.A_{i} \subset A\right\}
$$

Proof. By Lemma 2.3 and the above discussion it is enough to show that

$$
\frac{1}{t^{2}} \sup \left\{\left.\sum \frac{\left(P_{t} \chi_{x_{0} \epsilon_{A}}-\chi_{x_{0} \in A}, \chi_{\left.x_{0} \epsilon_{A i}\right)^{2}}\right.}{\left\|\chi_{x_{0} \epsilon_{A i}}\right\|^{2}} \right\rvert\, A_{i} \text { disjoint and } A_{i} \cap A=\phi\right\}
$$

and

$$
\frac{1}{t^{2}} \sup \left\{\left.\sum \frac{\left(P_{t} \chi_{x_{0} \epsilon_{A}}-\chi_{x_{0} \epsilon_{A}}, \chi_{x_{0} \epsilon_{A}}\right)}{\left\|\chi_{x_{0} \epsilon_{A_{i}}}\right\|^{2}} \right\rvert\, A_{i} \text { disjoint and } A_{i} \subset A\right\}
$$

are both bounded. But these expressions are equal to 1 and 2 respectively.

Remark. If A is an atom for B_{0} then the second expression is

$$
\begin{aligned}
& \frac{1}{t^{2}}\left(\frac{\chi\left(X_{t} \in A \cap X_{0} \in A\right)-\mu\left(X_{0} \in A\right)}{\mu\left(X_{0} \in A\right)}\right)^{2} \mu\left(X_{0} \in A\right) \\
&=\left(\frac{1}{t}\left(1-\frac{\mu\left(X_{t} \in A \cap X_{0} \in A\right)}{\mu\left(X_{0} \in A\right)}\right)\right)^{2} \mu\left(X_{0} \in A\right) .
\end{aligned}
$$

A more precise information is available in the following special case.

Theorem 4.3. Let $x \in B_{0}$. Then $x \in D(Q)$ and $(Q x, x)=0$ if and only if $\left(1 / t^{2}\right)\left(\|x\|^{2}-\left(P_{t} x, x\right)\right)$ is bounded. In this case $Q^{*} x$ exists and is equal to $-Q x$.

Proof. If $y \in B_{0}$ then

$$
\begin{aligned}
\left\|y-P_{t} y\right\|^{2} & =\|y\|^{2}+\left\|P_{t} y\right\|^{2}-2\left(P_{t} y, y\right) \\
& \leqq 2\left(\|y\|^{2}-\left(T_{t} y, y\right)\right)=\left\|y-T_{t} y\right\|^{2}
\end{aligned}
$$

thus
a.

$$
\frac{\left\|T_{t} y-y\right\|}{\sqrt{t}}=\sqrt{2 \frac{\left(y-P_{t} y, y\right)}{t}} \geqq \frac{\left\|P_{t} y-y\right\|}{\sqrt{t}} .
$$

Also if y and z are any two vectors in B_{0} then
b. $\quad\left(\frac{1}{t}\left(P_{t}-1\right) z, y\right)=\frac{1}{t}\left(T_{t} z-z, y\right)=\frac{1}{t}\left(T_{t} z, y-T_{t} y\right)$

$$
=\frac{1}{t}\left(T_{t} z-z, y-T_{t} y\right)+\frac{1}{t}\left(z, y-P_{t} y\right)
$$

where we used Equation 1.2.c for the third equality.
Let x be such that $\left(1 / t^{2}\right)\left(\|x\|^{2}-\left(P_{t} x, x\right)\right)$ is bounded. Then from (a) we get

$$
\left\|\frac{1}{t^{2}}\left(P_{t} x-x\right)\right\|^{2} \leqq 2 \frac{\left(x-P_{t} x, x\right)}{t^{2}}
$$

and is bounded by assumption. Thus we know from Lemma 2.3 that $x \in D(Q)$. Moreover

$$
(Q x, x)=-\lim t \frac{\left(x-P_{t}, x\right)}{t^{2}}=0
$$

Conversely let $x \in D(Q)$ and $(Q x, x)=0$. If $y \in D(Q)$ then it follows from (b) that

$$
\begin{aligned}
(Q x, y) & =\lim _{t \rightarrow 0} \frac{1}{t}\left(\left(P_{t}-1\right) x, y\right) \\
& =\lim _{t \rightarrow 0} \frac{1}{t}\left(T_{t} x-x, y-T_{t} y\right)+\frac{1}{t}\left(x, y-P_{t} y\right)
\end{aligned}
$$

the second term tends to $-(x, Q y)$ while the first is bounded by

$$
\begin{aligned}
\left|\frac{1}{t}\left(T_{t} x-x, y-T_{t} y\right)\right| & \leqq \frac{\left\|T_{t} x-x\right\| \frac{\left\|y-T_{t} y\right\|}{\sqrt{t}}}{\sqrt{t}} \\
& =\left(2 \frac{\left(x-P_{t} x, x\right)}{t} \cdot 2 \frac{\left(y-P_{t} y, y\right)}{t}\right)^{1 / 2}
\end{aligned}
$$

as $t \rightarrow 0$ this tends to

$$
(4(Q x, x)(Q y, y))^{1 / 2}=0
$$

Thus

$$
(Q x, y)=-(x, Q y)
$$

or

$$
x \in D\left(Q^{*}\right) \quad \text { and } \quad Q^{*} x=-Q x .
$$

Now

$$
\begin{aligned}
\left(x-P_{t} x, x\right) & =\int_{0}^{t}\left(Q P_{u} x, x\right) d u \leqq t \max _{u \leqq t}\left|\left(Q P_{u} x, x\right)\right| \\
& =t \max _{u \leqq t}\left|\left(P_{u} x, Q x\right)\right|=t \max _{u \leqq t}\left|\left(P_{u} x-x, Q x\right)\right| \\
& \leqq \text { const. } t^{2}
\end{aligned}
$$

because $\left\|P_{u} x-x\right\| \leqq$ const. u.
Remark. If x is a characteristic function then it is easy to see that $Q x=0$ if $(Q x, x)=0$.

The referee called my attention to the fact that this theorem generalizes to arbitrary semi groups of contraction operators, when T_{t} is replaced by the group of unitary operators which project down to P_{t} as in s_{z} Nagy theorem (See Riesz Nagy appendix to the third edition). Some simple changes have to be done to take care of the complex case.

Bibliography

1. J. L. Doob, Stochastic Processes, Wiley, New York, 1953.
2. J. T. Schwartz and N. Dunford, Linear Operators. Interscience, New York, 1958.
3. S. R. Foguel, Weak and strong convergence of Markov Processes, Pacific J. Math., 10 (1960), 1221-1234.
4. E. Hille and R. S. Phillips, Functional analysis and semi groups, Amer. Math. Soc. New York, 1957.
