
THE SECOND CONJUGATE SPACE OF A BANACH

ALGEBRA AS AN ALGEBRA

PAUL CIVIN AND BERTRAM YOOD

1. Introducioru A procedure has been given by Arens [1, 2] for
defining a multiplication in the second conjugate space of a Banach
algebra which makes that space into another Banach algebra. This idea
was used with great effectiveness by Day [3] in his study of amenable
semigroups.

We undertake here a rather systematic study of this notion. We
begin in § 3 with a discussion of the second conjugate space L**(©) of
the group algebra L(@) of a locally compact group @ and its radical 9ΐ**.
Suppose that © is abelian and infinite. It is shown that L**(©) is never
semi-simple and never commutative; if © is compact then 5R** is the
annihilator in L**(©) of that subset of the first conjugate space L*(@)
which can be identified with the continuous functions on ©. For any
locally compact abelian group © let 2) be the subspace of L*(©) that
may be identified with the almost periodic functions on ©, and let K be
the subspace of L*(@) that may be identified with the continuous func-
tions on © vanishing at infinity. Let 2)1 and E-1 denote respectively the
annihilators of 2) and (£ in L**(©). Then L**(©)/?)J- is isometrically
isomorphic as a Banach algebra to the measure algebra on the almost
periodic compactification of ©, and L**(©)/(£-1 is isometrically isomorphic
to the measure algebra on ©. It is then abundently clear that the Arens
multiplication in L**(©) is intimately connected with much studied objects
defined in terms of ©.

In § 4 we observe a phenomenon which does not hold in the group
algebra case. In the latter case we started with a commutative, semi-
simple Banach algebra B = L(®) and obtained a second conjugate space
i?** neither commutative nor semi-simple. Here we give of an example
where B is commutative and semi-simple and 5** is not semi-simple but
commutative.

We can consider B as embedded in 2?** in the canonical way. In
§ 5 it is shown, for example, that each regular maximal (left, right or
two-sided) and each primitive ideal is contained in an ideal of the same
type in 13**. Also if B is commutative its radical is contained in the
radical of B**.

In § 6 it is shown that if T is a continuous homomorphism of Bx

into B2, where Bk is a Banach algebra, then Γ** is continuous homo-
morphism of B** into B** where these are considered as algebras.
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Curiously the analogous result fails to be true for anti-homomorphisms.
In § 7 it is observed that, as a consequence of the work of Sherman and
Takeda [12], 2?** is a JB*-algebra in the Arens multiplication for every
j?*-algebra B.

2. Notation. Let B be a Banach algebra (over the real or complex
field). Let β* and i?** denote the first and second conjugate spaces
of B. Let x,y, denote elements of B; /, g, denote elements of
5*; F, G, denote elements of 5**. For each / e B*, x e B we define
</,x>eB* be the rule <f,xXy)=f(xy), y e B. For each FeB**,
f e 5* we define [F,/] e 5* by the rule [F,/](αO = F « / , &», a? € J5.
For each pair of F,G e B** we define FG e J3** by the rule JPG(/) =
F([G,/]). These notions were introduced by Arens [1,2] who showed
the definition of FG as the product of F and G yields an associative
multiplication on 2?** which makes 1?** into a Banach algebra.
Throughout we let π denote the natural embedding of B into 2?**. As
noted by Arens [1], π is an isometric isomorphism when U** is considered
as a Banach algebra under the above definition of multiplication.

For some purposes Arens [2] considered also the following definition
of multiplication in £**. For each / e B*,x e Bdefine </| x > e £* by the
rule </| x)(y) = f(yx), yeB. For each Fe B**,JeB* define [F\f] e £*
by the rule [F\f](x) - F « / | »», x e B , Finally for F e £**, G e 5**
define F-G e J5** by the rule F G(/) = F([G|/]), fe B*. Again the
definition of F G as a product makes B** into a Banach algebra. Arens
calls the multiplication in B regular provided F G — GF for all F, G e I?**.
Clearly, if J5 is commutative, 5** is commutative under either definition
of multiplication if and only if the multiplication in B is regular.

As was noted in [2] the multiplication FG is w*-continuous in F for
fixed G e B** and π(x)G is w*-continnous in G for fixed x e B. If the
multiplication in B is regular, then FG is also w*-continuous in G for
fixed F.

We use 5R** to denote the radical of the second conjugate space of
the algebra under consideration, regardless of the symbol use to denote
that algebra. We also use the symbol 2) for the closed subspace of the
first conjugate space of a Banach algebra generated by the multiplicative
linear functionals on the algebra, regardless of the symbol used for the
original algebra.

3 Group algebras. The principal object of concern in this section
is the second conjugate space, L**((S), of the group algebra, L(®), of
a locally compact group © (with respect to right Haar measure). We
consider L**(©) as a Banach algebra under the definitions of § 2.

We consider first the case of a discrete infinite group @. In this
connection see Day [3], As in [3] we define the operator lσ, σ e (S, on
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L*(@) by the rule ϊσ(/)(γ) = f(σy), f e L*(®), 7 e ©. For 7 e © let xy

be the characteristic function of the singleton y considered as an element
of L(@) and let fy be that characteristic function considered as an ele-
ment of L*(©). Since !/*(©) may be identified with the bounded complex-
valued functions on © and, for g e L*(®), the value of g(xy) is the same
as g(y), 7 6®, after the identification, we shall use the symbols g(xy)
and g(y) interchangeably. Let $ = {Fe L**(®)\F(lyf) = F(/), for all
7 e ©, / e L*(©)}. Let e be the element in L*(®) corresponding to the
function identically one on ®. Let % = {Fe $ | F(e) = 0}. The follow-
ing formulas were established in [3, pp. 527, 530],

(3.1) [F,f](y) = F(lyf), y e ©, Fe L**(©) .

(3.2) GF = G(e)F, F e g , G e L**(©) .

The second conjugate space L**(©) can be identified with the space
of all bounded complex-valued finitely additive set functions defined for
all subsets of ©.

It is clear from formula (3.2) that $ and & are left ideals of L**(®).
Let Fe $ and G e L**(@). For a,βe®, [G, laf](β) = G(lβh(f)) = G(laβf)
whereas la[Gff](β) = [G9f](aβ) = G(lΛβf). Therefore FG(hf) = F([G, lΛf]) =
F(h[G,f]) = FG(/). Thus $ is a two-sided ideal of L**(©). Next let
F l f F2 e L**(©). From (3.1), [Fi9 e] - F2(e)β and therefore FλF2{e) =
FiίeJFaίe). It follows that & is also a two-sided ideal of L**(©).

As in [3, p. 510] let m(®) be the space of all real-valued bounded
functions on © and m(©)* be its conjugate space. Each μ e m(©)* gives
rise to a functional FeL**(@) by the following rule. If / e L*(@)
write f = A + if2 where / l f / 2 e m(©) and set F(/) = μ(f,) + ijM(/a). An
invariant mean μ [3, p. 514] gives rise to an F e g and two different
invariant means μx and μ2 correspond to different functional F1 and F2

by this process.

3.1. THEOREM. Let © be an infinite discrete group, and let L(@)
be its group algebra. Under any of the following conditions, L**(©)
is not semi-simple and is not commutative.

( i ) The commutator chain, © D ©X , emίs αί the identity subgroup
in a finite number of steps; in particular when © is abelian.

(ii) © is an amenable group and contains an element of infinite
order.

(iii) © is locally finite; that is, every finite subset of © generates
a finite subgroup of ©.

Proof. For the notion of an amenable group see [3, p. 515]. Ac-
cording to see Day [3, p. 535] under any of the conditions (i), (ii), (iii)
there are at least two distinct invariant means on m(@). As noted above
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this shows there exists Fu F2 e ft where Fλ{e) = F2(e) = 1 and FXΦ F2.
Then Fλ — F2 is a nonzero element of ftlβ Formula (3.2) shows that
ft? = (0). Hence L**(@) is not semi-simple.

Also ft has only zero in common with the center of L**(@). For
let 0 =£ F e ft. By the above there exists G e ft such that G(e) = 1 and
G, F are linearly independent. By (3.2), FG = F(e)G and G F = G(e)F.
Thus FG Φ GF.

In the special case of ©, the additive group of integers where we
make a detailed investigation (Theorem 3.5) it is shown that ftx is a
very small part of the radical of L**(@).

3.2. THEOREM. Let % be a discrete group, and let L(@) be its
group algebra. Let ffi = {Fe L**(@) j ίfeβ set function μ corresponding
to F vanishes on finite sets in ©}. Then & is a two-sided ideal of
L**(©) and L**(©) = ττL(©) © St.

Proof. For γ e ©, lyfσ{β) = Λ(7/3), /3 e © and therefore Zγ/σ = /γ_1<r.
Now by formula (3.1) [F,/σ](γ) = F(/ γ_1 < r). Thus if F e S , [F,/ σ ] = 0
for all α e ® . Therefore GF(fσ) = 0 and G F e S for all G e L**(@),
Hence J6 is a left ideal of L**(@).

Let G e L**(©), and F e S . For each γ e ©, let εv be a complex
number such that eyG(fy) = | G(/7) |. Then for any finite subset γ(l), , y(n)
of distinct elements of ©,

oΛw) - ΣIG(/ 7 ( f c )) I ̂  IIG || || Σ W ™ , || ^ IIGII.

This shows that G(/7) =̂  0 for at most a countably infinite set γ(l), γ(2),
of distinct elements of ©, and for these Σ£=i I G(fy(1c)) \ < oo. Fix σ e ©.
For ft = 1, 2, define gk on © by the rule gk(a) = G(/α_ l σ) for α =
^Wi))"1, i = 1, , k, and ^fc(α) = 0 otherwise. Clearly gk e L*(©).
Since [G, /σ](α) = G(/α_ l σ) we have || Λ - [G, / σ] || = sup j > f c | G(/V ϋ )) | -> 0.
Then as F(gk) = 0, we have F[G,/ σ ] = 0 or FG(/ σ ) = 0. Since σ was
arbitrary in ©, we see that & is a right ideal.

Let G e L**(@). As was noted above, G(/σ) Φ 0, for at most a count-
able set γ(i), j = 1,2, , of distinct elements of © and ΣΓ=i lG(Λu)) l < °°.
Consequently if we define x by the rule x(y) = G(/γ), then a? e L(®).
Also (G - π(x))(fΎ) = 0 or ( ? - π e « . Since ffi (Ί τrL(@) = (0), we see
that L**(©)

3.3. THEOREM. Let © 6e α?ι infinite discrete group and $t be the
ideal of Theorem 3.2. Then 5R** c $. Le£ © δe α^ amenable group.
Then Sϊ properly contains 5R** α^d L**(©)/5R** cαπ 6̂  written as the
direct sum of two ideals ξ>i®£ 2 uhere ξ>x is a maximal two-sided
ideal and ξ>2 is ί/te sβί of all scalar multiples of a central idempotent.
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Proof. By Theorem 3.2, S is a two-sided ideal of L**(@) and
L**(©)/® is semi-simple. Thus & contains the radical of L**(©).

Suppose that © is amenable so that © has an invariant mean. This
gives rise to Fo e 3 where F0(e) = 1. If, for σ e ©, F0(fσ) = aΦ0 then
F0(g) = na for the characteristic function g of a set of n elements and
Fo is not bounded. Therefore Fo e Sϊ. But F0

2 = F o by formula (3.2) so
that F O 0 3ί**

Let λ denote the natural homomorphism of L**(©) onto L**(©)/3i**.
For any F e S , G e L**(@), we have FG - GFe$ and (FG - GF)(e) = 0.
Then FG - G F e & c 3t** by Theorem 3.1. Hence λ(3) lies in the
center of L**(©)/3ΐ**. Let Fe$ where λ(F) =£ 0. This requires that
F(e) Φ 0 and that X(F(e)F0 - F) = 0. It follows that the ideal ©2 = λ(3)
consists of all scalar multiples of the central idempotent λ(F0). Moreover
£>2 must be a minimal left, right and two sided ideal of the semi-simple
algebra L**(©)/9Ϊ** so that we can write that algebra as the direct
sum ξ>! 0 § 2 where ξ>χ is the annihilator of φ2 and & is a maximal left,
right and two sided ideal.

3.4. THEOREM. Let © be a discrete group. Let Γ be the w*-closure
in L**(©) of {π(xy) \y e ©}. Then Γ, in its w*-topology is the Stone-
Cech compactification of © and is, under the multiplication of L**(©),
a semigroup containing as a dense subsemigroup a copy of ©. If &
contains an element of infinite order then right multiplication in Γ
is not continuous.

Proof. We can view L*(©), the space of all bounded functions on
© as a commutative Banach algebra of continuous bounded functions on
© under the usual conventions. Now, for γ e ©, π(xy)f — f(xy) = / ( γ ) ,
/ e L*(©) so that the functional π(xy) on L*(@) is evaluation at the point
γ. Then π(xy) is a multiplicative linear functional on L*(®) and, more-
over, the w*-closure Γ of the set of all π(xy) is [7, p. 55] the set of all
nonzero multiplicative linear functionals on L*(©). These are the
F e L * * ( © ) for which the corresponding bounded finitely additive set
function μ takes on the values 0 and 1 only (see Smulian [11]). In this
connection note that if μ corresponds to π(xy) then μ(Qf) = 1 if and only
if γ e 6?. The other F e Γ correspond to μ which vanish on finite sets,
i.e. all other FeΓ lie in $. Also, [6, p. 167], Γ is the Stone-Cech
compactification of ©.

Let Ffc 6 L**(©) correspond to the set function μk, k = 1, 2, 3 where
Flf F2e Γ and F 3 = F,F2. We show that Fs e Γ. Let O be any subset
of © and let φ o e L*(@) be the characteristic function of the set Q c ©.
Since ίγ(φo) = φy_1£ί we have, by formula (3.1), [F2, φc](γ) = ^ ( γ - 1 ^ ) .
Let ψ be the characteristic function of the set of γ for which μ2(Ύ~1&) = 1.
Then
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(3.3)

Thus the set function μ3 cannot taken on values other then 0 or 1. Clearly
fh(®) = 1 so that F3 e Γ. Hence Γ is a semigroup in the multiplication
of L**(@). Let β,ye®. It is easy to see that π(x^)π(xy) = π(x^). Thus
a copy of © is a dense subsemigroup of Γ.

Suppose © contains an element of infinite order. Then © contains
a copy £> of the additive group of integers. Let F e Γ correspond to
a set function μ vanishing for all sets in © disjoint with £> and let
7 e £>. We show first that π(χv)F= Fπ(xγ). For any / e L*(®), π(χv)F(f) =
π(χi)[F,f] - F«J, xy» while Fπ(xy)(f) = F(]ττ(^),/]). It is then suf-
ficient to show that, for each a e £>, </, a?Ύ>(α) = [>ΦΎ),/](<*). The left
hand side is f(ya) while the right hand side is f(ccγ). Since 7 and a
permute, we have the desired result. Next we show that each such F
is in the w*-closure of {π(xy) | γ e ξ>}. Let μ0 be the set function μ
restricted to subsets of ξ>. Since μ0 corresponds [11] to a multiplicative
linear functional on the Banach algebra of all bounded complex-valued
functions on £>, there is a directed set y(j) of elements of ξ> such that

(3.4)

for all bounded functions on ξ>. Let / be a bounded function on ©.
From (3.4) we obtain

(3.5) limπ(x*»)(f) = \ f{<i)dμJti) = \ f(Ύ)dμ(y) = F(f) .
3 J § J ©

We define Fλe Γ where the corresponding set function μx is zero
on finite subsets of φ, μ^) = 1 where Sβ c ξ) is the set of positive
integers. Note that μ1 being a 0-1 set function is zero for sets disjoint
with ξ>. Define F2 e Γ to correspond to the set function μ2 where
μ2(Q) = μ^Or1) for any subset £} of ©. If α e ©, α 0 ξ>, the set α:-1^
lies outside φ. If α: e ξ) then α"1^? = β̂ modulo a finite set. Thus
ftiior1^) — 1 if and only if a e fg and otherwise /^(α"1^) = 0. According
to formula (3.3),

(3.6) FAiφς) = μM = 1 .

Note that μffi) = 0. A calculation similar to (3.6) yields

(3.7) F&iΦd = 0 .

By our earlier remarks there exists a direct set τ(i) of elements of §
such that π(χt{i)) -> Fx in the w*-topology. Then π{xyU))F2 -> F ^ . As
noted above, π(xyU))F2 = F2π(xγ( ; )). If multiplication on the right were
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continuous in Γ we would have FJ?2 — F2Fλ. This contradicts (3.6) and

(3.7).
The semigroup Γ has the further property that GXG2 = π(xβ), β e ©

for Gλ1G2e Γ if and only if each Gfc is of the form π(x")9 a e ©. For
suppose GλG2 = π(xβ) where Gk corresponds to the 0-1 set function vkJ

k = 1, 2. By (3.3), vx({γ | ^ ( T ^ Q ) = 1}) = 1 if and only if β e D. Apply-
ing this result to Q, the singleton {β}, we have a contradiction if v2

vanishes for all singletons. Hence G2 — n{x°") for some a e ®. Then
using the same Q, we see that 1 = ̂ ({βor1}) so that Gx = π(x8), where
δ = βa~λ. In particular Γ is never a group if © is infinite.

We shall see in Corollary 3.13 that the radical of L**(©) is infinite-
dimensional for every locally compact abelian group which is not discrete.
We conjecture this for all infinite locally compact abelian groups. How-
ever, in the infinite discrete case, we have been able to prove this only
for © the additive group of integers.

3.5. THEOREM. Let © be the additive group of integers. Then the
radical of L**(©) is infinite-dimensional. In fact SR**/^ is infinite-
dimensional.

Proof. Let T be the operator on (m) = L*(©) defined by the rule
(Tf)(n) — f(n + 1). Let er

k e L*(©) for k a positive integer and r an
integer be defined by the rule er

k(n) = 1 if n = r mod k and er

k(n) = 0 for
all other values of n. Let % = {FeL**(©)\(TψF= F and F(eQ = 0 for
r = 0,l, , k — 1}. For k = 1 this is just the ideal ^ defined earlier in
the case of the present ©.

Let Fe $t, feL*(®) and r, s be integers. First </, O(s) - / ( r + s)
so that </, xr>= Trf. Then [F,/](a r) - (Tr)*F(f). Let 2 c χ be an
arbitrary element of L(©). We have

Now since F e $„, this yields

(3.8) [ir /] = g(Tr)*F{f)el .
r=0

Let G e £*•(©). From (3.8) we obtain

(3.9) GF = §G(ei)(TΎF .
r=0

It follows readily from (3.9) that % is a left ideal of L**(©) and that
$ ! = (0). Hence each % is contained in the radical of L**(©).

Note that

(3.10) e\m = e;m+1 + e£ϊ? .
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Let Fe $2m. Then F(e;m) = 0 and, as (T2 m)*F = F, F has the same
value at each of the summands on the right of (3.10). It follows that
$2m+i D $2m. The desired result is established if we show each %m+i con-
tains an element not in %m.

As noted in the proof of Theorem 3.1, there exist at least two
distinct nonzero elements Fl9 F2 e L**(©) where Fk(e) = 1, T*Fk = Fk9

k = 1, 2. Let U be the operator on L*(@) defined by the rule U(f)(n) =
f(n2m+1). Let H= U*(F1 - F2). In turn we have (T2m+1f)(n) =f(n + 2m+1),
(UT2m+1f)(n) = f((n + l)2m+1) and thus UT2m+1 = TU. Therefore (T2m+1)*H=
(Γ a m + 1)* U*(F1 - F2) = U*T*(FX - F2) = H. Also U(e[m+1) = 0 unless
r = Ojnod 2m+1 in which case U(er

2m+1) = e. Thus H{e\m+λ) = 0 for each
r and therefore i ϊ e QfatΛ+i We shall show that H 0 ̂ 2TO.

Select feL*(®) such that W ) ^ F2(/). Define g e L*(®) by the
rule g(2m+1n) = /(w) and #(s) = 0 otherwise. Clearly Ug = f so that
H(g)Φ0. Now T2mg(k) = g(k + 2m). Therefore UT2mg(k) = g{k2m+1+2m) = 0.
Hence {T2m)*H{g) = (Fx - Fa) *7T2m(#) = 0. From this we see that fΓg ̂ 2m.

We next direct our attention to the case of L**(@) where © is a
locally compact abelian group which is not discrete. Certain preliminary
material will be needed for this purpose.

3.6. LEMMA. Let B be a Banach algebra, and let f e B* be multi-
plicative on B. Then the functional φ e £*** defined by φ(F) — F(f)
is multiplicative on J5**.

Proof. For x, yeB, <f,xXy)=f(xy)=f(x)f(y). Thus </,<*> =
f(x)f. Next for F e B** and x e B, [F,f](x) - F « / , x» = f(x)F(f),
and consequently [F,f] = F(f)f. Therefore for any ί7 and G in ΰ **

For a subspace J of a Banach space X, we define Jx =
{2* e X* I z*(i/) = 0, y e J}. For the definition of 3) see § 2.

3.7. THEOREM. Let B be a commutative Banach algebra. Then 2)-1

is a two sided ideal of I?**. Moreover, the algebra i?**/^)1 is com-
mutative and semi-simple.

Proof. Let f e S ) 1 and let G e JS**. By Lemma 3.6, if / is a
multiplicative linear functional on B, then FG(f) = F(f)G(f) = 0. The
relation FG(f) — 0 then holds for any linear combination of multiplica-
tive linear functionals, and so, by continuity, for any / e 2 ) . Thus
FG e S)1- The identical argument shows GF e 2)1 and thus 2)-1 is a two
sided ideal of £**.

In view of the definition of multiplication in a quotient algebra, to
show the commutativity of B**ltyL

f it is sufficient to show that for
any pair F , G e B * * , FG -GFety1. For any multiplicative linear
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functional /, by Lemma 3.6, FG(f) = F(f)G(f) = GF(f). Thus FG -
GFeψ.

Let a denote the natural mapping of B** onto I?**/?)1. For / a
multiplicative linear functional on B, define / 0 on B**/?)-1- by fo(F + 2)1) =
F(f). The functional / 0 is clearly well defined. Also f0 is multiplica-
tive, since by Lemma 3.6 fo((F+ ψ)(G + 2)1)) = fo{FG + 2)1) = (FG)(f) =

Suppose that a{F) is in the radical of B**/^)1. Then for any
multiplicative linear functional / on B, 0 =fQ(a(F)) — F(f). Consequently
F e 2)1, so a(F) = 0. Thus B**/?)1 is semi-simple.

We say that a Banach algebra B has a weα/c W#/rf identity if there
exists a net {ea \ a e 21} in B and a n I > 0 such that 11 ea \ | < M, a e §1
and lim/(ajeΛ — α?) = 0 for each x e B, f e B*.

3.8. LEMMA. The Banach algebra B has a weak right identity if
and only if 2?** has a right identity.

Proof. Suppose B has a weak right identity {ea | a e §1}, with
|| eΛ || < M, α e SI. Since also || πe^ || ^ Λf, a e 51, the w*-compactness
of the ball of radius M in Z?**, implies the existence of a subnet {eβ \ β e S3}
such that w*-\imπeβ = £7 6 B**. We shall show that E is the required
right identity for B**. Let feB*,xeB. Then [#,/](aO = £?«/, α» =
lim πeβ(f, x} — lim/(a?eβ) = /(a?). Consequtently [£7,/] = / for all fe B*.
Thus ί!E?(/) - F([E,f]) = F(f) and FE = ί7 for all ί7 e B**.

Suppose that B** has a right identity E. By Goldstine's theorem
[5, p. 424], there is a net {πea \ a e 31}, with ΐ | π e j | ^ || J5||, a e 21, and
w*-limτreα} = E. Let feB*. Since £ is a right identity in B**,
F(f) - FJ5/(/) = F([£/,/]) for all Fe B** and thus [E,f] = / . Hence
for any a; e B, and fe B*, /(α?) - [£7, f](x) - JS;«/, x» - lim πeu«f, x» =

fl,). Consequently B has a weak right identity.

3.9. LEMMA. If B is a commutative Banach algebra then π(B) is
in the center of B**.

Proof. One verifies that, for feB*, x e B, we have [π(x),f] =
</,»>. Then Fπ(x)(f) = F«J,x» = [F,f](x) = π(x)F(f) for each Fe B**.

3.10. THEOREM. Lei Bbe a commutative semi-simple Banach algebra,
and let g be a closed linear manifold in B*. The following statements
are equivalent:

( i ) For each / e B*, and x e B, </, x>ε?s.
(ii) B**g^ = (0).
(iii)
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Proof. Suppose that (i) holds. Let G e B** and let Fe %±. For
any / e B*, [F,f] = 0, since [F,f](x) = F«f, x» = 0 for all x e B.
Thus GF(f) = 0 for any / e B* and so GF = 0, and (i) implies (ii).

Suppose that (ii) holds. Let F e g 1 and x e B. Then π(x)F = 0.
However, by Lemma 3.9. π(x) is in the center of 1?** and thus Fπ(x) = 0,
and so (ii) implies (iii).

Suppose that (iii) holds. Let f e B* and x e B. For any Fe g 1 ,
0 = Fπ(x)(f) = F([π(x),f]), and thus [τr(aθ,/] e S However, as noted
in the proof of Lemma 3.9, for B commutative, [π(x),f] = <(/, #)>, so
</> #>εg and (iii) implies (i).

3.11. COROLLARY. Under any of the conditions of Theorem 3.10,
g 1 is contained in the radical of B**. iw particular, if (1) is satisfied
for g = 2), ίfeew g 1 is ί/̂ e radical of J3**.

Proof. The first statement of the corollary is immediate from
Theorem 3.10. The second statement is then a consequence of Theorem
3.7, which implies that the radical of 2?** is contained in g 1 .

3.12. THEOREM. Let © be a locally compact abelian group which
is not discrete, and let L(@) be the group algebra of @. Then L**(@)
is not commutative and is not semi-simple.

Proof. Let ® be the closed subspace of L*(@) which can be identi-
fied with the collection of bounded continuous functions on ©. Since ®
is not discrete, it is an immediate consequence of the Hahn-Banach
theorem that S)-1 φ (0).

We note for any / e L*(@), and x e L(©), that </, x>ε®. For if
y e L(@) then

Thus </, #> may be identified with the function on © whose value at
β e © is mαMαβ^cto, and that function is continuous. We have thus
shown that condition (i) of Theorem 3.10 is satisfied with ® playing the
role of g. Thus by Corollary 3.11, (0) Φ 2)1 is in the radical of L**(@)
and consequently L**(©) is not semi-simple.

To see that L**(©) is not commutative let FΦ 0, Fe ® x . Since
L(@) has an approximate identity, Lemma 3.8 yields a right identity E
for L**(@). Then F= FE, while from (ii) of Theorem 3.10, EF = 0.

3.13. COROLLARY. Let ® be a locally compact abelian group which
is not discrete, and let L(©) be the group algebra of ©. Then the
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radical of L**(©) is infinite-dimensional.

Proof. For any integer n, there are n mutually disjoint compact
neighborhoods in ©, whose union is not all of ©. The characteristic
functions of these sets thus correspond to n elements of !/*(©) which
are linearly independent modulo ®, in the notation of the proof of
Theorem 3.12. Consequently, by the Hahn-Banach theorem, there are
at least n linearly independent elements in ® x, and thus in 3ί**. Hence
the radical of L**(@) is infinite-dimensional.

3.14. THEOREM. Let © be an infinite locally compact abelian group,
and let L(@) be the group algebra of ©. Then L**(©) is not commuta-
tive and not semi-simple.

Proof. For © discrete, the result is a part of Theorem 3.1 and for
© not discrete, the result is Theorem 3.12.

3.15. THEOREM. Let © be a compact abelian group, and let L(©)
be the group algebra of ®. Then the radical of L**(@) may be identified
with any of the following sets:

( i ) S ^ f f e L**(©) I L**(®)F = (0)}
(ii) 2)1, where 2) is the closed subspace of L*(©) generated by the

multiplicative linear functionals on L(©).
(iii) S)1, where S) is the closed subspace of L*(©) which can be

identified with the collection of continuous functions on ©.

Proof. If © where discrete, it would be finite since it is compact.
Thus L(&) is finite-dimensional and is then isomorphic as an algebra to
L**(©), so the latter is semi-simple. In this case it is clear that each
of the representations given for the radical of L**(@) reduces to zero.

Suppose © is not discrete. From the proof of Theorem 3.12 and
from the equivalences of Theorem 3.10, it follows that S 1 c @ c Ji**.
Also from Theorem 3.7, we see that L**(®)lψ is semi-simple so 3ί** c ψ.
However, the Peter-Weyl theorem [7, p. 155] asserts that ® = 2), and
consequently 3)1- = 2)1. We thus see that 3)1 = © = 5R** = 2)1.

We shall show in Lemma 3.19 that the equality 9ΐ** = 2)1 which
was demonstrated for L**(©) with © a compact abelian group fails when
© is not compact.

3.16. LEMMA. Let B be a commutative semi-simple Banach algebra.
Then there is a continuous isomorphism of B into B**/^)1.

Proof. Let a be the natural mapping of B** onto B**/?)1. Since
the composite mapping aπ is clearly an algebra homomorphism, and is
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continuous, it sufficies to show that if aπ(x) = 0, then x — 0. Suppose
aπ(x) = 0. Then π(x) e 2) and 0 = π{x){f) = f(x) for each multiplicative
functional / . Thus, by the semi-simplicity of B, x = 0.

The question whether the mapping aπ is in general bicontinuous
remains. The bicontinuity is clear if the spectral radius on B is a com-
plete norm. It is also possible to show the bicontinuity in concrete cases,
where all the computations can be made. One such example is when
B is the collection of all complex-valued functions with n continuous
derivatives made into a Banach algebra in the usual way [6, p. 119].
We are grateful to the referee for the following example where aπ is
not bi-continuous. Let C0(R) be the algebra of all complex continuous
functions on the reals R vanishing at infinity with \\f\U as the usual
sup norm. Let B be the subalgebra of C0(R) consisting of all absolutely
integrable functions. We norm B by setting | | / | | = ||/||oo + | | / | | i where
| | / | | i is the Lx norm of / . In this norm B is a Banach algebra. As a
function algebra on R, B is conjugate closed and adverse closed so that
the multiplicative linear functionals on B are just the evaluations at
points of R. Let μt be the functional defined by μt(f) = f(t). An easy
computation shows that, for a finite sum Σakμtjc, \\ Σateμtjc || = Σ \ ak |. Let
2)0 be the subset of 2) consisting of these finite sums; 2)0 is dense in 2).
For / e B, the norm of aπ(f) is the same as the norm of π(f) as a
functional over 2) and hence as functional over 2)0. Therefore || aπ(f) || =

It follows that aπ is not bi-continuous.

3.17. THEOREM. Let ® be a locally compact abelίan group. Then
L*^©)/?)1 is ίsometrically ίsomorphic to the algebra of all regular
Borel measures on the almost periodic compactification of @, with
multiplication taken as convolution.

Proof. It is an immediate consequence of the fundamental approxi-
mation theorem for almost periodic functions [8, p. 126] that when ©
is a locally compact abelian group, the subspace 2) can be identified with
the collection of almost periodic functions on ©. Let 2Jϊ be the almost
periodic compactification of © [13, p. 124, ff.], [7, p. 165 ff.], and let
a be the associated homomorphism of © onto a dense subset of 501.
Then a induces an algebraic isomorphism γ of the complex valued con-
tinuous functions &(3Ji) onto the almost periodic functions on ©, which
we identify with 2), by the following rule: γ(/)(ί) = /(«(«)), t e ®, / e C(m).
Since the sup norm is involved when 2) is identified as a Banach algebra
consisting of the almost periodic functions on ©, and since © is dense
in 501, it is clear that γ is an isometry. Also since [13] γ is an isomor-
phism of C(Wl) onto 2), its adjoint mapping γ* is a linear space isometric
isomorphism of 2)* onto (C(50l))*. As usual we may consider (C(S0ί))*
as an algebra, where the elements are regular Borel measures and
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multiplication is convolution [5, p. 265] [10, p. 229].
Let β be the linear space isometric isomorphism of L*^©)/?)1 onto

ψ defined by β(F + ψ) - F\ 2), the restriction of F to 2). The mapping
γ*/3 is taken an isometric linear space isomorphism of L*^©)/?)1 onto
((7(97?))*, and the proof reduces to showing that 7*/3 is an algebra isomor-
phism. Since the range of y*β is (C(3JΪ))* it is sufficient to show that
Ύ*β((F+ψ)(G + ψ)) and y*β(F + ψ)y*β(G + ψ) have the same
Fourier-Stieltjes transform for each F, G e 5** . Let g e C(2JΪ) be an
arbitrary character of 2JΪ. From the definition of γ, yg is a character
of @. Thus, by Lemma 3.6,

7*β((F + ψ)(G + ψ))(g) - β(FG + ψ){yg) - FG(yg) = F(yg)G(yg)

and the desired relation holds.
A further identification of a quotient algebra of L**(©) may be made

relating the algebra L**(©) to a familiar object study [10], namely the
algebra of countably additive regular Borel measures on ©.

3.18. THEOREM. Let % be a locally compact abelian group. Let (£
be the subspace of L*(©) which may be identified with the continuous
functions on © which vanish at infinity (or all continuous functions
if © is compact). Then g-1- is a two-sided ideal of L**(@) and L**(©)/S:J-
is isometrically isomorphic as an algebra to M©), the algebra of all
countably additive regular Borel measures on ©.

Proof. If © is compact, the Peter-Weyl theorem yields <£ = ?), and

© is its own almost periodic compactification so Theorem 3.17 yields the

result. We therefore suppose that © is not compact. L e t / e K, x e L(©).

It was noted in the proof of Theorem 3.12 that </, x> could be identified

with the continous function on © whose value at β e © is \f(a + β)x(a)da.

We show next that this function vanishes at infinity which will establish

that </, α>ε@.
Let ε > 0, and let S be a compact symmetric neighborhood of the

identity e of ©, such that \f(a)\ ^ ε/2||ίc| | if a $ ί£. Suppose 11 is a

compact symmetric neighborhood of e such that \ | x(a) | da^ || x || — ε/(21|/||).

Note that if β $ St + U and a e U then α: + /5 0 β and | / ( α + β) \ ^

ε/2 || x | |. Then for /3 $ St + U, a compact set,

| x(a) \da+\ \f(a + β) \ | α?(α) | daf(a + β)x{a)da

| (

Hence for F e (E1 and / e <£, [F,/](a?) = F«J, a?» = 0, α? e L(©) and
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so [F,f] = 0. Consequently for G e L**(©), GF(f) = G([F,f]) = 0, so
GFe (£\ Thus S 1 is a left ideal in L**(®).

Suppose next that / e E and J^e L**(@). Now F restricted to (£
yields a functional on the collection of continuous functions on © vanish-
ing at infinity, and as such is representable by a countably additive
regular Borel measure v on ©. We thus have

(3.12) F(g) = \g{a)dv{a), g e & .

As we noted earlier, </, #>s(£ if / e K and x e L(@). Then if we
use the representation of </, a?> as a function on ©, and use (3.12) we
have

[F,f](x) =

= t
J

since both measures are completely additive regular Borel measures and
the Fubini theorem applies. Consequently, [F, f] may be identified with

r

the function on © whose value at β e © is \ f(a + β)dv(a), which func-

tion is clearly continuous on ©. We next show that the above function

vanishes at infinity.
Let ε > 0 be given. Let S be a symmetric compact neighborhood

of e such that \f(a) \ ̂  ε/2 || v ||, if a $ ffi. Suppose that U is a compact

symmetric neighborhood of e such that \ | dv{a) \ ̂  || v || — ε/2 | | / | | . Then,

for β 0 Λ + U,

^ ί \f{a + β ) \ \ dv{β) \ + \ \f(a + β ) \ \ dv(β) \

\dv(β)\ + \\f\\\ \ < ε .

Hence [F, f] e <S whenever / e (E. Thus if F e g 1 , G e L**(@) and / e g ,
FG(/) = F([G,/]) - 0, so FG e K1. Consequently S 1 is a right ideal
of L**(©), and thus is a two sided ideal. From Banach space theory,
there is an isometric linear space isomorphism between .L*5^©)/^1 and
(£*. Also under the identification noted earlier (£* is isometrically iso-
morphic as a linear space to M(®). The composite isometric isomorphism
X is defined by λ ( F + &1) - v, where F ( / ) = [f(a)dv(a) for all / e i

It remains for us to see that λ is an algebra isomorphism when
£**(©)/(£-L is given the quotient space multiplication induced from the
multiplication in L**(©) and multiplication in ikf(©) is convolution.

Let Ft e L**(©) and let vi = X(F{ + (£x), i = 1, 2. Then let
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x + K-L)(F2 + (£)) = HF,F2 + E ) = v3. Whence for all / e E,

since as noted earlier [F2, f] e (£. But

Since / ranges over all continuous functions vanishing at infinity v3 —
v^v2 and λ((Gχ + E 1 ) ^ + S1)) = λ(Fx +

 1 )*λ(F 2 + g 1 ) .
We are now in a position to show that the equality 2)± — ϊi** which

held for a compact abelian group fails in the case of an abelian group
which is not compact.

3.19. LEMMA. Let © be an abelian locally compact group that is
not compact. Then 3ΐ** c 2)1 and the inclusion is proper.

Proof. It follows from Theorem 3.7 that 9ΐ** c ψ. Consider first
the case when © is not discrete. Suppose 9ΐ** = 2)1. As above let (£
be the subspace of L*(©) generated by those elements which may be
identified with continuous functions on @ which vanish at infinity. It
follows from Theorem 3.18 that 9ΐ** c E 1 . Thus 2)1 c E-1, and con-
sequently S c ϊ ) . As noted in the proof of Theorem 3.18, 2) can be
identified with the collection of almost periodic functions on ©. How-
ever, since © is not compact, & Π <D = (0) is a consequence of the theory
of almost periodic functions on groups.

For suppose / φ 0, / e 2) Π <£. Pick ε > 0 so that | / ( O | > 3ε and
|/(α) I < β, for α 0 S, for some compact set Sϊ. There is [13, p. 133] a
finite set βif i — 1, •••, n, in @ so that for any γ e @, there is an
integer i, 1 ^ i ^ w such that | /(j^cή — f(β^a) | < ε, for all α: e ©.
Thus for arbitrary γ, we may pick a = yaQ, and | f(a0) — f{βjlrϊa<) \ < ε
for arbitrary γ, for some j , 1 ^ j ^ n. In particular if γ is taken so
that γ ψ ββoc^1, j — 1, , n, as is possible since © is not compact, we
have a contradiction. Thus E c | is impossible and the proof of the
lemma is complete.

3.20. LEMMA. Let ® be a locally compact abelian group. Then
each of the algebras L**(©)/9ΐ** and L*5^©)/?)1 has an identity.

Proof. Since, by the second isomorphism theorem for rings, L
is a homomorphic image of L**(©)/5R**, it suffices to show that L**(©)/2ΐ**
has an identity. Now L(@) has an approximate identity, so by Lemma
3.8, L**(©) has a right identity E. It is immediate that E + 3^** is
an identity for L**(©)/3ί**.
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3.21. THEOREM. Let ® be a locally compact abelian group. Then
the algebra L**(©)/31** = L(©) if and only if ® is a finite group.

Proof. If © is a finite group L(©) is a finite-dimensional Banach
space so L**(@) ^ L(@) and 5R** - (0).

Suppose © is not discrete. Then by Lemma 3.20, L**(©)/5R** has
an identity while L(©) does not so L**(©)/9ΐ** ^ L(@) is impossible.
Suppose finally that © is infinite and discrete. We saw in Theorem 3.3
that, for an infinite discrete abelian group ©, L**(©)/9i** could be
written as the direct sum of two ideals $ x and % where % is a maximal
ideal and $ 2 is the set of all scalar multiples of an idempotent. Suppose
we had L(®) ^ L**(@)/3ΐ**. Then we would have L(@) = 5 K φ ^ where
$ is the set of scalar multiples of an element z Φ 0 which annihilates
9Ji. Since a closed ideal in L(©) is invariant under translation, there is
a complex function λ on © such that z(a + β) = X(a)z(β) for all a, β e ©.
It is immediate that λ is a homomorphism of © into the complexes. As
z Φ 0, λ is bounded, so is a character on ©. Thus | X(a) \ — 1, α : e G ,
Hence if z(β) Φθ,\\z\\ = Σ*e® I *(α + β) I = Σ«e® I λ(α) | | z(/3) | is possible
only if © is a finite group. Thus L**(@)/3ΐ** = L(©) is impossible for
© an infinite discrete abelian group.

3.22. THEOREM. Let © be a locally compact abelian group. Then
L*^©)/?)1 ^ L(©) i/ and only if © is finite.

Proof. If © is finite L(©) is reflexive and 2) = L*(©) by the Peter-
Weyl theorem so the stated isomorphism holds.

If © is not a discrete group, then L(©) has no identity, while Lemma
3.20 gives an identity for L**(©)/2)-L, so there can be no isomorphism.

Suppose that © is a discrete group and L*5^©)/?)1 = L(©). Theorem
3.17 yields a compact group ξ>, the almost periodic compactification of
©, such that L*^©)/?)1 = M(§), the algebra under convolution of the
regular Borel measures on ξ>. Thus L(@) = ilί(ξ>). Let A be the chara-
cter group of © and let Γ be the character group of ξ>. Since L(©) =
M(ξ>) we may identify the maximal ideal space of ilf(ξ>) as A, and the
topologies coincide in the two interpretations. Now Γ may be interpreted
as a subset of the maximal ideal space of Λf(ξ>), and thus as a subset
of A, and the topology of Γ as a topological group coincides [10, p. 232]
with the topology as a subset of A. Also [10, p. 235] Γ is an open
subset of A. As a topological group Γ is discrete, since ξ> is compact.
As a topological group Γ is discrete, since ξ> is compact. Thus the points
of Γ are open sets in A. But A is a compact topological group, since
© is discrete. Since A has an open set consisting of a point, A is a
discrete group. Therefore, being both compact and discrete, A is a finite
group and so © is a finite group.
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4. A further example. The examples given in § 3 were principally
of the nature that the given Banach algebra B was commutative and
semi-simple, while the algebra i?** was not commutative and not semi-
simple. The present section is concerned with an example in which the
Banach algebra B is commutative and semi-simple, while the algebra
-B** is commutative but not semi-simple.

Let B be a Banach space, and let % be a total subspace of 2?*.
We denote by σ(B, g) the weak topology on B determined by the sub-
space %, that is, the smallest topology on B which makes all the members
of % continuous. Similarly, we use the notation tf(i?**,§) for the cor-
responding topology in I?**.

4.1. THEOREM. Let B be Banach space, and let %be a closed subspace
of B* which is total. Then a necessary and sufficient condition that
^(5) 0 S 1 = ̂ ** is that the unit ball S of B be relatively compact
with respect to the topology σ(B, g). The above decomposition can occur
only if B is isomorphic to conjugate space.

This is a slightly more explicit form of a part of Theorem 17' of
Dixmier [4, p. 1069]. Since the same arguments used by Dixmier give
the present version, we omit the details.

4.2. THEOREM. There exists a semi-simple commutative Banach
algebra, for which the algebra B** is commutative but not semi-simple.

Proof. Let B = lly the space of absolutely convergent sequences
of complex numbers, with its usual norm, and let multiplication in B
be defined coordinatewise, i.e. {αfc}{6fc} = {aφjc}. It is readily verified
that B is a complex commuatative semi-simple Banach algebra. It is
also readily verified that any multiplicative linear functional / is of the
form f({ak}) = am for some integer m. Let 2) be the closed subspace of
J3* generated by the multiplicative linear functional. Note that J5*
may be identified with (m), the space of all bounded sequences with the
sup norm. Under this identification 2) becomes the closure in (m) of
the collection of all sequence with a finite number of non-zero terms,
i.e. 2) may be identified with (c0), considered as a subspace of (m). The
topology σ(B, 2)) is then the same topology on B as its w*-topology when
B is considered as the conjugate space of (c0). Since the space 2) is
total, and since Alaoglu's theorem asserts that the unit ball of B is
compact in σ(B, 2)), Theorem 4.1 asserts that £** = n(B)®^-1.

We next show that condition (i) of Theorem 3.10 is satisfied. For
our calculations we make the identifications indicated above. Let fe 5*
and x e B. Say / = {ck} e (m) and let x = {xk}, y = {yk} be in l±. Then
<Λ u>{y) =f(xy) = ΣkCkxkyk. Thus, in (m), </, x} = {ckxk}. However,
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as {xk} e lx and {ck} e (m), {ckxk} e (c0) and so </, x} e 2).
Theorem 3.10 then asserts that S**?)1 = (0) and tyLπ{B) = (0), and

Corollary 3.11 asserts that 2)1 is the radical of B**. The relation
1?** = ^ ( ΰ j φ ϊ ) 1 together with the above comment shows that multi-
plication is commutative in B**. Furthermore, since B is not reflexive,
J5** is not semi-simple.

In the foregoing example, the relationships B** = 7Γ.B©?)1 = πJ3©9ϊ**
were observed. This is in contrast to the situation noted in § 3, where
we saw in Theorems 3.31 and 3.32 that for an infinite locally compact
abelian group one could not even have either L**(©)/5R** = L(%) or

5 On the embedding of ideals* We consider here what happens
to ideals in B under the natural embedding π of B into £**. Recall
that multiplication FG in I?** is w*-continuous in F if G is fixed and
that π(x)G is w*-continuous in G if x e B is held fixed.

5.1. LEMMA. Let $r($z) be a right (left) ideal of B. Let $tr(®ι) be
the w*-closure of π(^r)(π{^t)). Then ®r(^) is a right (left) ideal of
J3**.

Proof. Let Fe J£r, F= w*-\im π(xa), xΛ e $r. Let G e 5**, (? =
w*-lim π(i/β), % e B. Then FG - w*-lim πfe)G. Hence FG e $ r if we
can show that π(xa)G e &r for each index α:. But 7r(^)G = w*-lim π(xΛ)π(yβ).
However xayβ e $r so that π(xa)G e S£r. Let F e Bz and use the same
notation. Then π(yβ)F = w*-lim 7ί(yβ)π(xΛ) e ^ and hence GJP G β8.

5.2. THEOREM.

(a) // QίrCSi) is a proper regular right (left) ideal of B then the
w*-closure of π(!$r)(!$ι)) is a proper regular right (left) ideal of 5**.

(b) If φ is a primitive ideal of B then the w*-closure of π(ty) is
contained in a primitive ideal of B**.

(c) If ^ is a nilpotent right (left) ideal of By then the w*-closure
°f π($>) ̂  a nilpotent right (left) ideal of B**.

Proof. Let Sir(^t) be the indicated w*-closure in (a). By Lemma
5.1, ^(Λ,) is a right (left) ideal of 5**. Let j be a left (right) identity
for B modulo &(&)• We show that π(j) $ Br(^τ). Since $r is a proper
right ideal, dist (j, &) ̂  1. Let / e B*, f(j) = 1 and /(&) = 0. Then
π(x)(f) = 0, α; e ̂ r and F(/) = 0 , F e ffl,, while π(i)(/) = 1.

Consider the £$r case, where π(j)π(x) — τzr(cc) e τr(^r) for all x e B.
Thus π(j)F-Fe®r for all FeB**. Hence 7r(j) is a left identity
for J3** modulo S ,̂
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Let 3̂ be primitive ideal. We can write β̂ = (9JΪ: B) = {x e B \ yx e sUί
for all y e B} where TO is a regular maximal right ideal of B. Let ®
be the w*-closure of π(3K) and let Q be the w*-closure of π(Sβ). Now
π(y)π(x) e ® for all y e J5, α? e *β. Thus π(j/)F 6 β for all y e B, F e Ώ,
and then GFe ffi for all G e £**, F e Q . By (a), $ is contained in a
regular maximal right ideal 353 of 5** so that Q c (SB: 5**). This
completes the proof of (b).

Let 3 be a nilpotent right ideal of B, %n = (0). Let Si be the
w*-closure of π($) and F, e β, fc = 1, . . , w. We show F ^ FW = 0.
Let Fn = w*-limπ(xa), xa e $. For any x:, ,£cn_! e 3f, O = τr(a?!) • π ^ - J π ^ )
converges (w*) to 0 = TΓ^)- π(xn-^Fn. Let Fw_i = ^*-lim π(xβ). Then
"̂(̂ i) 'π(%n-2)κ(χβ) converges (w*) to π(x^) π(α;ίl_2)i^_1 so that 0 —

π ^ - a ) ^ - ! ! ^ . We can continue in this fashion to obtain
.Fn = 0.

In the commutative case we can be more specific.

5.3. THEOREM. Let B be a complex commutative Banach algebra
and M be a regular maximal ideal of B. Then the w*-closure ίϊ of
π(M) is a regular maximal two-sided ideal of I?**.

Proof. There exists a multiplicative linear functional / e β * such
that M = {x e 5|/(a?) = 0}. Letϊδ = {Fe 5** | F ( / ) - 0}. Clearly^cSB.
Let j be an identity for B modulo M. Now the smallest linear mani-
fold containing M and j is B. Thus the linear manifold 8 in i?**
generated by S and π(^) contains π(B). However & is w*-closed and 2
is the direct sum of & and the one-dimensional space generated by κ(j).
Therefore 8 is w*-closed. By Helly's theorem, π{B) is w*-dense in JB**

so that 8 = B * *. It follows that & is a maximal closed linear manifold
of J3** and that $ = SB. In view of Lemma 3.6, ^ is a maximal two-
sided ideal of 5**.

5.4. LEMMA. 7/ e is an identity for B then π(e) is an identity
for 5**.

Proof. One verifies that, for / e B*, </, e> = / = [7r(e),/]. From
this it readily follows that π(e)F = Fπ(e) — F for every F e 5**.

Suppose now that JB** is commutative and B has an identity. By
Lemma 5.4, so does I?**. Let 9Jΐ(2Jί2) be the space of maximal ideals
of J B ( 5 * * ) . Each M2 e 3Dΐ2 determines a unique maximal ideal τr*(M2) of
β by the rule x[π*(M2)] = π(x)(M2), x e B. This is the "adjoint trans-
formation " of 3Jί2 into 9Ji induced by the mapping π of B into B** (see
[7, p. 76]). As shown there, π* is continuous.

5.5. THEOREM. Let B** be commutative and B contain an identity.
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Then 7Γ* maps 3J?2 continuously onto 3Jί; π* is a homeomorphism if and
only if every maximal ideal of B** is w*-closed.

Proof. Let Mem. By Theorem 5.3, the w*-closure of π(M) is
an element M2 e 9J?2 and it is clear that π*(M2) = M. Thus π* maps 3Ji2

onto 9Ji. Let 2S2 be the set of M2 e 3)?2 which are w*-closed. Since
7r*(3B2) = 3K, we have 2B2 = 9Ji2 if π* is one-to-one. Suppose that
m, = 2Jί2. Let M2 and Ml e 2Jf2 where π*(ikf2) = π*(Mfi. Clearly M2 D
π(π*(M2)) so that the w*-closure of the latter set is, by Theorem 5.3,
M2. Hence M2 = Mi.

That π* can be a homeomorphism in the case of a non-trivial algebra
B is seen from the example of § 4 (adjoin an identity to that B). In
general π* is not one-to-one. For a case in point consider B — C(X)
where X is compact. It is known that I?** is of the form C(Y) where
Y is compact (see [1, Theorem 4.8] or § 7). Suppose that π* is one-to-
one. From the relation x(π*(M2)) = π(x)(M2) it follows that π(B) contains
all continuous functions on ^Jl2 or τt(B) = B**. But this implies that
X is a finite set.

5.6. THEOREM. Let 9R(5R**) be the radical of B(B**). Then ττ(3t) =
5R** Π 7ϋ(B) if B is commutative or satisfies the descending chain condi-
tion for left ideals.

We believe this theorem true for any Banach algebra B. First we
have a preliminary result.

5.7. LEMMA. An element x e B is left (right) quasi-regular if and
only if π(x) is left (right) quasi-regular in I?**.

Proof. Let LX(RX) be the operation on B of left (right) multiplica-
tion by x and let / be the identity operator acting on B. For Fe B**
let LF(RF) be similarly defined. Note that </, x} (y) = /(Lx(y)) so that
</, x> - Lί(/) f feB*,x,yeB. Then, for Fe J5**, π(x)F(f) - [F, /](») =
F(ζf9 x» = LΓF(f). Hence π(x)F=LΪ*(F). A similar argument shows

Suppose that π(a?) is right quasi-regular in J5** where π(x) + F —
π(x)F=0. For any G e B * * we have G - (π(x) + F - π(x)F)G = G
which can be rewritten as

(5.1) (I** - LX**)(I** - L,)(G) = G .

It follows that /** - L Γ is a mapping of 5** onto 5**. By the theory
of linear operators I — Lx maps B onto I?. Hence there is exists y e B
such that (/ — Lx)y = — # or α + y — xy = 0.

Suppose that π(#) is left quasi-regular where ττ(#) + F — Fπ(x) — 0.
Arguing as before we have
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(5.2) (I** - R**)(I** - RF)(G) = G

and can show that x is left quasi-regular.
It follows that, for x e B, the spectrum of x as an element of B

is the same as that of π(x) as an element of 5** . Moreover x is in
the radical of B if π(x) lies in the radical of B**.

We turn to the proof of Theorem 5.6. Suppose that B is commuta-
tive and x e 3ΐ. By Lemma 3.9, π(x) lies in the center of i?**. Let
p(G) denote the spectral radius of an element G e I?**. Since π(x)
permutes with G, p(π(x)G) ^ P(π(x))p(G) = 0. It follows that π(x)G is
quasi-regular for all G e 5 * * whence π(x) e 3ΐ**. Next suppose that B
satisfies the descending chain condition on left ideals and x e ίR. Then
x lies in a nilpotent left ideal. It follows from Theorem 5.2 that π(x) e 5R**.
By Lemma 5.7, 7r(3t) 3 3ΐ** Π

6* Extension of mappings. Let Bt and B2 be two Banach algebras.
It turns out that if T is a continuous homomorphism of Bλ into B2 then
T** is a homomorphism of B** into B2**. This phenomenon fails, in
general, for anti-homomorphisms.

6.1. THEOREM. Let Bλ and B2 be two Banach algebras. Let T be
a continuous homomorphism of Bλ into B2. Then Γ** is a homomor-
phism of B** into B2*.

Proof. Let F, G e £ * * and g e B2*. We wish to show that T
T**(F)T**(G). We have

(6.1) T**{FG)(g) =

and

(6.2) T**(F)T**(G)(g) = Γ**(F)([Γ**(G), #]) - F(Γ*([Γ**(G), g])) .

Thus the desired relation follows if we verify

(6.3) [G, T*(<7)]= T*([T**(G),(/])

for all G e £ x**, ^ e 52*. Let ΛJ G BX. NOW [G, Γ*(flf)](a;) = G«Γ*(flf), » »
and Γ*([Γ**(G), flr])(a?) = T**(G)«<7, Γ(aj)» = GT*«^, Γ ( φ ) . Therefore
(4.3) holds if we can show

(6.4) <Γ*(ff)f x> = Γ*«g, Γ ( φ )

for all g e B*, x e Bx. Let y e Bx. Then <Γ*(flf), a?>(y) = T*(g){xy) =
g(T(xy)) while Γ*«g, T(x)y)(y) = g(T(x)T(y)). Since Γ is a homomor-
phism, (6.4) is valid.

6.2. THEOREM. Lei T be a continuous anti-homomorphism of Bx
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into B2. Then Γ** is an anti-homomorphism if and only if F2G2 =
G2 F2 for any pair F2J G2 in the range of T**.

Proof. For the notation see §2. Suppose that the F2G2 = G2-F2

condition holds. Let F,G e B** and / e B2*. Then T**(FG)(f) =
F([G, Tf]) while

T**(G)T**(F){f) = T**(F)-T**(G)(f)

= T**(F)([T**(G)\f]) = FT*([T**(G)\f]) .

To see that T** is an anti-homomorphism it is sufficient then to show

(6.5) [G,T*(f)]=T*{[T**(G)\f])

for all GeB**, feB*. Let x e Bx. We have [G, T*(f)](x) =
G«T*(/),*» while T*([Γ**(G)|/])(aj)=Γ**(G)«/|Γ(ίr)». Therefore
to show (6.5) it is sufficient to show

(6.6) <Γ*(/),α»= T*(</|Γ(aO»

for all / G 5 2 * , a? e Blβ Let y e J5lβ <T*(f), x>(y) = f(T(xy)) and
Γ*«/ | Γ(φ)(i/) =f(T(y)T(x)). Since Γ is an anti-homomorphism (6.7)
is verified.

Assume that T7** is an anti-homomorphism. Suppose that there
exists F19 Gx e Γ**(J5f*) such that ί^Gx ̂  G ^ . There exist F, G e Bf
where Γ**(F) = ί;, Γ**(G) = Gx and, for some/eΰ 2 *, y** ( i Γ ) . Γ **
(G)(/) ^ T**(G)T**(F)(f). But T**(F) T**(G)(f) = F(T*[T**(G)\f])
while Γ**(G)Γ**(,P)(/) = Γ**(FG)(/) = F([G, Γ*(/)]. It follows that, for
some α? e 5,, T*([Γ**(G) |/])(») ^ [G, Γ*(/)](»). However T*([Γ**(G) |/])
(x) - Γ**(G)«/| Γ(aj)» = G(Γ*«/ | Γ ( φ ) ) while [G, Γ*(/)](aj) = G«Γ*
(/),»» so there must exist y e B1 where Γ*«/ | T(x)»(y) Φ <Γ*(/),
»>(!/). However these are equal, which completes the proof.

It is readily verified by the above technique that an involution on
B i.e. a conjugate linear anti-automorphism of period two, can be ex-
tended to an involution on J5** if the multiplication on B is regular.

6.3. COROLLARY. // Bx is a closed subalgebra of the Banach algebra
B2 and the multiplication in B2 is regular then so is that in Blm

Proof. Let T be the imbedding of Bλ into B2. By Theorem 6.1,
T**(FG) = T**(F)Γ**(G) for F,G e Bλ. Now likewise Γ**(G F ) -
Γ**(G) Γ**(F) = Γ**(iΓ)Γ**(<5) since multiplication in S2 is regular.
Therefore r**(G-i^) = Γ**(FG). Since T** is one-to-one, the conclusion
follows.

6.4. COROLLARY, // there is a continuous homomorphism T of the
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Banach algebra Bx onto the Banach algebra B2 and if the multiplication
in Bx is regular then so is the multiplication in B2.

Proof. By Theorem 6.1, T**(FG) = T**(F)T**(G) for all F,Ge B**\
If we give both Bλ and B2 their transposed multiplication we see that
T**(G F) = T**(G)-T**(F). But T**(G-F)= T**(FG). Since the
range of Γ** is all of B2 the conclusion follows from Theorem 6.2.

7 On i?**algebras Let ί be a E*-algebra. We show that the
following theorem is contained implicitly in the work of Sherman and
Takeda [12] on the second conjugate spaces of such B.

7.1. THEOREM. Let B be a B*-algebra. Then £** is a B*-algebra
in the Arens multiplication. The multiplication in B is regular.

Proof. We know that B is also a C*-algebra [9, p. 281]. Follow-
ing Takeda [12] we consider a canonical faithful *-representation x —> x*
of B as operators on a specially chosen Hubert space H where H is the
direct sum of Hubert spaces Hf defined for each state /. Let J3* be
the image of B under this representation. Takeda shows that each
f e B* can be represented in the form

(7.1) f(x) = Σ (x*(h), Vu)
k = l

where each ξk9ηk e H. Conversely any functional of the form (7.1) must
be bounded on B.

Following Takeda further we let W be the closure of I? * in the
weak operator topology. He shows how W can be identified with B**
so that if F e j?** corresponds to the operator T and /is given by (7.1)
then

/π p\ 777/ /»\ r̂̂  / rp/£ \ γ, \

A consequence is that the w*-topology on E** is the same as the
weak operator topology on W. Now consider the multiplication in ΰ "
induced by the operator multiplication TλT2 of two operators in W con-
tinuous in each factor in the weak operator topology if the other factor
is held fixed. It follows by a remark of Arens [2, p. 844] that the
multiplication in ΰ * * corresponding to the operator multiplication in W
must be the Arens multiplication in j?**. Furthermore the multiplica-
tion in B is regular [2, Theorem 3.3].

7.2. COROLLARY. Let B be a complex commutative semi-simple
Banach algebra which is complete in its spectral radius norm. Then
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B** is commutative and semi-simple.

Proof. As an example consider A the Banach algebra of all complex-
valued functions continuous in | z | ί§ 1 and analytic in | z | < 1 where
11/11 = sup I f(z) |. Corollary 7.2 asserts without further computation that
A** is commutative and semi-simple.

From the hypotheses on B we may assume that B is a closed sub-
algebra of the commutative 5*-algebra C(SDΐ) of all complex continuous
functions vanishing at infinity on the space 3Ji of regular maximal ideals
of B. As noted in Theorem 7.1 the multiplication in C(Wΐ) is regular,
so that, C(3Ji)** is both commutative and semi-simple. By Corollary 6.3,
I?** is algebraically isomorphic to a subalgebra of C(9Jί)**.
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