PRIMITIVE ALGEBRAS WITH INVOLUTION

Wallace S. Martindale, 3rd

A well known theorem of Kaplansky ([1], p. 226, Theorem 1) states that every primitive algebra satisfying a polynomial identity is finite dimensional over its center. Related to this result is the following conjecture due to Herstein: if A is a primitive algebra with involution whose symmetric elements satisfy a polynomial identity, then A is finite dimensional over its center. Our main object in the present paper is to verify this conjecture in the special case where A is assumed to be algebraic. In the course of our proof we develop some results, which may be of independent interest, concerning the existence of nontrivial symmetric idempotents in primitive algebras with involution.

1. Some preliminary remarks. In the present section we mention a few definitions and observations which we shall need in the remainder of this paper.

By the term algebra over Φ we shall mean an associative algebra (possibly infinite dimensional) over a field Φ. A primitive algebra over Φ is one which is isomorphic to a dense ring of linear transformations of a (left) vector space V over a division algebra Δ containing Φ (see [1], p. 32). The rank of an element a of a primitive algebra is the dimension of $V a$ over Δ. We state without proof the following three remarks.

Remark 1. Let A be a primitive algebra with identity 1 containing a set of nonzero orthogonal idempotents $e_{1}, e_{2}, \cdots, e_{m}$ such that
(a) $e_{1}+e_{2}+\cdots+e_{m}=1$
(b) rank $e_{i}=r_{i}<\infty, i=1,2, \cdots, m$.

Then the dimension of V over Δ is $\sum_{i=1}^{m} r_{i}<\infty$.
Remark 2. Let A be a primitive algebra with center Z. If $z a=0$ for some $z \neq 0 \in Z$ and some $a \in A$, then $a=0$.

Remark 3. Let A be a primitive algebra. If a and b are nonzero elements of A, then $a A b \neq 0$. More generally, if $a_{1}, a_{2}, \cdots, a_{n}$ are nonzero elements of A, where n is any natural number, then

$$
a_{1} A a_{2} A \cdots a_{n-1} A a_{n} \neq 0 .
$$

An I-algebra is an algebra in which every non-nil left ideal contains a nonzero idempotent. An algebra over Φ is algebraic in case every

[^0]element satisfies a non-trivial polynomial equation $f(t)=0$, where $f(t)=$ $\sum \alpha_{i} t^{i}, \alpha_{i} \in \Phi$. One can show that every algebraic algebra is an I-algebra. In the proof of this fact (see [1], p. 210, Proposition 1), however, the following sharper result is obtained.

Remark 4. Let a be a non-nilpotent element of an algebraic algebra. Then the subalgebra $[[a]]$ generated by a contains a nonzero idempotent.

An involution* of an algebra A over Φ is an anti-automorphism of A of period 2, that is,

$$
\begin{aligned}
& (a+b)^{*}=a^{*}+b^{*} \\
& (\alpha a)^{*}=\alpha a^{*} \\
& (a b)^{*}=b^{*} a^{*} \\
& a^{* *}=a
\end{aligned}
$$

for all $a, b \in A, \alpha \in \Phi$. It is to be understood that in the rest of this paper the characteristic of Φ is assumed to be unequal to 2. An element a is symmetric if $a^{*}=a$; a is skew if $a^{*}=-a . .^{*}$ is an involution of the first kind in case every central element is symmetric. ${ }^{*}$ is an involution of the second kind in case there exists a nonzero central element which is skew. Every involution is of one of these two kinds.
2. S_{n}-algebras. The notion of an algebra satisfying a polynomial identity can be generalized according to the following

Definition. A subspace R of an algebra A over Φ satisfies a polynomial identity in case there exists a nonzero element $f\left(t_{1}, t_{2}, \cdots, t_{n}\right)$ of the free algebra over Φ freely generated by the t_{i} such that

$$
f\left(x_{1}, x_{2}, \cdots, x_{n}\right)=0
$$

for all $x_{i} \in R . \quad R$ will be called a $P I$-subspace of degree d if the degree d of $f\left(t_{1}, t_{2}, \cdots, t_{n}\right)$ is minimal.

The element $f\left(t_{1}, t_{2}, \cdots, t_{n}\right)$ is multilinear of degree n if and only if it is of the form

$$
\sum_{\sigma} \alpha(\sigma) t_{\sigma_{1}} t_{\sigma_{2}} \cdots t_{\sigma_{n}}, \alpha(\sigma) \in \Phi, \text { some } \alpha(\sigma) \neq 0
$$

where σ ranges over all the permutations of $(1,2, \cdots, n)$.
Lemma 1. Let R be a PI-subspace of degree n of an algebra A. Then R satisfies a multilinear polynomial identity of degree n.

This lemma is a slight generalization of [1], p. 225, Proposition 1.

The same proof carries over directly and we therefore omit it.
Our main purpose in this paper is to study algebras of the following type.

Definition. Let A be an algebra with an involution * over Φ. Suppose that the set S of symmetric elements is a $P I$-subspace of degree $\leqq n$. Then A will be called an S_{n}-algebra. In case ${ }^{*}$ is of the first (second) kind, we shall refer to A as an S_{n}-algebra of the first (second) kind.

It is surprisingly easy to analyze S_{n}-algebras of the second kind, as indicated by

Theorem 1. Let A be a primitive S_{n}-algebra of the second kind. Then A is finite dimensional over its center.

Proof. ${ }^{1}$ According to Lemma $1 S$ satisfies a multilinear polynomial identity of degree $n: f\left(t_{1}, t_{2}, \cdots, t_{n}\right)=0$. Let z be a nonzero central element of A which is skew. If k is skew, then

$$
(z k)^{*}=k^{*} z^{*}=(-k)(-z)=k z=z k
$$

and hence $z k$ is symmetric. Therefore we have

$$
0=f\left(z k_{1}, s_{2}, s_{3}, \cdots, s_{n}\right)=z f\left(k_{1}, s_{2}, s_{3}, \cdots, s_{n}\right)
$$

for all $k_{1} \in K, s_{i} \in S$, where K is the set of skew elements. By Remark 2 $f\left(k_{1}, s_{2}, s_{3}, \cdots, s_{n}\right)=0$. It follows that $f\left(x_{1}, s_{2}, s_{3}, \cdots, s_{n}\right)=0$ for all $x_{1} \in A$, $s_{i} \in S$, since every $x \in A$ can be written $x=s+k, s \in S, k \in K$. Continuing in this fashion we finally have $f\left(x_{1}, x_{2}, \cdots, x_{n}\right)=0$ for all $x_{i} \in A$. The conclusion then follows from the previously mentioned theorem of Kaplansky ([1], p. 226, Theorem 1).
3. Some basic theorems. The assumption that the symmetric elements of an S_{n}-algebra satisfy a polynomial identity is used chiefly to prove

Theorem 2. Let A be a primitive S_{n}-algebra over Φ. Then there exist at most n orthogonal non-nilpotent symmetric elements.

Proof. Suppose $s_{1}, s_{2}, \cdots, s_{n+1}$ are $n+1$ orthogonal non-nilpotent symmetric elements. Using Remark 3 and the fact that the s_{i} are nonnilpotent we may choose elements $x_{1}, x_{2}, \cdots, x_{n} \in A$ so that

$$
s_{1}^{2} x_{1} s_{2}^{2} x_{2} \cdots s_{n}^{2} x_{n} s_{n+1} \neq 0 .
$$

[^1]Now set $u_{i}=s_{i} x_{i} s_{i+1}+s_{i+1} x_{i}^{*} s_{i}, i=1,2, \cdots, n$. By Lemma $1 S$ satisfies a multilinear identity of degree n :

$$
\begin{equation*}
f\left(t_{1}, t_{2}, \cdots, t_{n}\right)=t_{1} t_{2} \cdots t_{n}+\sum_{\sigma \neq 1} \alpha(\sigma) t_{\sigma_{1}} t_{\sigma_{2}} \cdots t_{\sigma_{n}} \tag{1}
\end{equation*}
$$

where σ ranges over all the permutations of $(1,2, \cdots, n)$ except the identity permutation $I . f\left(u_{1}, u_{2}, \cdots, u_{n}\right)=0$ since the u_{i} are symmetric. To analyze the right hand side of (1) we first note that if $u_{i} u_{j} u_{k} \neq 0$, i, j, k distinct, then either $j=i+1$ and $k=i+2$, or $j=i-1$ and $k=i-2$, because of the orthogonality of the s_{i}. It follows that

$$
f\left(u_{1}, u_{2}, \cdots, u_{n}\right)=u_{1} u_{2} \cdots u_{n}+\alpha u_{n} u_{n-1} \cdots u_{1}
$$

for some $\alpha \in \Phi$. Hence

$$
\begin{equation*}
0=s_{1} x_{1} s_{2}^{2} x_{2} s_{3}^{2} x_{3} \cdots s_{n}^{2} x_{n} s_{n+1}+\alpha s_{n+1} x_{n}^{*} s_{n}^{2} x_{n-1}^{*} \cdots s_{2}^{2} x_{1}^{*} s_{1} . \tag{2}
\end{equation*}
$$

Multiplying (2) through on the left by s_{1}, we have $0=s_{1}^{2} x_{1} s_{2}^{2} x_{2} \cdots s_{n}^{2} x_{n} s_{n+1}$, a contradiction.

An idempotent e of an algebra A is called non-trivial in case $e \neq 1$ (if A has an identity) and $e \neq 0$.

Theorem 3. Let A be a primitive I-algebra with an involution*. Then:
(a) If there exists an $x \neq 0 \in A$ such that $x x^{*}=0$, then either A contains a non-trivial symmetric idempotent or A is isomorphic to the total matrix ring Δ_{2}, where Δ is a division algebra. In the latter case $E_{11}^{*}=E_{22}$, where the $E_{i j}$ are the nit matrices, $i, j=1,2$.
(b) If $x x^{*} \neq 0$ for all $x \neq 0 \in A$, then either A is a division algebra or A contains a non-nilpotent symmetric element which has no inverse in A. If $x x^{*} \neq 0$ for all $x \neq 0 \in A$ and A is algebraic over Φ, then either A is a division algebra or A contains a non-trivial symmetric idempotent.

Proof. Suppose first that there exists an $x \neq 0 \in A$ such that $x x^{*}=0$. We can choose an $a \in A$ such that $e=a x$ is a nonzero idempotent, because A is an I-algebra. Since $x x^{*}=0, e \neq 1$. From the equations $e e^{*}=(a x)(a x)^{*}=a x x^{*} a^{*}=0$ it is easy to check that $e+e^{*}-e^{*} e$ is a non zero symmetric idempotent. We may thus assume that $1 \in A$ and $e+e^{*}-e^{*} e=1 . \quad e A e$ is a primitive I-algebra ([1], p. 48, Proposition 1, and p. 211, Proposition 2). If $e A e$ is not a division algebra, then it contains an idempotent $f=e b e, f \neq 0, f \neq e . \quad$ Since $f f^{*}=e b e e^{*} b^{*} e^{*}=0$, $f+f^{*}-f^{*} f$ is a non zero symmetric idempotent. It is unequal to 1 since otherwise $e=e\left(f+f^{*}-f^{*} f\right)=f$. We may therefore assume that $e A e$ is a division algebra and consequently that rank $e=1$. Since $\left(1-e^{*}\right)(1-e)=1-\left(e+e^{*}-e^{*} e\right)=0$, a repetition of the above argu-
ment allows us to assume that $1-e$ is also an idempotent of rank 1. It follows from Remark 1 that A is the complete ring of linear transformations of a two dimensional vector space V over a division algebra Δ.

If $e^{*} e=0$ as well as $e e^{*}=0$ it is easy to show that relative to a suitable basis of $V e=E_{11}$ and $e^{*}=E_{22}$. In this case we are finished. Therefore suppose $e^{*} e \neq 0$. We shall sketch an argument, leaving some details to the reader, whereby a non-trivial symmetric idempotent can now be found. First find a basis (u_{1}, u_{2}) of V such that $u_{1} e=u_{1}, u_{2} e=0$, $u_{1} e^{*}=0, u_{2} e^{*}=\lambda u_{1}+u_{2}$, where $\lambda \neq 0 \in \Delta$. By setting $v_{1}=\lambda^{-1} u_{1}$ and $v_{2}=u_{2}$ we obtain a basis $\left(v_{1}, v_{2}\right)$ of V relative to which $e=E_{11}$ and $e^{*}=E_{21}+E_{22}$. From this we have

$$
\begin{aligned}
& E_{11}^{*}=E_{21}+E_{22} \\
& E_{21}^{*}=\left[\left(E_{21}+E_{22}\right) E_{11}\right]^{*}=\left(E_{21}+E_{22}\right) E_{11}=E_{21} \\
& E_{22}^{*}=e-E_{21}^{*}=E_{11}-E_{21}
\end{aligned}
$$

Set $E_{12}^{*}=\alpha E_{11}+\beta E_{12}+\gamma E_{21}+\delta E_{22}, \alpha, \beta, \gamma, \delta \in \Delta$. From the following three equations

$$
\begin{aligned}
& E_{11}-E_{21}=E_{22}^{*}=\left(E_{21} E_{12}\right)^{*}=E_{12}^{*} E_{21}^{*}=\beta E_{11}+\delta E_{21} \\
& E_{21}+E_{22}=E_{11}^{*}=\left(E_{12} E_{21}\right)^{*}=E_{21}^{*} E_{12}^{*}=\alpha E_{21}+\beta E_{22} \\
& \alpha E_{11}+\beta E_{12}+\gamma E_{21}+\delta E_{22}=E_{12}^{*}
\end{aligned} \begin{aligned}
& =\left(E_{11} E_{12}\right)^{*}=E_{12}^{*} E_{11}^{*} \\
& =\beta E_{11}+\beta E_{12}+\delta E_{21}+\delta E_{22}
\end{aligned}
$$

we obtain $\alpha=1, \beta=1, \gamma=-1$, and $\delta=-1$. Hence

$$
E_{12}^{*}=E_{11}+E_{12}-E_{21}-E_{22}
$$

and $-E_{12} E_{12}^{*}=E_{11}+E_{12}$ is then a non-trivial symmetric idempotent.
There remains the case in which $x x^{*} \neq 0$ for all $x \neq 0 \in A$. We note that in this situation there exist no nonzero nilpotent symmetric elements, for, if $s \neq 0$ is symmetric, then $s^{2}=s s^{*} \neq 0$. If A is not already a division algebra then we can find an element $x \neq 0 \in A$ such that $x A$ is a proper right ideal. It follows that $x x^{*} A \subseteq x A$ is also a proper right ideal, and so $x x^{*}$ is a nonzero, and hence, non-nilpotent symmetric element which has no inverse. In case A is algebraic over Φ the subalgebra [$\left.\left[x x^{*}\right]\right]$ generated by $x x^{*}$ contains a non-trivial symmetric idempotent, by Remark 4.
4. Total matrix rings with involution. We begin by proving

Theorem 4. Let A be the total matrix ring A_{m} with an involution *, where Δ is a division algebra over Φ. Then there exists a set of orthogonal symmetric elements $e_{1}, e_{2}, \cdots, e_{m_{1}}, f_{1} f_{2}, \cdots, f_{m_{2}}$ such that:
(a) The e_{i} are non-nilpotent elements of rank 1. In case A is
algebraic over Φ, the e_{i} are idempotents of rank 1.
(b) The f_{j} are idempotents of rank 2, and $f_{j} A f_{j}$ is isomorphic to Δ_{2}, with $E_{11}^{*}=E_{22}$ (see Theorem 3).
(c) $m_{1}+2 m_{2}=m$.

Proof. Let $s_{1}, s_{2}, \cdots, s_{h}$ be a set of nonzero orthogonal symmetric idempotents, with h maximal. By the maximality of h we have

$$
s_{1}+s_{2}+\cdots+s_{h}=1
$$

Each $s_{i} A s_{i}$ may itself be regarded as a total matrix ring $\Delta_{r_{i}}$ with an involution induced by ${ }^{*}$, where r_{i} is the rank of s_{i}. We first consider those $s_{i} A s_{i}$ having the property: there exists an $x \neq 0 \in s_{i} A s_{i}$ such that $x x^{*}=0$. Theorem 3, together with the maximality of h, then says that $s_{i} A s_{i}$ is isomorphic to Δ_{2}, with $E_{11}^{*}=E_{22}$. Relabeling these s_{i} as $f_{1}, f_{2}, \cdots, f_{m_{2}}$, we have taken care of (b).

The remaining s_{i}, of course, have the property that $x x^{*} \neq 0$ for all $x \neq 0 \in s_{i} A s_{i}$. As we have noted before, $s_{i} A s_{i}$ can have no nonzero nilpotent symmetric elements, since $x x^{*} \neq 0$. Consider a typical $s_{i} A s_{i}$ and select from it an element x_{1} of rank 1. Then $y_{1}=x_{1} x_{1}^{*} \neq 0$ is a non-nilpotent symmetric element of rank 1 . Now assume that $k\left(<r_{i}\right)$ orthogonal non-nilpotent symmetric elements $y_{1}, y_{2}, \cdots, y_{k}$ of rank 1 have been found. Since the dimension of $W=\sum_{i=1}^{k} V y_{i}$ is less than r_{i}, we can find an element x_{k+1} of rank 1 such that $W x_{k+1}=0$. Then $y_{k+1}=$ $x_{k+1} x_{k+1}^{*}$ is a non-nilpotent symmetric element of rank 1 such that $W y_{k+1}=0$, that is, $y_{i} y_{k+1}=0, i=1,2, \cdots, k$. Also $y_{k+1} y_{i}=0, i=$ $1,2, \cdots, k$, since $\left(y_{k+1} y_{i}\right)^{*}=y_{i}^{*} y_{r+1}^{*}=y_{i} y_{k+1}=0$. It follows that there exists in $s_{i} A s_{i}$ a set of r_{i} non-nilpotent orthogonal symmetric elements $y_{1}, y_{2}, \cdots, y_{r_{i}}$, each of rank 1. If A is algebraic over Φ the subalgebra [$\left.\left[y_{j}\right]\right]$ generated by each y_{j} contains a nonzero idempotent z_{j} (necessarily of rank 1), and so we have r_{i} orthogonal symmetric idempotents $z_{1}, z_{2}, \cdots, z_{r_{i}}$, each of rank 1 . Repeating the argument for all the $s_{i} A s_{i}$ and labeling either all the y_{j} or all the z_{j} as $e_{1}, e_{2}, \cdots, e_{m_{1}}$, we have completed the proof of (a). (c) follows readily from the fact that rank $e_{i}=1$, rank $f_{j}=2$, and $\sum_{i} e_{i}+\sum_{j} f_{j}=1$.

To illustrate Theorem 4 we consider the following simple example. Let $A=\Phi_{2}$, where Φ is a field, and define an involution ${ }^{*}$ in A by:

$$
\left(\begin{array}{ll}
\alpha_{1} & \alpha_{2} \\
\alpha_{3} & \alpha_{4}
\end{array}\right)^{*}=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)\left(\begin{array}{ll}
\alpha_{1} & \alpha_{3} \\
\alpha_{2} & \alpha_{4}
\end{array}\right)\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right), \alpha_{i} \in \Phi
$$

The reader may verify that A contains no symmetric elements of rank 1. Similar examples of higher dimension can also be given.

In the remainder of this section we derive a result which will enable us, at least in the algebraic case, to "pass" from the total matrix ring
Δ_{m} to the division algebra Δ itself.
Lemma 2. Let A be the total matrix ring Δ_{2}, algebraic over Φ, with an involution *, where Δ is a division algebra over Φ. Suppose $E_{11}^{*}=E_{22}$. Then one of the following two possibilities must hold:
(a) A contains a symmetric idempotent of rank 1.
(b) The involution * in Δ_{2} is of the form:

$$
\left(\begin{array}{ll}
\alpha_{1} & \alpha_{2} \\
\alpha_{3} & \alpha_{4}
\end{array}\right)^{*}=\left(\begin{array}{cc}
0 & -\beta^{-1} \\
\beta^{-1} & 0
\end{array}\right)\left(\begin{array}{ll}
\bar{\alpha}_{1} & \bar{\alpha}_{3} \\
\bar{\alpha}_{2} & \bar{\alpha}_{4}
\end{array}\right)\left(\begin{array}{cc}
0 & \beta \\
-\beta & 0
\end{array}\right)
$$

for all $\alpha_{\imath} \in \Delta$, some $\beta \neq 0 \in \Delta$, where $\alpha \rightarrow \bar{\alpha}$ is an involution in Δ.
Proof. It is well known (see for example [2], p. 24, Theorem 9) that the involution ${ }^{*}$ in A has the form:

$$
\left(\begin{array}{ll}
\alpha_{1} & \alpha_{2} \\
\alpha_{3} & \alpha_{4}
\end{array}\right)^{*}=U^{-1}\left(\begin{array}{ll}
\bar{\alpha}_{1} & \bar{\alpha}_{3} \\
\bar{\alpha}_{2} & \bar{\alpha}_{4}
\end{array}\right) U
$$

where $U=\left(\begin{array}{cc}\gamma & \beta \\ \pm \bar{\beta} & \delta\end{array}\right)$ is a nonsingular element of Δ_{2} and $\alpha \rightarrow \bar{\alpha}$ is an involution in Δ. Consider the equation $E_{22}=E_{11}^{*}=U^{-1} E_{11} U$, that is,

$$
\left(\begin{array}{cc}
\gamma & \beta \\
\pm \bar{\beta} & \delta
\end{array}\right)\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)\left(\begin{array}{cc}
\gamma & \beta \\
\pm \bar{\beta} & \delta
\end{array}\right)
$$

It follows that $\gamma=\delta=0$, and hence $U=\left(\begin{array}{cc}0 & \beta \\ \pm \bar{\beta} & 0\end{array}\right)$.
At this point we observe that an element $\left(\begin{array}{ll}\gamma_{1} & \gamma_{2} \\ \gamma_{1} & \gamma_{2}\end{array}\right) \in A$ is a non-
 It is easy to check that $B^{*}=U^{-1}\left(\begin{array}{cc} \pm \beta & \pm \beta \\ \bar{\beta} & \bar{\beta}\end{array}\right) U= \pm B$, and hence \boldsymbol{B} is either symmetric or skew. If $\beta \pm \bar{\beta}=0$, i.e., $U=\left(\begin{array}{cc}0 & \beta \\ -\beta & 0\end{array}\right)$, we are finished. Therefore assume that $\beta \pm \bar{\beta} \neq 0$. We then apply the observation made at the beginning of this paragraph to conclude that B is a non-nilpotent element of rank 1. Since B is either symmetric or skew, it follows that B^{2} is a non-nilpotent symmetric element of rank 1. The proof is complete when we note that, as A is algebraic over Φ, the subalgebra $\left[\left[B^{2}\right]\right]$ generated by B^{2} over Φ contains a symmetric idempotent of rank 1.

Theorem 5. Let A be the total matrix ring Δ_{m}, algebraic over Φ, with an involution *, where Δ is a division algebra over Φ. Then there exists a division subalgebra D of A such that $D^{*}=D$ and D is isomorphic to Δ.

Proof. Theorem 4 asserts the existence of either (a) a symmetric idempotent e of rank 1 or (b) a symmetric idempotent f of rank 2 , where $f A f$ is isomorphic to Δ_{2} with the induced involution ${ }^{*}$ such that $E_{11}^{*}=E_{22}$. In case (a) we merely set $D=e A e$ and the required conclusion follows. In case (b) Δ_{2} satisfies the hypothesis of Lemma 2. If Δ_{2} contains a symmetric idempotent of rank 1 we proceed as in case (a). Otherwise we conclude from Lemma 2 that the involution ${ }^{*}$ in Δ_{2} is given by:

$$
\left(\begin{array}{ll}
\alpha_{1} & \alpha_{2} \\
\alpha_{3} & \alpha_{4}
\end{array}\right)^{*}=\left(\begin{array}{cc}
0 & -\beta^{-1} \\
-\beta^{-1} & 0
\end{array}\right)\left(\begin{array}{ll}
\bar{\alpha}_{1} & \bar{\alpha}_{3} \\
\bar{\alpha}_{2} & \bar{\alpha}_{4}
\end{array}\right)\left(\begin{array}{cc}
0 & \beta \\
-\beta & 0
\end{array}\right) .
$$

Let D be the division subalgebra of Δ_{2} consisting of all elements of the form $\left\{\begin{array}{ll}\alpha & 0 \\ 0 & \alpha\end{array}\right\}, \alpha \in \Delta . \quad D$ is obviously isomorphic to Δ. Furthermore, one verifies that

$$
\left\{\begin{array}{ll}
\alpha & 0 \\
0 & \alpha
\end{array}\right\}^{*}=\left\{\begin{array}{cc}
\beta^{-1} \bar{\alpha} \beta & 0 \\
0 & \beta^{-1} \bar{\alpha} \beta
\end{array}\right\} \in D
$$

and we see that $D^{*}=D$.
5. Division S_{n}-algebras. We begin this section by stating

Lemma 3. Let 4 be an algebraic division algebra over its center Φ for which there exists a fixed integer h such that the dimension of $\Phi(x)$ over Φ is equal to or less than h for every separable element $x \in \Delta$. Then Δ is finite dimensional over Φ.

Except for the restriction of separability, this lemma is virtually the same as [1], p. 181, Theorem 1. The proof appearing in [1] carries over directly, and we therefore omit it.

Lemma 4. Let Δ be an algebraic S_{n}-division algebra of the first kind over its center Φ. Suppose E is a finite dimensional field extension of Φ. Then $E \boldsymbol{\otimes}_{\odot} \Delta$ is isomorphic to the total matrix ring Γ_{m}, where Γ is a division algebra and $m \leqq 2 n$.

Proof. $E \otimes \Delta$ is well known to be a simple algebra over Φ with minimum condition on right ideals. Hence $E \otimes \Delta$ is isomorphic to Γ_{m}, where Γ is a division algebra and m is a natural number.

An involution τ can be defined in $E \otimes \Delta$ as follows:

$$
(\alpha \otimes x)^{\tau}=\alpha \otimes x^{*}
$$

for $\alpha \in E, x \in \Delta$. It can be verified that τ is a well-defined involution
and that every symmetric element (under τ) in $E \otimes \Delta$ can be written in the form:

$$
\begin{equation*}
\sum_{i} \alpha_{i} \otimes s_{i}, \alpha_{i} \in E, s_{i} \in S \tag{3}
\end{equation*}
$$

Let $f\left(t_{1}, t_{2}, \cdots, t_{n}\right)=0$ be the multilinear polynomial identity of degree n satisfied by S. Because this identity is multilinear and because E is the center of $E \otimes \Delta$, it follows from (3) that the set of symmetric elements of $E \otimes \Delta$ under τ also satisfies $f\left(t_{1}, t_{2}, \cdots, t_{n}\right)=0$.

Now regard $E \otimes \Delta$ as the total matrix ring Γ_{m}, with involution τ. By Theorem 4 there exists in Γ_{m} a set of at least k non-nilpotent orthogonal symmetric elements, where $2 k \geqq m$. Theorem 2 tells us that $k \leqq n$, and hence $m \leqq 2 k \leqq 2 n$.

We are now able to prove
Theorem 6. Let Δ be an algebraic S_{n}-division algebra. Then Δ is finite dimensional over its center.

Proof. By Theorem 1 we may assume that Δ is an S_{n}-algebra of the first kind over its center Φ. Suppose Δ is not finite dimensional over Φ. Then by Lemma 3 there exists a separable element $x \in \Delta$ whose minimal polynomial $g(t)$ over Φ has degree $r>2 n$. Let E be a finite dimensional field extension of Φ containing the r distinct roots $\alpha_{1}, \alpha_{2}, \cdots, \alpha_{r}$ of $g(t)$.

We claim now that the element $x-\alpha_{i}$ is a zero divisor in $E \otimes \Delta$, $i=1,2, \cdots, r$. Indeed,

$$
0=g(x)=\prod_{j=1}^{r}\left(x-\alpha_{j}\right)=\left(x-\alpha_{i}\right) \prod_{j \neq i}\left(x-\alpha_{j}\right)
$$

and it suffices to show that $\prod_{j \neq i}\left(x-\alpha_{j}\right)$ is a nonzero element of $E \otimes \Delta$. Suppose $\Pi_{j \neq i}\left(x-\alpha_{j}\right)=0$, that is,

$$
\begin{equation*}
\left(x^{r-1} \otimes 1\right)-\left(x^{r-2} \otimes \sum_{j \neq i} \alpha_{j}\right)+\cdots \pm\left(1 \otimes \prod_{j \neq i} \alpha_{j}\right)=0 \tag{4}
\end{equation*}
$$

Since $x^{r-1}, x^{r-2}, \cdots, 1$ are linearly independent over Φ, all the corresponding terms of E in (4) must be zero, which is clearly impossible. Therefore $x-\alpha_{i}$ is a zero divisor in $E \otimes \Delta$.

According to Lemma $4 E \otimes \Delta$ is isomorphic to the total matrix ring Γ_{m}, where $m \leqq 2 n$. We may therefore regard $E \otimes \Delta$ as the complete ring of linear transformations of an m-dimensional vector space V over the division algebra Γ. Set $V_{i}=\left\{v \in V \mid v\left(x-\alpha_{i}\right)=0\right\}, i=1,2, \cdots, r$. V_{i} is a nonzero subspace of V since $x-\alpha_{i}$ is a zero divisor in $E \otimes \Delta$. Using the fact that the α_{i} are distinct elements belonging to the center E, we have that V_{i} are independent subspaces of V. It follows that

$$
m \geqq \operatorname{dim} \sum_{i=1}^{r} V_{i}=\sum_{i=1}^{r}\left(\operatorname{dim} V_{i}\right) \geqq r>2 n
$$

A contradiction now arises since $m \leqq 2 n$. We must therefore conclude that Δ is finite dimensional over its center.
6. Primitive S_{n}-algebras. We are now in a position to proceed with the proof of our main result.

Theorem 7. Let A be a primitive algebraic S_{n}-algebra. Then the center of A is a field, and A is finite dimensional over its center.

Proof. Since A is primitive, A may be regarded as a dense ring of linear transformations of a vector space V over a division algebra d. According to Theorem 2 there exist at most n orthogonal symmetric idempotents. Let $e_{1}, e_{2}, \cdots, e_{m}$ be a set of m orthogonal symmetric idempotents, with $m(\leqq n)$ maximal. For each $i, e_{i} A e_{i}$ is again a primitive algebraic algebra with involution induced by ${ }^{*}$. The same is true for $(1-e) A(1-e)$, where $e=e_{1}+e_{2}+\cdots+e_{m}$, if A should not already happen to have an identity. We now use Theorem 3 in conjunction with the maximality of m to assert that the rank of each e_{i} is 1 or 2 , and that A does have an identity $1=e_{1}+e_{2}+\cdots+e_{m}$. It follows that the dimension k of $V \leqq 2 m$ and consequently that A is isomorphic to the total matrix ring Δ_{k}. The center of A is, of course, a subfield of Δ. Theorem 5 now says that Δ is an algebraic S_{n}-division algebra. By Theorem 6Δ is finite dimensional over its center. Hence A is finite dimensional over its center.

Corollary. Let A be a primitive algebraic algebra with an involution * such that the set K of skew elements is a PI-subspace of degree n. Then A is finite dimensional over its center.

Proof. Let $f\left(t_{1}, t_{2}, \cdots, t_{n}\right)=0$ be the multilinear polynomial identity of degree n satisfied by K, according to Lemma 1 . If $s_{1}, s_{2} \in S$, where S is the set of symmetric elements of A, then $s_{1} s_{2}-s_{2} s_{1} \in K$. From this it follows that $f\left(u_{1} v_{1}-v_{1} u_{1}, u_{2} v_{2}-v_{2} u_{2}, \cdots, u_{n} v_{n}-v_{n} u_{n}\right)=0$ is a nontrivial polynomial identity of degree $2 n$ satisfied by the elements of S. In other words, A is a primitive algebraic $S_{2 n}$-algebra, and the conclusion follows from Theorem 7.

Note. Herstein's original conjecture was: if A is a simple ring (or algebra) with involution whose skew elements satisfy a polynomial identity, then A is finite dimensional over its center. In this paper we have verified his conjecture in the special case where A is a simple algebraic algebra which is not a nil algebra.

Bibliography

1. N. Jacobson, Structure of rings, Amer. Math. Soc. Colloquium Publications, 37 (1956).
2. Whe theory of rings, Amer. Math. Soc. Math. Surveys, vol. 2, New York 1943.

University of Chicago
Smith College

[^0]: Received September 23, 1960.

[^1]: ${ }^{1}$ A similar proof was communicated orally to the author by I. N. Herstein.

