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l Introduction^ This paper is a sequel to an earlier paper [6].
All notations in [6] remain in force. As in [6] we shall consider tw
probability measures μ, v an the infinite product σ-algebra of subsets
of the infinite product space Ω = πX. v is assumed to be stationary
and μ to be Markovian with stationary transition probabilities. Ex-
tensions to ϋΓ-Markovian μ are immediate. vm,n, the contraction of v to
^ , B , is assumed to be absolutely continuous with respect to μm<n, the
contraction of μ to ̂ £ i W , and fm<n is the Radon-Nikodym derivative. In

[6] the following theorem is proved. If γo%f^dv < °o and if there is

a number M such that

( 1 ) \(logfo,n - logfo^dv £ Mfor n = 1, 2, .

then {wrMog/oJ converges in L^v). (1) is also a necessary condition
for the Lτ(v) convergence of {n^logfo^}. We consider this theorem as
a generalization of the Shannon-McMillan theorem of information theory.
In the setting of [6] the Shannon-McMillan theorem may be stated as
follows. Let X be a finite set of K points. Let v be any stationary
probability measure of άK and μ the equally distributed independent
measure on ̂ Γ Then {n~ι log/0 n} converges in Lλ{v). In fact, the
P(x0, #!,•••, xn) of Shannon-McMillan is equal to K{nλ 1}f0>n. The convergence
with probability one of {n~x log P(x0, , xn)} for a finite set X was
proved by L. Breiman [1] [2]. K.L. Chung then extended Breiman's
result to a countable set X [3]. In this paper we shall prove that the
convergence with i -probability one of {n^1 log/0,TO} follows from the follow-
ing condition.

( 2 ) \-I^-dv ̂  L, n = 1, 2, .

(2) is a stronger condition than (1) since by Jensen's inequality

log? f° n dv ̂  flog f° n dv .
^ Jθ,n-1 J J0,n-l

An application to the case of countable X is also discussed.
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2. The convergence theorem* As was proved in [6], condition (1)
implies the Lλ(v) convergence of {log/_Λ0 — l o g / ^ - J ([6] Theorem 1, 4).
The convergence with v-probability one is automatically true ([6] Theorem
3). Applying a theorem (with obvious modification for T not necessarily
ergodic) of Breiman ([1], Theorem 1) the convergence with ^-probability
one of {w""1 log A*} follows from the condition

(3) isup I log/_fc,0 - log/_*,_! \dv < co ,

We shall now investigate conditions under which (3) is valid.

Lemma 1. The following inequality is always true.

(4) t s u p l o g ^ " * " 1 ^ < oo .
J *** f-k.O

Proof. Let vf_k>0 be as in Lemma 1 [6]. Then

and

Since μ is Markovian, i/_fc0 are consistent for k — 1, 2, . We shall
prove (4) under the assumption that there is a probability measure v'
on ^Co.o which is an extension of vLkt0 for k = 1, 2, . We shall also
prove Lemma 2 under this assumption. If no such i/ exists, the usual
procedure of representing Ω into the space of real sequences may be
used and the same conclusion follows (cf. the proof of Theorem 4[6]).

Let m be a nonnegative integer and

E{m) = [sup log £=±=± > m] ,

Ek(m) = [sup log j /~ i '" 1 ^ m, log ^-fe " 1 > m ] .
W<* / /

On ^ ( m ) we have

Hence

so that
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v[Ek(m)] £ 2-"v'[Ek(m)] .

Therefore

v[E(m)] ^ 2-mv'[E(rn)] ^ 2~m

and

Note that (4) is proved without assuming the integrability of either

log/-*,<> or log/-*,-! or logJ-k,

J-k.-i

LEMMA 2. // there is a number L such that

(5) [l^Ldv ^ Lfor fc = 1, 2, •

then

(6) ί s u p l o g - ^ ^ d v < Co .

Proof. It is clear that

where v' is defined in the proof of Lemma 1.
Since {/-*,0//-*,-i, ft = 1, 2, •} is a v'-martingale, {(/-..o//-,,-!)2, fc

1, 2, •••} is a v'-semi-martingale. Hence (5) implies that

are uniformly i/-integrable and {(/-i,0//-i.-i)2> (/-2,o//-2>-i)2

is a ^'-semi-martingale (Theorem 4.1s, pp. 324[5]).
Hence for any set F defined by %0, x_19 , X-k

so that

( 7 ) ( -t^-dv < ί j r-( f e + 1 ) ° dv <

In fact, we have just proved that
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( /-i,o /-2.0 . . . dv

is a y-semi-martingale. Now let

F(m) = [sup log ^ ^ 2 . > mj
*** f-k,-i

and

^ ( r a ) = [ s u p log £zi±. ^ m, log -£^s_ > m]

On Fk(m) we have

/_,,_, ^ 2-»/-*.o

Hence

( J £ 2
k,_J^dμ

f-k.-l

= 2 " m ί
J

Applying (7), we obtain

ίm) av

therefore,

—dv ^ 2"WL .
d

Hence

(sup log -£^-dv ^ Σ ^[^(m)] g Σ 2~mL <
J Λ£l f-k.-l m-° m-°

Combining Lemmas 1, 2 and noting that

-A^dy = [ ^~w ° dv

(cf. Theorem 1, [6]), we obtain the following theorem.

THEOREM 1. // there is a number L such that

J±n_dv ^ L for n = 1,2, " then
fθ,n-l
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Isup I logf-kt0 — log/_£,_! I dv < oo

and {w1 log/<,,»} converges with v-probάbility one.
Extensions of Lemma 1, Lemma 2 and Theorem 1 to if-Markovian

μ are immediate.

3 The countable case. Let X be countable with elements denoted
by α. Let v be an arbitrary stationary probability measure on JC Let

P(a0, a19 , an) = v[x0 = α0, ^ = α^ , xn = an] .

Let

fli = - Σ P(«) log P(α) = - (log P(xn)dv .

Carleson showed that

( 8 ) fli<oo

implies the Lx(v) convergence of {n^log P{x0, x19 , xn)} [3]. Chung
showed that (8) also implies the convergence with v-probability one of
{n~λlogP(x0, x19 •••fXn)} [4]. Let μ be defined by

μ[xm = a09 xm+1 = au , xn = α n _J = P(αo)P(α1) . P(αw_m) .

fί may be called the independent measure obtained from v. Then vm<n <
jWTO>n with derivative

and

( 9 ) log jkjL. = log p(χ»> ' " > ^ ) - log P(xn) .
/ P(» x)

It follows from (9) that

5(log/o>w - log fo,n-i)dv ^ j - log P(xn)dv = fli .

Hence (8) implies that (1) is satisfied, therefore {rr1 logfQn) converges
in L^v) by Theorem 5 [6], Since

log/o, = log P(x0, , xn) + Σ log P(xk) ,

Carleson's theorem follows immediately. Furthermore, it follows from
(9) and Lemma 1 that
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Jsup [log P(χ,k> "I'*'1] + log P(xo)]dv < co .

Hence (8) implies

P(x-k, •••, x0)

and Chung's theorem [4] follows.
By using a similar approach we shall give a sharpend version of

Carleson's and Chung's theorems.
Let

P(a ! a α - P ( α - z ' -- , α - i , a0)
P(α_ z , •••, α_α)

and let

Hτ = — Σ ^(α-z> » α0) log P(α 01 α_ί, , α_x)
tt-i α - l

= - llog P(xn I xn-τ, , a?n-i)^^ -

Hz is nonnegative but may be + ° ° . It is known that

H^H^H^

Let

H = lim Hτ .

The limit is taken to be + oo if all Ht are + co.

THEOREM 2. If H < oo then {n~x log P(xOf , #„)} converges both in
Lλ(v) and with v-probability one.

Proof. There is an I such that Hz < co. We define an ί-Markovian
measure μ on ^ " a s follows.

μ[xm = α0, α;w+1 = αx, , xn = αΛ_w] = P(α 0 , , α n _ J

if n — m ^ ϊ,

/^[α;TO = α 0 , ^ w + i = «i , , x n = α w _ m ]

= P(α0, , α z)P(α i + 11 alf , a%) P(an-m \ α n_m_ z, •, αn_m_!

if ^ — m > i. I t is easy to check t h a t μ is well defined and vm<n < μmtΛ.
It is clear t h a t , if n — m > I,

log ^kjL. = log ζ(*~ •••>**) _ log P ( ^ Λ i Xn_u

Jm,n-l % X
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The rest of the proof goes in the same manner as for the case Hx < °o
since Theorem 5 [6] and Lemma 1 of this paper remain true for I-
Markovian μ.
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