A NOTE ON
GENERALIZATIONS OF SHANNON-MCMILLAN THEOREM

Suu-Tex C. Moy

1. Introduction. This paper is a sequel to an earlier paper [6].
All notations in [6] remain in force. As in [6] we shall consider tw
probability measures g, v an the infinite product o-algebra of subsets
of the infinite product space 2 = 7#X. v is assumed to be stationary
and ¢ to be Markovian with stationary transition probabilities. Ex-
tensions to K-Markovian ¢ are immediate. v, ,, the contraction of v to
Fmar 1s assumed to be absolutely continuous with respect to p,,, the
contraction of ¢ to .#, ., and f, ., is the Radon-Nikodym derivative. In

[6] the following theorem is proved. If Slog Joody < o and if there is

a number M such that
(1) [(tog . — Tog fyn )y = Morn=1,2, -

then {n'log f,.} converges in L,(v). (1) is also a necessary condition
for the L,(v) convergence of {n*log f,.}. We consider this theorem as
a generalization of the Shannon-McMillan theorem of information theory.
In the setting of [6] the Shannon-McMillan theorem may be stated as
follows. Let X be a finite set of K points. Let v be any stationary
probability measure of & and g the equally distributed independent
measure on % Then {n'logf,.} converges in L,(v). In fact, the
P(x,, x,, ++ -, x,) of Shannon-McMillan is equal to K"V f, .. The convergence
with probability one of {n~'log P(x, -+, ®,)} for a finite set X was
proved by L. Breiman [1] [2]. K.L. Chung then extended Breiman’s
result to a countable set X. [3]. In this paper we shall prove that the
convergence with v-probability one of {n~"log f,.} follows from the follow-
ing condition.

(2) S—Ji’Ldu§L,n=1,2,---.

0,n—1

(2) is a stronger condition than (1) since by Jensen’s inequality

loggi”—du = Slogi”—du .

0,n—1 0,mn—1
An application to the case of countable X is also discussed.
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2. The convergence theorem. As was proved in [6], condition (1)
implies the L,(v) convergence of {log /-, — log f . —} ([6] Theorem 1, 4).
The convergence with v-probability one is automatically true ([6] Theorem
3). Applying a theorem (with obvious modification for 7T not necessarily
ergodic) of Breiman ([1], Theorem 1) the convergence with v-probability
one of {n'log f;,.} follows from the condition

(3) [sup (log 740 — log fop s dv < <o .
We shall now investigate conditions under which (8) is valid.
Lemma 1. The following inequality ts always true.

(4) Ssup logi"‘-—"—‘dv < oo,

kz1 —k,0

Proof. Let v.,, be as in Lemma 1 [6]. Then

Vogo K V0 K Uopyg

and

dV_i, — Soro @Vl =f

vl f—k.—l’ d/'Lk,-oA e
Since p¢ is Markovian, v’ ,, are consistent for ¥k =1,2, ---. We shall
prove (4) under the assumption that there is a probability measure »'
on “., which is an extension of v',, for k =1,2, ---. We shall also
prove Lemma 2 under this assumption. If no such v’ exists, the usual
procedure of representing £ into the space of real sequences may be
used and the same conclusion follows (cf. the proof of Theorem 4[6]).

Let m Dbe a nonnegative integer and

E(m) = [sup log {7— >m],

—k.0

E.(m) = [sup logf—"'—'“—1 < m, log Form > m].
1=5<k

-0 ~k,0

On E,(m) we have

Soro =27

Hence

Szk(m)f_k’odﬂ§2‘m§ (m)f—k,_ld/l

By

so that
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V[ E(m)] = 27"V [E(m)] .
Therefore
V[E(m)] = 27"V [E(m)] = 27"

and

Ssup log L"'—'—loly = E,Ou[E(m)] =< 7§02"" < o,

k>1 —k,0

Note that (4) is proved without assuming the integrability of either

log f_, , or log fo, _, or log J=ro

~k,—1

LEMMA 2. If there is a number L such that

(5) glﬂduéLforkzl,Z,---
—k,—1
then
(6) Ssup log—J;"—'O—du < oo .
k21 k-1

Proof. 1t is clear that

[y = [(Leea

where V' is defined in the proof of Lemma 1.
Since {f_.off-r.-1 k =1,2, ---} is a V-martingale, {(f_,/f- ) k=
1,2, ---} is a v'-semi-martingale. Hence (5) implies that

Yo LV, S(%?)zd”' < w, (%;;%)2

are uniformly v'-integrable and {(f_1.o/ f-1.—-1)") (fosof foa—1)’ * + +, (dy_. oJdV')?}
is a V'-semi-martingale (Theorem 4.1s, pp. 324[5]).
Hence for any set F' defined by z,, z_,, +++, ®_,

| (Fre)ar = (e Jov = | () 0

so that

(7) gh&dpgSFlMdugS&udu.

Ff_p St Fodut

In fact, we have just proved that
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o foe o B

is a v-semi-martingale. Now let

F(m) = [ilzllp log },flﬂ— > m]

—k,—1

and

Fg(m) = [sup log Soin < m, logi“—""’— >m].

1<j<k I " —k—1
On F,(m) we have

S a1 =27 0.

Hence

Srk(m)f_k'—l_;‘k'o ap = ZﬁMSFk(m) (f—_k&—ydﬂ

—k.-1 f—k.-l
= 2" S Soro dy .
Feom) [ 4
Applying (7), we obtain
U F(m)] < 2—mS Wy,
Frm) dy'
therefore,
UFm) =2 Ly <o,
F(m) QY
Hence

Ssup log -}ﬁldv < ZZ,OU[F(m)] <32 "L < oo,

k21 —k,—1

Combining Lemmas 1, 2 and noting that

o s

(cf. Theorem 1, [6]), we obtain the following theorem.
THEOREM 1. If there is a number L such that

g—fl—"—dv§Lfor n=12 -+« then

0,n—1
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Ss;ggllogf_k.o —logfsildy < o

and {n'log f,.} converges with v-probability one.
Extensions of Lemma 1, Lemma 2 and Theorem 1 to K-Markovian
¢ are immediate.

3. The countable case. Let X be countable with elements denoted
by a. Let v be an arbitrary stationary probability measure on & Let
P(ay, ay, co,a,) = V[K, = Qy &, =y, +++, %, = a,] .

Let

H = —S P(a)log P(a) = — Slog P(z,)dv .
Carleson showed that
(8) H < o

implies the L,(v) convergence of {n*log P(x,, 501, «+o, )} [3]. Chung
showed that (8) also implies the convergence with v-probability one of
{n'log P(xy, %, +++, x,)} [4]. Let g be defined by

ﬂ[wm = a’Or xm-H == al’ R xn = an—m] = P(a’O)P(al) e P(an—m) .

¢ may be called the independent measure obtained from v. Thenv,, <
M. With derivative

P(wmr ) xn)

Tor = By oo Pl
and
(9) logf’"—'” = log D@y 222y @) _ log P(x,) .
m,n—1 P(xmr ey xn-—l)

It follows from (9) that
S(log fow —log fro)dy < S-— log P(z,)dv = H, .

Hence (8) implies that (1) is satisfied, therefore {n="logf,.} converges
in L,(v) by Theorem 5 [6]. Since

l0g f,., = log P(ay, +++, ,) + 3log P(s) ,

Carleson’s theorem follows immediately. Furthermore, it follows from
(9) and Lemma 1 that
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P@oy 08 |, 1o o
P(x_p, <+, x,) + log P(x,)]Jdy < o .

Ssup [log
k=1

Hence (8) implies

P(x_p, -+, 2_)
sup lo ks * U dy
Joup log P, )
and Chung’s theorem [4] follows.

By using a similar approach we shall give a sharpend version of
Carleson’s and Chung’s theorems.

Let
Pa_; <+, a_y, a,)
P e, My = 144 ’ 13 Yo
(@lw e 0 = T )
and let
H, = — 2 P(agz’""ao)lOgP(ao[a'ah"‘yaf—l)
a_p,....a_y

- —Slog P, |2y -y )y .

H, is nonnegative but may be +co. It is known that

Let

The limit is taken to be -+ oo if all H, are + .

THEOREM 2. If H < o then {n~'log P(x,, *-+, x,)} converges both in
L,(v) and with v-probability one.

Proof. There is an [ such that H, < . We define an [-Markovian
measure ¢ on & as follows.

#[xm = Aoy ppt1 = Ay *°*y Ty = an—-m] = P(am M) an—m)
fn—mc<£lI,

#[xm = Qoy Topyg = Ay 202, T, = an—m]
= P(ay, *+, @) P(a;44 [ @y voey @) oo P(ay—m | Cpmeiy =0, Cpm-1)
if n—m >1. It is easy to check that uis well defined and v, , € ...
It is clear that, if n — m > I,

P@p, ++-, @)
log fm‘n — ].Og m n
fm,n—l P(xm? ‘Y xn—l

—log P(%, | Xn—yy ** %y Xyey) o
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The rest of the proof goes in the same manner as for the case H, < o
since Theorem 5 [6] and Lemma 1 of this paper remain true for I-
Markovian pe.
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