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1. Introduction. Let Mlt , Mn-λ denote (n — 1) bounded closed
sets in En. Busemann [1] has established the expression

(1.1) I ΛTX1 — I ΛΓ.-x I =

(n - 1)!
2

- ( (ί ί T(z, Pl, .., p^dF-1 . dV

where | M{ | is the ^-dimensional Lebesgue measure or volume of M{.
On the righthand side M^u) is the cross-section of Mi with the hyper-
plane through z normal to the unit vector u, the point p{ varies in M^u)
and the differential dVp'1 is the (n — l)-dimensional volume element of
Mi(u) at Pi. The final integration is extended over the surface Ωn of
the solid-unit sphere Un and dωl is the area element of Ωn at point u.
By T(z, plf , pr) we will denote the r-dimensional volume of the simplex
(possibly degenerate) with vertices z, plf

 β ,ί>r.
Let

77-772

(1.2) πr=
 π

Γ(r/2 + 1)

For n ^ 3, Busemann also shows by Steiner's symmetrization that

(1.3)

for nondegenerate convex bodies M^ where the equality sign holds only
when the Mi are homothetic solid ellipsoids with center z. Here | M{{u) |,
of course, denotes the (n — l)-dimensional volume of M^u). In this
regard we will also, as a matter of convenience, not index lower di-
mensional mixed discriminates and mixed volumes since the dimension
will be evident from the number of components.

The primary purpose of this note is to reinterpret (1.1) as an inte-
gration of the type (1.3) retaining the equality sign. This is given in
§ 3 by (3.20). In addition other integral expressions and inequalities are
derived which are geometrically of the same type as those considered
above.

2. FencheΓs momental ellipsoid. Let M be a bounded closed set
with positive volume. The centroid s of M is defined by its rectangular
coordinates
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(2.i) 8i = J L \x
I M\ JM

If Lv is a v-flat through the origin z, then the second moment of M
with respect to Lv(0 ^ v ^ n — 1) is defined by

(2.2) I(M, Lv) - ( r2 sin2<pdVx

n

where the distance zx is r and <p is the angle between the ray zx and
Lv (for v = 0, we define £> = π/2). By the same type of integration tech-
nique in [1, pp. 5-6], the reader may verify that

(2.3) lLJL
n + 2

where Un has center z; a calculation which will be used later.
The matrix AM given by

(2-4) ^ -

is positive definite since

y-AMy = -\--\ (ΣxiViγdVx

n ,

where y is a column vector and yτ is its transpose. The ellipsoid with
surface xτAMx = 1 will be called FencheΓs momental ellipsoid and its
polar reciprocal with respect to Ωn given by xτA^x = 1 will be called
simply FencheΓs ellipsoid. This name is chosen since W. Fenchel first
observed the affine character of this polar reciprocal (unpublished):

(2.5) Let M be transformed into M by a central affinity with matrix
B. If F and F are the Fenchel ellipsoids of M and M respectively,
then this central affinity also carries F into F.

To see this, it may be observed from (2.4) that AM = BAMBr or
AΫ — (B-ψA^B*1 which completes the proof.

If I FI is the volume of the Fenchel ellipsoid F of My then

(2.6)

The result (2.5) enables one to prove readily that

(2.7) π-21 F | 2 - det (AM) ^ (n + 2)-nπ;> \ M| 2

with equality only if, except for a set of measure zero, M is a solid
ellipsoid with center z. For if we transform M into M by a unimodular
central affinity so that F is a sphere, then
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n\M\ }M

Comparison of \jr*dV2 with that for a sphere with center z and volume
JM

\M\ proves (2.7).
We will adopt the same notation for mixed discriminates as in [2,

pp. 51-57] where the reader will find an exposition of their properties.
Consider the r quadratic forms q{ — xτAix, ί — 1, , r, where Ak —
[alf] is a real symmetric matrix. For any real \, , λr, set q = \q± +

r

• + \qr = xτAx where A — Σ KAk. The discriminant D(q) = det (-A)

can be written
D(q) = >

where D{qh, -—,qin) is independent of the order of the qije and is called
the mixed discriminant of qh, , qin. For n forms q{ we have

(2.8) D(q19

where (ix i«) is a permutation of (1 n).
Now consider n closed and bounded sets Af< with positive volume and

let (7i = aj2ΆΛfίa; be the quadratic form associated with the Fenchel momen-
ta! ellipsoid of M{. By (2.4) and (2.8) we have

(2.9)
w! \MΛ

2J \ I ίci'1' #ί>
(ij. .ljj) Jiff Jifj

1 ( . . . f
n ! I M , ••• IMnl Jin Jjfw

fl?! Xγ

Since

(2.10)

z, x{1), . . , x{n)) =: ± (llnl) det (xlj)) we then have

The fundamental inequality for mixed discriminants (see [2, p. 53]) is:
(2.11) If the forms q19 •••, <jn_i are positive definite and Q is any sym-



1538 C. M. PETTY

metric form, then

D\qλ, , qn-lf Q) ^ D(qlf , qn-lf g ^ D f e , , qn-2, Q, Q)

where the equality sign holds only if Q — \qn-x.
If we set

(2.12) Dp(q, Q) - D(qlf , qΛ-p, 0^

V

then for n positive definite forms q{, (2.11) generalizes to

(2.13) Dr(q19 , qn) ^ Π Dr(q9 ?•-*), r = 2, 3, • , n

with equality only if qn_k = Xn-kqn for k = 0, , r — 1.
The proof of (2.13) and the condition for equality proceed by induc-

tion from the case r ~ 2. The proof is analogous to Alexandrov's gener-
alization [2, p. 50] of a corresponding inequality for mixed volumes and
consequently will be omitted here.

If we now set

(2.14) W ( M 1 , - - - , M n 9 z ) = \ . . . ( T*(z,Pl, - ,Vn)dVzr.n

a n d

(2.15) WP(M, MkJ z) = W(Mlf , Mn-P, M^JM,, z) ,

V

then by (2.13) and (2.10) we have

(2.16) W r ( M l f , M n , z) ^ Π Wr{M, M n . k 9 z ) , r = 2 , - - . , n

with the equality sign only if the Fenchel ellipsoids of Mn_k are hαmo-
thetic for k — 0, , r — 1. Applying (2.16) to the case r = n and using
(2.10) and (2.7), we have

(2.17) [ I M11 \Mn I γn+2)ln ^ nlπl(n + 2)TO T F ^ , . . , M%, z)

with equality only if (except for a set of measure zero) the M{ are
homothetic ellipsoids with center z.

The reader will find other inequalities of the above type in [3, pp.
70-71].

3 Centroid surfaces. As before, M is a bounded closed set with
positive volume. An oriented hyperplane L(u) through z normal to the
direction u (u Φ 0) bounds a closed half-space lying on its positive side.
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The intersection of this halfspace with M will be denoted by C{u).
Consider the function

(3.1) ff(w I M\

Since

(a)

(b) iϊ(/m) = μH(u) f or μ > 0 ,

(c) i?(^ + v)

iϊ(%) is the supporting function (s.f.) of a convex body if* (see [4, p.
26]), which is nondegenerate and has center z. Let Po be the supporting
plane (s.p.) to if* in the direction u{0), the supporting function of if* Π Po

is given by the directional derivative

(3.2) 2 W » ; «) = Mm

M\

Since H'(u{0);u) is a linear function of the ui9 Po touches if* in a single
point and thus every s.p. of if* is regular and K* is strictly convex.
(See [4, pp. 25-26].) The derivatives dH/dUi are continuous, homogeneous
of degree 0, and if y is the point of contact of the s.p. to if* in the
direction u, then

(3.3) „, = ?*?:= i f Xidv;--±-\ x
dUi \M\ Jew I M\ jm-u)

We will call if* the centroid body of M (with respect to z) and the
surface of if * will be called the centroid surface of M. One may observe
that if M happens to have center z, then the centroid surface of M is
precisely the set of all controids of C(u) for u e Ωn. In general, let s(1)

and s(2) be the centroids of C(u) and C(—u) respectively, the y is the
center of mass of the two points sω and —s{2) provided with mass

C(u) I /1 MI and | C(-u) \I\M\ respectively. If | C(u) | = 0, we will define
the centroid of C(u) to be the point z.

It is evident that if M is transformed into M by a central affinity,
then this transformation also carries the centroid surface of M into the
centroid surface of M.

We now wish to impose additional restrictions on M such that H(u)
has continuous second partial derivatives and the surface of if * has
positive Gauss curvature. The following two conditions are sufficient for
this purpose:
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(a) The set M(u) has positive (n — l)-dimensional measure for all
ue Ωn.

(b) For any u{0) e Ωn and any sequence uU) -• u{0), the limtt(i)_tt(0) M(n{i))
coincides with M(uw) except for a possible set of zero (n — l)-dimensional
measure.

To simplify the calculation of the second partial derivatives at a
point u{0\ we introduce what Busemann [2, p. 57] calls "standard coordi-
nates." With the same origin and orientation, the xn axis is chosen
such that u[Q) = = <°-i = 0 and < 0 ) > 0. It then follows from (3.3)
that

(3.4) dm{u^) = yg(^°>) = 0 β

θukdun dunduk

Although standard coordinates vary from point to point, the end result
(3.9) is expressed geometrically and therefore independent of the coordi-
nate system.

For j < n, let u = (0, , 0, ujΊ 0, , 0, u{

n

0)) and set

N, = C(u) n C(u{0)), JVί* = C(-u) n C(-u ( 0 ) ), iV2 - C(u(0)) - Nlf

jV2* - C(-u) - 2Vi*, iV3 = C(u) - Nlf ΛΓ3* - C(~u^) - N*.

Except for a set of zero w-dimensional measure, N2 — N* and Nz = JV3*.
By (3.3) we have for i, j < n

We will calculate the limit of (3.5) as either % - > 0 + or %->0 —. In
either case for x e N3, XjUj ^ 0 , xn ^ 0 and for a? e JV2, χsuj ^0,xn^ 0,
For — π/2 < vn < ττ/2, let the hyperplane #„ = (tan vn)x5 intersect M
in M+(vn) for α?Λ ^ 0 and in M'{vn) for a?w ^ 0. Also the volume element

1 of this hyperplane is

(3.6) dVΓ1 = da?x da?n_x sec ^w .

We introduce new coordinates v19 , vn by x{ — v{ for ΐ = 1, , w — 1
and a?n = T ytanv,, which uniquely define the ^ with — ττ/2 < vπ < 7r/2
for all a? for which #y ^ 0. The Jacobian J of this transformation is
J = Vj sec2 i;n. Also define a,0^a< π/2, by u^ tan α = | Uj |. Then
I / |/% = ±Vj sec2 ^n/ui0) tan a with the plus sign for xe N^ and the minus
sign for x e N2. The difference quotient (3.5) is, consequently, given by

O sec vΛ \ ViVjd F^" 1 )dv
0 \jM-(vn) J
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\ secvn(\ viVjdV*"1)dvn\
JO \jM+(vn) / J

and since the integrands are continuous functions of vn by assumption
(b) we have

(3.7)
M

Now let H{ί)(u) be the supporting function (3.1) for the set Mi9

i = 1, , n - 1. Set i ϊ = \ff(1) + + λ^ίF-1*, then D^H) is de-
fined as the sum of all principal (n — 1) rowed minors of the matrix Hi3

(with components evaluated for a unit vector) and is a homogeneous
polynomial of degree (n — 1) in the λ<. (See [4, p. 59] or [2, pp. 45-46].)
The quantity D(H{1), , H{n~1]) denotes the factor of \-"Xn.1 in
Dn^(H) divided by (n - 1)!. If we calculate (3.7) for each of the H{i)

using the same standard coordinates we have, because of (3.4),

(3.8)
1) ! (ίi-. »n-i)

In the same way as we derived (2.10), we find for any ueΩn,

(3.9) D(H{1\ . . . , fir(-1})

(n- 1)!2%"1

\MM'~\UnlW

Tt(z>

Ey comparison with (2.10) we observe that

(3.10) D{HW, . . . ,#<-») = ? !

where q{ is the quadratic from associated with the Fenchel momental
ellipsoid of Mi{u) in the (n — l)-dimensional space L(u).

From (3.9), we may give an integral interpretation of an elementary
symmetric function {R1 Rm) of the principal radii of curvature of the
centroid surface of M. With H given by (3.1) we have for m = 1, • ,
n - 1 (see [4, p. 63]),

(3.11) {R, Rm) = n ~ 1 u\,H,

n — m — 1 m

Set M - Mλ = - = Mm and Un = Mm+1 = . . . = i l ί^ . Since

(3.12) T ^ " L | ΐ t J a : | d K = : faΐϊί | M | >
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we obtain

- 1\ (n - 1)12-'
)

( t ( ( τ\z, ?„
JM(U)JM (u)J πn(u) J Un(u)

1 dv;-\.

By integrating successively over the UJu) and using (2.3) applied to
the appropriate dimensions we obtain

(3.13) {R1 RJ =

for m = 1, , n — 1.
We may also give an interpretation of each individual principal radius

of curvature. First we show:
(3.14) The Dupin indicatrix of the centroid surface of M{wrtz) at

the point of contact y of the tangent plane in the direction u is homo-
thetic to the Fenchel ellipsoid (wrt z) of M(u) in the space L(u).

A central affinity sends homothetic figures in parallel hyperplanes
into homothetic figures. Due to the affine nature of Fenchel ellipsoids
and centroid surfaces, we need only show that if the Fenchel ellipsoid
of M(u) is a sphere, then the Dupin indicatrix at y is a sphere. However,
this follows at once from (2.4) and the representation (3.7) in standard
coordinates since the principal radii of curvature R{ must satisfy

Hn~R Hλn

: :

•
Hnl Hnn — R

where H{j are evaluated for a unit vector. (See [4, p. 61].)
Now, let the line through z, parallel to the ith principal direction

of the centroid surface at y, be normal to the (n — 2) space Lw_2 through
z in L(u). Then Rt is given by

(3.14) Rt = Λ-I(M(u), Ln_2)
M\

where I(M(u), Ln-2) is the second moment, in L{u), of M(u) with respect
to Lw_2.

Returning to the (n — 1) bodies Mlf , Mn-λ for which we obtained
(3.9), let H{n)(u) be the supporting function (3.1) corresponding to any
bounded closed set Mn with positive volume. Then (see [2, p. 46]),

(3.15) V(K*, . . . , lΓ*) = rc-1( H{n)D(Hω, . • •, H^dωl, \ u \ = 1 ,
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V{K?, , K%) is the mixed volume of Kf, , K*. Using (3.9),
{3.15), (3.1) and the integration technique of Busemann in [1] where it
is shown that

;n_λ = ( n - 1)1 T(z, Pl, ., p ^ d V^1 - - d V

we obtain

(3.16) V(K*, ---,K:)

Since both sides of (3.16) vary continuously with the Mi9 we may extend
this result to any n bounded and closed sets Λfs with | M{ \ > 0. Briefly,
we may assume z e M{ and let ε5 > 0 be a sequence such that εy -> 0.
A covering of open spheres of radius εά with centers in M{ may be
reduced to a finite covering since Mi is compact. Conditions (a) and (b)
are then satisfied for the closure of such a finite covering and the ex-
tention of (3.16) follows.

There is an alternate proof of (3.16) which proceeds directly from
(3.1). We did not resort to this at the outset since the intervening
results are of interest in themselves. Briefly, the alternate proof is as
follows: We approximate the H{i)(u) of (3.1) by

such that E{i k) -* H{%) as k -* + oo. Now | u x \ is the supporting function
of the segment x with end-points x and —x. Also, by induction, one
shows that

V ( x i l ] , . - . , x ( Λ ) ) = 2 n T ( z , x { 1 \ - , x { n ) ) .

The function E{i'k) is the supporting function of the linear combination

Γor Xj > 0 the linear combination Ek = \E{1,k) + + λΛ E{ntk) may also
be expressed as a linear combination of the nk segments xUi). Expres-
sing the volume of Ek as a polynomial in the λ* in two ways we have
Iby comparing the coefficient of λ2 Xn

, E{ntk))
k k

v ... v

and (3.16) follows in the limit as k-*+ oo.
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The formula (3.16) may be substituted into inequalities of mixed
volumes to yield inequalities of the integrals. Since the number of times
a component appears on each side of a mixed volume inequality is always
the same, the coefficient on the righthand side of (3.16) cancels leaving,
as in (2.16), inequalities among the integrals only. However, in this
case when the uniqueness theorem (4.1) applies, the condition for equality
may be passed through the K* to the M{.

In [1, p. 11], Busemann shows that if M is a nondegenerate convex
body, then

(3 17) ί-- \j(z'p- '''p")dv^' -dV^ =
with equality only if M is an ellipsoid with center z. We define the
expanded centroid body K of M to be the dilation of K* about z by
the factor (n + l)πJ2πn^.1. By (3.12), we see that this is the factor
which dilates the centroid body of an ellipsoid with center z into coin-
cidence with the ellipsoid.

From (3.16) we obtain a reinterpretation of (3.17) by observing the
identity n\πnπn-λ = 2nπn~1:

(3.18) If K is the expanded centroid body of a nondegenerate convex
body M, then \K\ ^ \M\ with equality only if M is an ellipsoid with
center z.

The convexity of M is not an essential feature in (3.18) and the
Steiner symmetrization used to prove (3.17) may be extended to include
nonconvex sets.

Using the expanded centroid bodies K{ of Mi9 we may write (3.16)
as

(3.19) l i l ί i l ---\Mn\ V(Klf--,Kn)

and if we define K{ to be the point z if | M{ \ = 0 then (3.19) holds for
any bounded closed sets Mi9

Substituting (3.19) into (1.1) we have
(3.20) THEOREM. If K^u) is the expanded centroid body of M{{u)

in the (n — l)-dimensional space L{u), then

n

Λ Γ n _ x I

\ I Mx(u) I . I Mn^{n) I

The inequality V^iK^u), , Kn^(u)) ^ | K^u) \ .. | Kn^(u) \ (see
[2, p. 50]) and (3.18) reproduces (1.3).
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There are two special cases of (3.20) of particular geometric interest.
First, set M= M1 = = Mu-19 then

(3.21) I i lίh- 1 = — iE l l ( I M(u) I""11 K(u) \ dωn

u .

Next, for n ^ 3, set M = Mλ = = Mn-2f Mn-λ = Un, then

(3.22) I M r 2 = 1 * £ • [ I M(u) | -

where S(K(u)) is the surface area of K(u) in the space L(u).

4. Uniqueness theorems. In order for K* to determine M, additional
restrictions on M are necessary as may be seen by consideration of a
set M bounded by two concentric spheres.

(4.1) THEOREM. Suppose M{ (i = 1, 2) can be represented in polar
coordinates by 0 ^ r ^ ft(^), ue Ωn where Pi(u) is an even, i.e., ^(w) =
Pi{—u), continuous function on Ωn. If the centroid surface of Mλ(wrt z)
is identical to the centroid surface of M2(wrt z), then Mx and M2 are
identical.

(4.2) THEOREM. Suppose M{ (i = 1, 2) have the same representation
as in (4.1). If \ MΎ{u) \ = | M2(u) \ for all ue Ωn, then Mx and M2 are
identical.

The latter theorem is a result, for n — 3, of P. Funk [6].
We first prove (4.1). From (3.1) and the assumption on the represen-

tation of Mi we have

Consequently, (4.1) follows from the uniqueness of the solution of an
integral equation of the first kind. Namely:

(4.3) THEOREM. Let h(τ) be an even, continuous function on Ω .
If for unit vectors u and τ

\ \u τ\ h{τ)dωn

τ = 0

for all ue Ωn, then h{τ) vanishes identically.
The result (4.3) is well known for n = 2, 3 and the recent extension

of surface harmonics to ^-dimensions, in particular the Funk-Hecke
theorem, enables one to prove (4.3) for all n. There are two steps in
the following proof (which applies for n ^ 3). First, from the com-
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pleteness [5, p. 241] it suffices to show that

( SM(τ)Hτ)dω*v = 0

for all the linearly independent surface harmonics Sm(r) of degree m and
for m = 0, 1, 2, •••. Since h(τ) is an even function we need only to
consider, now, even m. Next, from the Funk-Hecke theorem [5, pp.
247-248] we have

ί \u τ\ Sm(u)dωl = XmSm(τ)

where

(4.4) Xm = (4πymlΓ(v) f' _ dχ

(m + 2v — 1)! J-i

and v = (n — 2)/2 i> 1/2. Thus, we need only to verify that Xmφ 0 for
m = 0, 2, 4, . For m = 0, Co

v(^) = 1 and λ0 φ 0. For m > 0,

where αm,v ^ 0. See [5, p. 236] for the explicit expression of the coef-
ficient α m v . Thus the integral in (4.4) is

and using integration by parts

im + v- l/2\
i».v = 2 α m > v ( - l ) — (m - 2)! m

I 1

for m = 2, 4, 6, which completes the proof.
The result (4.2) is clearly a consequence of the following spherical

integration theorem.
(4.5) Let f(τ) be a continuous even function defined on Ωn. If

On(u)

for all u e Ωn, then f(τ) vanishes identically.
A proof of (4.5) for n = 3 can be found in [4, pp. 136-138]. How-

ever, a proof for all n ^ 3 is easily obtained from (4.1). To see this,
set g(τ) = f{τ) - [min/(r)] + 1 > 0. Let p{τ) = [g(τ)Y'*+1) and let M b e
the set whose polar coordinates satisfy O ^ r ^ p(τ), τ e Ωn. Using (3.13)
for m = 1, the sum of the principal radii of curvature of the centroid
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surface of M wrt z may be expressed, in this case, by

B, + + Rn-λ = * , „ . ί oWdωr1

(n + 1) I M\ jon(u)

and, by hypothesis, this is a positive constant for u e Ωn. However,
this implies (see [4, pp. 117-118]) that the centroid surface is a sphere
and by (4.1), M is a solid sphere and g{τ) is a constant which completes
the proof.
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