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Introduction. The main objective of this paper is to present some
results concerning the asymptotic behavior of the integrals of some
systems of ordinary differential equations.

As Wazewski's theorem, used in our work, is not very well known,
we state it here, giving first some definitions and notations.

HYPOTHESIS H. (a) The real-valued functions /*(*,#!,•••, xn),
ί = 1, , n, of the real variables t,x19 , xn, are continuous in an
open set Ω c Rn+1.

(b) Through every point of Ω passes only one integral of the
.system

and (ί, x) e Ω .

Let ω be an open set of Rn+1, ω c Ω and let us denote by B(ω, Ω)
the boundary of ω in Ω.

Let Po: (t0, x0) e Ω. We write I(t, Po) = (ί, x(t, Po)), where x(t, Po) is
the integral of the system x = f(t, x) passing through the point Po.

Let ((x(P0), β(P0)) be the maximal open interval in which the integral
passing through Po exists. We write

I(Δ, Po) = {(t, x(t, Po)) I t e Δ\

for every set A contained in (cc(P0)f /S(P0)).
We say that the point Po: (tQ, x0) e B(ω, Ω) is a point of egress from

ω (with respect to the system x — f(t, x) and the set Ω) if there exists
a positive number δ such that I([t0 — δ, t0), Po) c ω; Po is a point of
strict egress from ω if Po is a point of egress and if there exists a
positive number δ such that I((tQ, t0 + δ], Po) c Ω — ω. The set of all
points of egress (strict egress) is denoted by S(S*).

If A c B are any two sets of a topological space and K: B -> A is
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a continuous mapping from B onto A such that K{P) = P for every
P e A, then K is said to be a retraction from B into A and A a
retract of J3.

THEOREM OF WAZEWSKI. Suppose that the system x = f(t, %) and
the open sets ω c Ω c Rn+ι satisfy the following hypotheses:

(1) Hypothesis H.
(2) S=S*.
(3) There exists a set Z c ω u S such that Z f] S is a retract of

S but is not a retract of Z.

Then there is at least one point Po: (t0, x0) e Z — S such that I(t, Po)
c ω for every t0 <L t < β(P0).

The theorem of Wazewski [6, Theoreme 1, p. 299] is actually more
general than the one stated above.

If fi(t, x19 , xn), i = 1, , n, are complex-valued functions of the
real variable t and of the complex variables x19 , xn, the ^-dimensional
complex system x = f(t, x) can be considered as a 2^-dimensional real
system, so that the theorem of Wazewski is also extensible, in a
natural way, to complex systems [5, p. 19. § 1 and p. 21, § 2].

The most difficult part in the applications of the method of Wazewski
is, in general, to verify that S = S*. To accomplish this Wazewski
introduced the concept of a regular polyfacial set [6, § 14 p. 307 and
§ 15, p. 309]. However the distinction established by Wazewski between
positive and negative faces has certain inconveniences. In some appli-
cations of the method of Wazewski there appear sets ω such that S = S *
but whose faces are only "almost positive'' and "almost negative"..
We thus have to work sometimes with sets ω that are similar, in some sense,
to the regular polyfacial sets and that satisfy the condition S = S*.

In the first part of our work we give a generalization of polyfacial
regular sets eliminating the distinction between positive and negative
faces and such that the main theorem concerning the polyfacial regular
sets [6, Theoreme 5, p. 310] remains valid. We observe that the sets
ω considered in Z. Szmydtόwna's paper [5, §4, Theoreme 1, p. 24]\
in our Theorem II—1 and in Barbalat's paper [1, Theoreme 1, p. 303;
Theoreme 2, p. 305] are generalized regular polyfacial sets, in our
sense, but are not regular polyfacial sets.

Szmydtόwna [5, Corollaire 1-Remarque 2, p. 30] proves a theorem

1 Szmydtόwna's Theorem 1 is false. We observed that the proof is wrong because
the statement: "La frontiere de ω touchant celle de Ω exclusivement sur le plan t — °°
•••" [5, p. 28] is false.

J. Lewowics [3], developing a counter-example suggested by J. L. Massera, has shown
that the theorem is actually false. Nevertheless, Theorems 2 and 3 deduced from Theorem
1 are correct because, in the particular case of linear systems x = A(t)x, with A(t) defined
for T ^ ί < oo, the solutions are defined for all T ^ t < °°.
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which generalizes a theorem of Perron. In part II of our work (Theo-
rem II-l) we obtain the same conclusion but starting from hypotheses
different from those of Szmydtόwna.

Note2. Our Theorem II-l improves a result of N. I. Gavrilov. I.
M. Rapoport in his book ' O n some asymptotic methods in the theory
of differential equations'\ Kiev (1954) has also studied problems of this
type. For some reference to their work to see "Forty years of Soviet
Mathematics'', Moscow (1959), Vol. i., pp. 520-521.

Our Theorem Π-2 follows the same line of ideas.
Theorem Π-3, due to Professor J. L. Massera, shows that in the

case n = 2 the asymptotic behavior can be described more completely.
Consider two systems

(1) V = A(t)y

(2) x = A(t)x + g(t, x)

where A(t) is a continuous matrix for t Ξ> T and g(t, x) a continuous
vector-function in Ω = [T, oo) x R2n.

Suppose that g(t, x) satisfies some condition ensuring the uniqueness
of the solution through each point Po e Ω and that all solutions are
defined for T ^ t < oo. We say that (1) and (2) are asymptotically
equivalent if there exists a homeomorphism φ from the plane t = T
onto itself such that if Qo = φ(P0) then lim [x(t, Po) - y(t, Qo)] = 0 [4,
Cap. IX, § 4, p. 634].

In part III of our work the main result is the establishment of a
condition that implies the asymptotic equivalence between two linear
systems (Theorem III-3).

The author is deeply indebted to Professor J. L. Massera for his
constant guidance and invaluable help during the preparatation of this
paper, the result of work done at the Instituto de Matematica y
Estadίstica, Montevideo, Uruguay

PART I

Let the real-valued functions

f%(t,xlf •••,&„), i = 1, •••,*& ,

of real variables t, xx , xn belong to Cp, p ^ 1, on an open set Ω c
Rn+1, i.e., all partial derivatives

| ί ί — (Po + A + + Pn = k £ p)

2 The information given in this Note is due to the referee. We have not had
access to the above works. We are indebted to him for this.
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exist and are continuous on Ω.
Consider the differential system

(I) *=f(t,x)

where

with (t, a?) e β.
Let g(t, x) be a real-valued function belonging to Cp+1 on Ω, let

-Po (ίo, Xo) e 42 and let α(£) be the integral of system (I) passing'through
the point Po. We set φ(t) = #(£, »(ί)); since /(£, α) e Cp and #(«, a?) e Cp+1

it follows ?>(t) 6 Cp+1 on (α(P0), /5(P0)).
The gth derivative, q ^ p + 1, of ^(ί, #) at the point Po: (tQ, x0) with

respect to the system (I), is by definition

and is denoted by [Dfag(P)]PQ .

Let Hi(P) — Hi{t, x), i — 1, , m, be functions 6 Cp+1 on the open
set Ω c Rn+1.

Let

ω = {P e β I JSi(P) < 0, i = 1, , m}

Λ = {Pe 12 I J3i(P) - 0, H,{P) ^ 0, i = 1, . , m}

The Γ^ are called faces of α).
Such a set o) will be called a generalized regular polyfacial set

relative to (I) if, for each i — 1, , m and each Po: (ί0, aj0) 6 Γf, the
following alternative holds:

(1) The smallest index q ^ p + 1 such that [Dq^Hx(P)]PQ Φ 0 is
odd and the corresponding derivative is positive;

(2) Po is not a point of egress.
Let Lif Mi be the corresponding sets of points. Useful criteria to verify
Po e Mi are:

(a) the smallest index q ^ p + 1 such that [-D?f)fl"ί(p)]P() ^ 0 is
either odd with a negative value of the derivative or even with a posi-
tive value of the derivative;

(b) There exists [α, b] c (a (Po), /3(P0)) such that a < tQ ^% and
J([α, 6], Po) c Γ i β
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LEMMA 1. If ω is a generalized regular poly facial set relative
to (I),

Proof. Since Γi = Lt U Mt , B(ω, Ω) c U"=i Γit

it is enough to show that any point Po belonging to this last set is a
point of strict egress. For such a Po, J = {j | Po e L3) Φ φ. If j e J,
Hj(P0) = 0 and there exists a δ > 0 such that H3{t, I(t, Po)) < 0 in [ί0 -
8, t0) and £?}(«, /(ί, Po)) > 0 in (ί0, ί0 + δ]. If j φJ,Pύφ Γά whence H^Po)
< 0 and there exists a δ > 0 such that Hά(t, I(t, Po)) < 0 in [t0 - δ, ί0).
There exists therefore a δ > 0 such that 22"i(ί, /(ί, Po)) < 0, i = 1, , m,
te[t0 — δ, ί0), and, for at least one j(εj), H3 (t, Po)) > 0, t e (t0, t0 + δ], so
that PoeS*.

PART II

Consider the linear differential system

Vi = fi(t)Vi + Σ 9i3{t)Vi , i = 1, , n

where the coefficients fif gi3', T ̂  t < oo, are continuous functions (in
general complex-valued) of the real variable t.

By using Wazewski's method Z. Szmydtόwna proved that if

R(fk - fk+i) > 0 , \~R(fk-fk+1)dt= co , k = l , . . . , n - l ,

and

lim ^ = 0 , i,j = 1, . . ,w , fc = 1, . . . , % - 1 ,

then there is a system of w linearly independent solutions (?/u, •• , ^ f c ) ,
A = 1, , n, with \\mt^yiklykk = 0 for ΐ ^ fe [5, Corollaire 1, Remarque
2, p. 30]. This theorem generalizes a theorem of Perron who obtains
the same result requiring the existence of a constant c > 0 such that
R(fk) > R(fk+1) + c, k = 1, , n - 1, and l i m ^ . ^ - 0.

We notice that Szmydtόwna allows the /{, i = 1, , n, to be lar^e
and the gi3 to be small in some sense. In the following theorem we
obtain the same result allowing also the f{ to be large and the g%j to
be small but in a sense completely different from Szmydtόwna's.
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THEOREM II-l. Suppose that the system

n

(II) xt = fi(t)Xi + Σ 9a(t)Xj , i = 1, , f& ,

satisfies the following hypotheses:
(1) 7%e coefficients fi9 gij9 T ^ t < oo, are continuous functions

(in general complex-valued) of the real variable t.
(2) There exists a real-valued continuous function h(t), T g t <

/or all i φ j we have

ι
and

<

S t

h(s)ds
T

Then there is a system of n linearly independent solutions

, Xln(t)

im ôoίCifc/ίCjfcfc = 0 / o r a i ί i φ k.

Proof.
For every fixed integer p, 0 < p S n, we set

ωp = {P: (t, a) I i ̂  i2 - I xP IV(ί) < 0, i ^ p, ί > ί0 ^

where ^?(ί) and t0 will be conveniently chosen so that, for every t g ίOf

9(ί) > 0, φ is diίferentiable, limf_»oo (̂ί) = 0 and ωp is a generalized
regular polyfacial set.

Let

HX(P) = I x, |2 - \xp \φ\t) , i Φ p r

HP(P) — t0 — t ,

it follows that ωp = {P | fl (P) < 0, i = 1, , n).
Set, for q Φ p,

rp= Γ p - {Q: ( ί , x)\x = 0}

- {PI I x J = I xp I 9>(ί), I xt\ ^ I xp I 9>(ί) for i =£ p, t ^ ί0, Xp φ 01 .

An easy computation shows that
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±[D{U)Hq(P)]PeΓq ^ I x, \2<p\t)[R(fq - f9 + gqq - gpp)]

- I xP \2ψ(t)Φ(t) - I χP I V( ί ) Σ 19Pj I -^r

-|^l2ΣI^ l4^4 τ^4^ α I a?β I I xp I

Since | ίcα | = | xp \ <p{t) ^ 1 ^ 1 for j φ p it follows that | xό \ /1 xp \ g
<p(t). As we want <p{t) > 0 and lin^co^Kί) = 0 we can take t0 such that
ψ(t) < 1 for t ^ ί0. Then

— [ D ( I I ) J S i ( P ) ] P e Γ ^\xp \2<p\t)R{fq —fp + gqq — gPP)2

XP \2ψ(P)ψ(t) - I Xp \2φ\t) Σ I gpj I - I ̂ p \2φ(t) Σ I ̂ αi I .

since

φ{t)R(fq — fp + gqq — gpp) — φ(t) — φ(t) Σ I ̂ py I ~ Σ

— φ(t) — p(t)h(t) — #(£) ,

where

β(t) = {Σ I Biΰu - fe) I + I Qu 1} + β"^(ί)-f

in order to have, for q Φ p, [D{ll)Hq(P) e Γq > 0, it is sufficient to choose
<p(t) such that
(A) φ(t) + φ(t)h(t) + flf(ί) - 0.

r oo

<̂ (̂ ) = e-sw \ g(β)eEis) ^§ j g jn ( j e e c j a solution of (A) satisfying the
Jί

conditions 9>(ί) > 0, ψ differentiable and X\mt^φ{t) = 0.
If (ϋp is defined in this way, taking into account that [D{ll)Hp(P)]PeΓ

= — 1 and that the set {Pe Γq\ xp = 0} c Λffl, for g =̂= p, it follows that
ω^ is a generalized regular polyfacial set.

For i Φ p we have

Li = Γi and Lp = Φ ,

Mt = M = {P: (ί, a?) 11 ̂  t0, a? = 0} and Mp = Γp .

By Lemma 1

We choose

^ p = {P: (ί, a?) I ί = τ > t0, xp = x°p φ 0, ] x{ \ g | x\ \ <p(τ), i Φ p} = Π B] ,

where B) is a solid sphere in i?2. We have
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For i Φ p

Zp n [ Γp-M] = {P: (ί, x) \t = τ, xp = < | α\. | = J

, i =£ p} - £ 2 x . . . x BU x Si x B2

ί+1 x x B\

(in the cartesian product above B% is exclued) where S\ is the boundary
of B\ in R\

Modulo homeomorphisms we have therefore Zp = B2n~2 (solid sphere
in R2n~2) and Zp n S = S2w"3 - Boundary of 5 2 ί ι " 2 in i22rι-2, so that Zp [} S
is not a retract of Zp%

There is however a retraction φ: S -+ Zp f] S given by </>(P) = P*,
with ί* = τ, £* = a?J, £* = <p(τ)l<p{t) \ x°p |/| ^ p | -xi9 i ψ p. The verification
is trivial.

By using the theorem of Wazewski we can conclude the existence
of at least one point Po: (r, x0) e Zp — S with /(ί, Po) c ωp for every
ί ^ τ. This means that the solution xp(t) = (xlp(t), * ,xnp(t)) of (II)
passing through Po satisfies

Xjv(t) I < £>(£) for ί ^ τ and i ψ p .

Letting p = l, , n w e find n solutions {x^t), « , «n(ί)) with the
required property. Let us show that these solutions can be taken
linearly independent.

By choosing Zp with sufficiently large τ and x%9 — 1 the absolute
values of the coordinates xip, iΦ p, of the points of Zp can be made
arbitrarily small. We then have

where ε« = 1 and the | ε^ | are smaller than any given positive number
for all i Φ j . This completes the proof

In the following theorem we will look for linearly independent
solutions of (II) with similar properties to those of Theorem II-I but
not necessarily requiring that they form a fundamental set of solutions
of (II).

THEOREM Π-2. Suppose that the system (II) satisfies the following
hypotheses:
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(1) The coefficients fi9 gij9 T ^ t < oo, are continuous functions
(in general complex-valued) for the real variable t.

(2) There exists a natural number r ^ n such that R(fr) = =

-R(Λ), R(fi) ^ R(fr) for all i < r, j J g{j(t) | dt < oo /or αM i =£ y αncZ

Π R(f« - g,Ί) I dt < oo.

Tfc έ/̂ erβ exists s + 1 (r + s = w) linearly independent solutions

Ixlr(t) α ln(

\xnr(t)... xnn(t)l

such that limt^ooXiJxM = 0 f o r a l l i Φ k f k = r, ,

Proof. Given an integer p, r ^ p ^ nf we prooceed exactly as in
Theorem II-l up to the point where we got the expression:

Σφ(t)R(fq -fp + gqq - gpp) - Φ(t) - φ(t) Σ I 9PJI - .^

which we denote by Bq.
As we have R(fq — fp) ^ 0 for all g, 0 < g ^ n, it follows (φ(ί) < 1)

Bq ^ — Φ(ί) — #(£) where i g(t)dt < oo.

Making φ(t) = \ [^(s) + e"s]cίs it follows that φ(t) > 0, φ is differ-

entiable, lim^oβ^ί) = 0 and J?g > 0.
Proceeding as in Theorem II-l we find a set of (s + 1) solutions

(xr(t), •••,#«(£)). Still by a similar reasoning we may show that these
solutions can be so chosen that for a sufficiently large τ we have

(xr(τ),

with ε^ = 1 and the \εiS\,iΦ j , smaller than any given positive number,
so that, they are linearly independent.

If n — 2 Theorem Π-2, with some supplementary hypotheses, leads
us to a deeper result. As already mentioned in the Introduction tlαe
following theorem is due to Professor J. L. Massera with whose per-
mission it is reproduced here.

THEOREM Π-3. Suppose that the system

x = f(t)χ + gn(t)x + gn(t)y
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y =

satisfies the following hypotheses:

(1) The coefficients fif gij9 T St< oo, are continuous real-valued
functions of the real variable t.

(2) f ( t ) ̂  / a ( ί ) , [ " ( / . ( ί ) - / a ( ί ) ) d ί = oo, Γ | Λ i ( ί ) \dt<™ for iΦj

I 0 π ( O — £22(0 I d ί < ° ° .

Then there exists a solution (x^t), yλ{t)) satisfying Xim^^x^ly^t)

= 0 and, for any other solution (x(t), y(t)) which is not proportional

to (α?!(ί), 2/i(0)> we have lim^ooi/ίOMO = 0.

Proof. The existence of a solution (ίcx(0, l/i(0) with the required
property follows from Theorem Π-2.

Without loss of generality we may assume g n = g22 = 0. Choose

t0 ^ T so large that Γ( | gu\ + \ g21 \)dt < ττ/4. Let (x2(t), y2(t)) be the
J ί O

solution which satisfies x2(tQ) = 1, ya(ί0) — 0. Setting Θ(t) = arg (a?a(0>
y2(t))f we claim, in the first place, that | θ(t) \ < 7r/4 for ί ^ ί0. Assume
that this were not the case. It then follows that there exists an interval
ft, t2), tλ ^ t0, such that θ{tλ) = 0, | Θ{Q \ - π/4, 0 < | θ(t) \ < π/4 for tλ <
ί < ί2, say, θ(t2) = π/4, 0 < θ{t) < ττ/4 for tλ < t < t2, whence a;2(0 ί/2(0
> 0 in (ίj, ί2). Since

2 - 0321/2

y\

We n e x t prove t h a t l im^oo^ίO/^ίO — 0, or equivalently
~ 0. There exsists a sequence ίw —> oo with ^(ίΛ) —• 0, otherwise θ(t) >
θ0 > 0, say, which leads to t h e contradiction

0(0 - θ(t0) g - Γ (/χ(0 - / 2 (0) sin 0(0 cos

(I 012 I + I 021I
ί oo

(I 012 I + I 021 \)dt <
tn

ε/2. An argument similar to the one used to prove | θ(t) \ < π/A then
shows that | θ{t) \ < ε for t ^ tn.

Assume to large enough so that | xλ(t) |/| yλ(t) \ < 1, | ya(ί) |/| a;2(t) | < 1
for ί ^ ί0 and, say, yλ(t) > 0, a?a(0 > 0; then

Ut) ^ (Λ(0 + 102i(O I), vat),
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Ut) ^ {fit) - I 9u(t) I). X2(t) ,

whence

Vi{t) S y1(Q. exp (T (/a(ί) + I gn(t) \)dt) ,

to

and

y^L g vΆm exp (Γ (/s(t) - f(t) + I g12(t) I + | flrai(t) \)dt) -• 0 .
α;2(ί) ^2(^0) ^ J ί 0 /

Finally, any solution (x(t), y(t)) which is not proportional to
Vι(t)) satisfies, for a certain constant value k,

y(t) __ Vi(t) + kyλ(t) _ (y2(t)lx2(t)) + k(yι(t)/x2(t)) Λ— — —^ y ^

a (ί) x2(ΐ) + %2(ί)

PART III

Consider the linear differential systems

(III) x = A(t)x + B(t)x

(ΠΓ) y = A(t)y

where A(t), B(t), T S t < °°, are continuous complex matrix functions.

Conti [2, Theorem I, p. 589] proved that: if Π B(t) \ dt < 00 wfeere

£(*) = (δj (*)) αwd I B(t) I - Σί.y I &J(*) I and i/ (///') ΐs uniformly stable,
then the system (III) and (IIΓ) are asymptotically equivalent3.

The theorem of Wintner [7, 7-i, p. 423] stating that:
If B(t) = (6j(Q), T St < co9i9j = if *--,n, is a matrix of n2 con-

tinuous functions satisfying I | B(t) \ dt < 00, then every solution of
x = B(t)x tends to a finite limit as £->oo, is a particular case of
Conti's result (A(t) = 0) .

Our Theorem III-3, is also a generalization of Wintner's theorem
but different from that of Conti.

Theorems IΠ-1 and IΠ-2, which are preliminary to Theorem IIΓ-3,
give us some information, though less than asymptotic equivalence,
concerning the behavior of two systems, one of which not necessarily
linear.

THEOREM ΠI-1. Suppose that the systems
3 The theorem of Conti is actually more general. We have considered the theorem

applied to linear systems only.
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(ΠI-1) x{ = fMXi + gt(tf x) ,

(IΠ-2) »«=/,(%,,
i = 1, , n , g(t, x) = (g{(tf x))

satisfy the following hypotheses:

(1) fi{t), T g t < oo, are continuous functions (in general complex-
valued) of the real variable t; g{(t, x) are functions (in general complex-
valued) continuous in

Ω = {(«, a?) I ί > Γ, I a? I = Σ I a?* | < oo}
ΐ = l

and satisfy some condition which implies the existence of only one
integral passing through each point of Ω.

(2) I g(t, x)\^\x\ F(t) on Ω.

(3) There exists a negative constant K such that

K <i

for all v ^ t > T and

for all i = 1, , n.
Then for every solution y(t) of 111-2 there is a solution x(t) of

111-1 such that limt_co[a;(ί) - y(t)] = 0.

Proof. We define ω = {Pe Ω \ \ x, - y,(t) \ < <p{(t), t>tQ^T} where
the ψi(t) and t0 will be adequately chosen so that for alH ̂  to,i = 1, , n,
we have: <Pi(t) > 0, φi differentiate, lim^oo^ίί) = 0 and ω a generalized
regular polyfacial set.

If we put

H,(P) = I x{ - Vί(t) I2 - Ψl(t) , i = 1, , n

Hn+1(P) = ίo —*

it follows that ω = {P | ^ ( P ) < 0 , i = 1, , n + 1}.
For all i, 1 g i g w,

Λ = {Pe β || ^ - y<(ί) I - ^( ί ) , I a?y - ys(t) \ ^ φs(t), j = 1, . ., n, ί ^

An easy computation shows that
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Γt ^ φmR[fS)] -

- 9>«(t)F(t)[|ί I xt - yk I + I y j ] .

As we want ^ ( ί ) > 0 and limί̂ «,^>i(ί) = 0, we can take ί0 such that
Ψi(t) < 1 for all t ^ ίβ. Then,

- ΨMΦM - ^

exp Γ R[fk(s)]ds ^ ^
Jί 0

I exp (' R[fk(s)]ds ^ rt

where we can assume I h(t)dt < co and, without loss of generality,

h(t) > 0 for all t ^ t0.
In order to have, for all i = 1, , n, [D ( IΠ_1)i? i(P)]P e Γt > 0 it is

sufficient to choose φ(t) such that

- φt(t) + R[Mt)]Φ*(t) - Λ(«) > 0 .

The problem is then to look for a solution z(t) of i <
satisfying «(ί) > 0 for all t ^ t0, lim^oo ^(ί) = 0, knowing that γ(ί) > 0

γ(ί)ώί < °° and I σ(s)ds ^ K for some constant iΓ and
all v^t^t0. If PF(ί) is a solution of T^ = σ(t) W - γ(ί) it follows
that «(ί) = 2W(t) is a solution of i < σ(ί)^ — y(ί). It is then sufficient
to find a solution W(t) satisfying W(t) > 0 for all t ^ t0 and lim^c W(t)

σ(s)ds). \ γ(τ;)exp(—\ σ(s)cίs dv ex-
ί0 / i t \ it0 I

ists and indeed ^ ( ί ) —> 0 as ί —• co because

γ('y) exp ( — I σ(s)ds )dv ^ β"^! y(v)dv .
t V Jί / Jί

Since [D(iΠ_1)fί
Γ

Λ+1(P)] = —1 it follows that ω is a generalized regular
polyfacial set and S = S* = U?=iΛ - ^»+i

If we choose

Z = {(ί, a?) 11 = τ > t0, I xd - ^ (τ) | ^ <^ (τ), i = 1, . . . , n}

it follows t h a t S f] Z = \JU Γ{ n Z - Γn+1

ΓtDZ^ {t, x)\t = τ,\xi- Vi(τ) \

= <Pi{τ), I x, - Vj(τ) I £ <Pj(τ), j = 1, , n) .

Then Z = HUB"
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Z ϊ\S=\JB\x .. x BU x S) x B}+1 x . . x B\
3 = 1

and, modulo homomorphisms, Z — B2n, Z Π S — S2*"1 so that ZΠ S is
not a retract of Z. However, it is easily seen that Φ : S-+ S f] Z given
by φ(P) = P*, with t* = τ, a? - ^(τ) + [x{ - ^ M τ ) / ^ ) , is a re-
traction.

Using the theorem of Wazewski we can conclude the existence of
at least one point P o : (τ, x0) e Z — S such that (£, x{t, PQ)) = J(ί, Po) c α>
for all t ^ t0.

Since x{t, Po) is defined in the future, i.e., /3(P0) = oo (because
/3(P0) < oo implies {/(£, Po) 110 g ί < /5(P0)} bounded, which is not possi-
ble), it follows that l i m ^ l X ί , Po) - y(t)] = 0.

COROLLARY 1. Suppose that the systems

(IΠ-Γ) *i

(ΠI-20

i = 1, - . . , w , flf(t) = (flTo ί*))

satisfy the following hypotheses:

(1) Γ/te coefficients fif gijt T ^ ί < oo, are continuous functions
(in general complex-valued) of the real variable t.

(2) Tfeere exists a constant K such that

K g [ΌR[fi(s)]ds for all v^t^T and

g(t) I exp {^Λl/iίβWdβJdt < oo , i = l, . . . , w .

/or ever?/ solution y(t) of (IΠ-2r) there exists a solution
x(t) of {IΠ-Ϊ) such that \imt^[x{t) - y(t)] = 0.

The theorem of Wintner mentioned before follows a once from
Corollary 1.

THEOREM IΠ-2. Suppose that the systems

(IΠ-A) i
4 il

3=1

(ΠI-B) Λ = g

£, i = 1, , w , flr(ί, a?) = (^-(ί, a?))

satisfy the following hypotheses:
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(1) fait), T t=kt < oo, are continuous functions {in general complex-
valued) of real variable t; g^t, x) are functions (in general complex-
valued) continuous in

Ω = {(tfx)\t< T, \x\< ™}

and satisfy some condition which implies the existence of only one
integral passing through each point of Ω.

(2) I g(tf x)\ ^\x\ F(t) in Ω.

(3) There exists a constant K such that

K ^ [VR[fu(s)]ds for all v^t^T and

exp {^R[fu(s)]ds}dt < oo , i = 1, . . . , n

j exp

Then for every solution y(t) of (III-B) there is a solution x(t)
of (III-A) such that limt^[x(t) - y(t)] = 0

Proof. Consider the systems

(III-A) x, = fiffiXi + S&, x) where ft(ί, x) = g.(t, x) + ΣMtfa

(III-C) z, = fdfyi .

These systems satisfy the condition of Theorem IΠ-1. Hence for
every solution z(t) of (III-C) there is a solution x(t) of

(III-A) such that l im^lXί) - x(t)] = 0

Consider now the systems

(ΠI-B) Λ Σ
3=1

(ΠI-C) 2, =/«(*)«,.

It is easy to see that they also satisfy the hypotheses of Theorem
IΠ-1. Hence for every solution z(t) of (III-C) there is a solution y{t)
of (III-B) such that l im^^OO — ^(0] = 0. But we can also prove that
for every solution y{t) of (III-B) there is a solution z(t) of (III-C) such
that y(t) — z(t) -> 0 as t -> oo. For that purpose it is enough to show
that there is a fundamental set z\t), , zn(t) of solutions of (III-C)
such that the solutions y\t), -,yn(t) satisfying y\t) — z\t) -> 0 as
t —> oo, for a lH — 1, •• ,n, are a fundamental set of solutions of (III B),
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fzψ\
Let us take z*(ί) = such that z)(t) = 0 for all j Φ i and z](t)

= exp ί I fu(s)dsj for all i = 1, , n.

The corresponding y{(t), i — 1, , n, satisfy lim^yfa) = 0 if j Φ i

and lim^oo | y[{t) — exp I fu(s)ds \ = 0. Hence, there exists t0 such that

t ^ ί0 implies

I a/ί(*) - e x p I

Whence

I yϋt) I > exp {j]β[/«(β)]dβ} - - | ^ s> hp .

Therefore, for any ε > 0 there is a ί(ε) such that t ^ ί(ε) implies
I y\(t) I > 1/2 β^, ΐ = 1, , n, and | y){t) | < ε f or all i Φ j . This implies
the existence of a r ^ T with det(^(r), •••, yn{τ)) Φ 0 and {y\t)t •••,
i/n(ί)) is a fundamental set of solutions of (III-B).

From the results concerning the systems (III-A), (III-C) and (III-B),
(III-C) we conclude that for every solution y(t) of (III-B) there is a
solution x(t) of (III-A) such that limf_»eo[αj(ί) — y(t)] = 0.

THEOREM IΠ-3. Suppose that the systems

n n

(III-/?) ^ = Σ /«(ί)»y i, j = 1, , n

satisfy the following hypotheses:

(1) The coefficients fijf giβ, T ^t < oo, are continuous functions

(in general complex-valued) of the real variable t.

R[fu(s)]ds for all

t

v Ξ> t ^ T, i = 1, , n, and

I I giό(t) I exp | l R[fkk(s)]ds\dt < oo , i,j,k = l, ,n

f j ( t ) I e x p ^ \ i ? [ / f c f c ( s ) ] c Z s > d £ < o o , ί , j , k = l, t n , i φ j .

Then the systems (IΠ-a) and (IΠ-β) are asymptotically equivalent.
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Proof. By Theorem IΠ-2 for every solution y(t) of (IΠ-β) there
is a solution x(t) of (Ill-a) such that limt^[x(t) — #(<)] = 0.

Let us show that given a fundamental set (y\t), •• ,yn{t)) of so-
lutions of (III-/3) the corresponding solutions (x\t), •• ,xn(t)) of (IΠ-α:)
satisfying lim^oolV^) — y\t)\ = 0, i = 1, , w, also form a fundamental
set of solutions.

Consider the auxiliary system

(HI-?) *i=Mt)Zi, i = l, . . . , * .

Applying the argument used in Theorem IΠ-2 to the systems (III-/3),
(IΠ-γ) we conclude that there exists a fundamental set (y1(t)f " ,yn(t))
of solutions of (IΠ-/3) and a £0 such that t ^ ί0 implies

I ̂ (ί) I ̂  JLe*" and y)(t) -> 0 as ί -* oo f or all i =£ j .
Lt

Let (x^t), •"fx
n(t)) be the solutions of (III-o:) such that limc_«>

[a?4(ί) — yι(t)] = 0 (the existence of which follows from Theorem IΠ-2).
Then limt_ooa?χί) = 0 for all i φ j and there exists τ ^ t0 such that ί ^ τ
implies | a?j(ί) I > l/4β*.

For sufficiently large ί we have therefore

and this means that (^(ί), « ,ίcn(ί)) is a fundamental set of solutions
of (IΠ-α).

The systems (IΠ-α:) and (III-/5) being linear this implies that they
are asymptotically equivalent.
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