
EXTENSIONS OF HOMOMORPHISMS

PAUL CIVIN

1. Introduction- A multiplication was introduced by R. Arens [1] [2]
into the second conjugate space I?** of a Banach algebra, B, which
made I?** into a Banach algebra. The algebra of the second conjugate
space was studied by Civin and Yood [3], with particular attention given
to the case where B was L(@), the group algebra of the locally compact
abelian group ©. Among the results they noted was that the algebra
M(@) of finite regular Borel measures on © was isomorphic as an algebra
with a quotient algebra of L**(@). With £> also a locally compact abelian
group, P. J. Cohen showed [4, p. 220] that any homomorphism of
into M(!Q) has an extension which was a homomorphism of M(®) into

In §3 we discuss the extensions of homomorphisms defined on a
Banach algebra A into either the second conjugate algebra 5** of a
Banach algebra B or certain of its quotient algebras. The result of
Cohen quoted above is included in Theorem 3.7 when © and ξ> are
compact groups. In §4 we indicate, for compact ξ>, a class of homomor-
phisms from L(@) into Λf(ξ>), which are induced by homomorphisms of
Z(<8) into L**(φ).

2 Notation, The notation of Civin and Yood [3] is used throughout.
If A is a Banach algebra, A*, A**, ••• denote the various conjugate
spaces of A. For / e A*, x e A, </, x) e A* is defined by </, x){y) =
f(xy), y e A. For F e A**, / e A*, [F,f] e A* is defined by [F,f] (x) =
F(ζf, αζ», x e A. Also for F e A**, G e A** the multiplication FG is
defined in A** by FG{f) = F([G,f]), f e A*.

For some purposes, Arens [2] also considers a second multiplication
F-G defined for F and G in 4** in a manner similar to the above,
except that at the first stage, </|α> e A* is defined by </|α> (y) = f(yoή9

f e A*, x,y e A. Arens calls the multiplication in A regular provided
that F'G = GF for all F,G 6 A**. Clearly, if A is commutative, then
A** is commutative if and only if the multiplication in A is regular.
The same notation as above, in terms of bilinear functional, is used in
the sequel with respect to a multiplication in A**** which comes from
the first of the above multiplications in A**.

If π is the natural mapping of A into A**, we say that a mapping
φ defined on A** into a set @ is an extension of a mapping p defined
on A into @ if φ{πx) — p(x) for x e A.

For any subset $ in A*, we use the notation ^ for {F e A** | F(f) =
0, / e 3}.
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For a commutative Banach algebra A, we let 2)(A) denote the closed
subspace of A* generated by the multiplicative linear functionals. If
A = L(@), the group algebra of the locally compact group ©, we write

in place of ?)(£(©)).

3 Extension of homomorphisms We first consider the possibility
of extending a bounded homomorphism of the Banach algebra A into
the Banach algebra 1?** to a w*-continuous homomorphism of A** into
JB**. Throughout this section we adopt the notation π for the natural
mapping of A into A** and σ for the natural mapping of 5* into 2?***^

3.1 THEOREM. Let A and B be Banach algebras. Let φ be a
bounded homomorphism of A into the center of j?**. Then there is a
unique w*-continuous homomorphism ψ of A** into J5** which is the
extension of φ.

Proof. Let / e £**, and x,y e A. Then <>*</ /, x) (y) = <p*σf{xy) =

ψ{χy){f) = ψ(y)φ{χ)U) = 9>te) ([?>(*),/]) - ^M<PO*O,/]G/) Thus
For any G e A**, [G, φ*σf](x) G«φ*σf, «» =

= σ*φ**Gφ(x)(f) = <P(x)σ*φ**G(f) =
,/](x). Consequently, [G,φ*σf] =

9>V[σ*9>**G, / ] . Therefore for any F e A**, F([G, 9>*σ/]) =
F(φ*σ[σ*φ**G, /]) = σ*φ**F([σ*φ**G, / ] ) . Hence σ*φ**(FG){f) -
FG(φ*σf) = F([G,φ*σfl) = σ*φ**F([σ*φ**G,f\) = σ*φ**Fσ*φ**G(f). Thus
σV** is a homomorphism of A** into i?**.

For £ e A, a n d / e £*, (7*^**(πx)(/)-τrίc(^*σ/) = 9>*σ/(a) - σf(<p(x)) =
<p(x)(f). Thus (7*^**(ττ^) = 9>(a?) and <?V** is an extension of φ.

Let G e A**, Ga e A** and suppose G = w* -limGa. Then for
any / e B*, \im σ*<p**Ga(f) = l imGα(^*σ/) = σ*^**G(/), and so σ*φ**
is w*-continuous.

The assertion of uniqueness follows from the following.

3.2 LEMMA. Let A and B be Banach algebras, and let φ be any
bounded linear transformation of A into I?**. Then #•*<£>** is the only
w*-continuous extension of φ to a transformation of A** into 2?**.

Proof. That <7*̂ >** is a ^-continuous extension was given above.
Suppose that ψ is a w*-continuous extension of φ, so that ψ(πx) — φ(x)
for all x e A. Let G e A** and let {xa} be a net in A such that w*-\im
πxΛ = G. Then for / e 5*, ψ<G)(/) = Km ψ(πxa)f = lim φ(x.)(/) = lim

= lim τrxα(^*(7/) = G(φ*σf) = σ*^**G(/). Hence

If 5 is commutative with a regular multiplication, an alternative
proof of Theorem 3.1 may be given on the basis of the following lemma
and Theorem 6.1 of [3].
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3.3 LEMMA. If B is a commutative Banach algebra with a regular
multiplication then σ* is a homomorphism of j?**** into 2?**.

Proof. Since multiplication in B is regular, JB** is [2] a commutative
algebra. Let U, V e £****. F o r / e £*, and F, G e £**, <<//, F>(G) -
0 / T O - * W ) = GF(f) - G([JF,/]) - σ[F,f](G), and therefore
<σ/,F> - σ[F,f]. Also [F,σ/](F) = F«σ/, F » = V(σ[F,f]) =
tf * F[F, /] - (</* F)F(/) = Fσ* V(f) = F([σ* V, /]) = σ[σ* V, f](F). Thus
[F, σ/] - σ[σ* V, / ] . Consequently <J*(£/F)(/) = UV(σf) = t/([F, α/]) =
t/(4<7*F,/]) = σ*C/([σ*F, /]) = ** Uσ*V{f) and σ* is a homomorphism
a claimed.

We note that it is impossible in general to conclude that the range
of the extension of φ is in the center of i?** even though the range
of ψ is in the center. For let A = B be a commutative algebra whose
multiplication is not regular, and let φ — π. Then the w*-continuous
extension of π is the identity map and JB** is not commutative.

One further example is in order, to see that in general a bounded
homomorphim φ from A into 5** does not admit a w*-continuous extension
as a homomorphism from A** into 5**. For this purpose let A be the
group algebra of the integers, ©, and let B — A. Let ίγ, 7 e ® be the
translation operator on A*, defined by tyf(a) — f(a + γ), feA*, and α,
r e ® . Let e e i * correspond to the function identically one on ©. Let
3 - { F e A**|F(£7/) = F(f), for all γ e ®,f e A*}. Then as noted in
formula (3.2) of [3],

(3.1) GF=G(e)F, F e$, G e A**.

In particular any F e g with F(e) = 1 is an idempotent. As noted in
[3], S is a two sided ideal in A** with only zero in common with the
center of A**. Since © is a discrete group A has an identity and thus
[3, Lemma 5.4] A** has an identity E. Let F be a nonzero idempotent
in $. Thus E — F is also an idempotent. Let φ(x) = πx(E — F). Since
πA is in the center of A**, φ(x) is a homomorphism of A into A**.
If φ had a w*-continuous extension as a homomorphism, the extension
ψ would have the value ψ(G) = G(E — F), (? e i ** . We now show
that ψ is not a homomorphism. As noted above F is not in the center
of A**, so we may pick H e A** such that HF Φ FH. Also pick
G e A** such that G(e) - 1. Then ψ(GH) =GH(E - F) = GH - GHF =
Giϊ — (Giί) (β)F. Now e is a multiplicative linear functional on A, and
so by Lemma 3.6 of [3], (GH)(e) = G(e)H(e) = H(e). Thus ψ (GH) =
GH-H(e)F=GH-HF. On the other hand ψ(G)ψ(H) = (G-GF)(H~
HF) = (G-F)(H- H(e)F) - GH - FH - H(e)GF + H(e)F = GH - FH.
Since FH Φ HF, ψ(GH) Φ ψ(G)ψ(H) and ψ is not a homomorphism.

Before turning to other types of extensions we note one further
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item on the matter of w*-continuity of homomorphisms.

3.4 LEMMA. If A and B are Banach algebras and ψ is a bounded
homomorphism of A** into the center of J3**, then there is a w*-continuous
homomorphism p of A** into i?** such that ψ(πx) — p(πx) for x e A.

Proof. Since ψπ is a homomorphism of A into the center of B**,
we may take p = tf*^**τz:** and apply Theorem 3.1.

Homomorphisms of A** into I?** which are not w*-continuous exist,
as may be seen in the following example. Let @ be an infinite compact
group and let A — B be the group algebra of @. Then by Lemma 3.8
of [3], A** has a right identity E which is not an identity. Define for
F e A**, f (F) = EF. Then ψ{FG) = EFG = EFEG = f(F)f{G).
However ψ although bounded is not w*-continuous. For let G e A**
and let {xa} be a net such that w* — lim πxa = G. Then if ψ were
w*-continuous we would have ψ(G) = limψ(πxa) = lim-Etoi^ = limπa^ =
G. However, ψ(G) = EG and EG Φ G for some G e A**.

We next turn to the question of extending homomorphisms from A
into certain quotient algebras of 1?** in the case in which both A and B
are commutative. We must first characterize the w*-closed ideals of a
second conjugate algebra.

3.5 LEMMA. Let A be a commutative Banach algebra. Let ft be
a w*-closed subspace of A** and let ft0 = {/ e A*\F(f) = 0, F e ft}.
7%ew ^ is α^ idβαi o/ A** i / and only if [G,/] e $ 0 for all
G 6 A**,/ G So.

Proof. Since $ is w*-closed, 3 — ^o^ Suppose $ is an ideal of
A**. For any F e $, G e A**, and / e ^ 0 , FG € $ and FG(/) = 0.
Therefore F([Gyf]) = 0 for all F e ft, and so by definition [G,/] e ft0.
Suppose next that the stated condition holds. Let F e g and G e A**.
For any / e ft0, [G, / ] e ft0 and thus FG(f) = F([G, / ] ) = 0. Consequently
FG e ft/ — ft and ft is a right ideal. For any x e A, πx is in the
center of A**, hence if F e ft, πxF — Fπx e ft. Since πA is w*-dense
in A** and left multiplication is w*-continuous [2], we see that GF e ft
for any G e A**, and thus ft is an ideal of A**.

3.6 THEOREM. Let A and B be commutative Banach algebras. Let
ft be a w*-closed ideal of I?**. Suppose that φ is a bounded homomor-
phism of A into the center of J5**/ft. Then there exists a w*-closed
ideal ft' of A** and a homomorphism ψ of A**/ft' into £**/ft suck that
if π is the natural embedding of A into A**, then ψ(πx + ft') =
φ{x), x e A.



EXTENSIONS OF HOMOMORPHISMS 1227

Proof. Since $ is w*-closed, 3 = ^ o

x where % = {/ e B*\F(f) = 0
for all ί7 e $}. Let β be the linear space isometric isomorphism of 3o*
onto £**/$ defined for î 0 e 30* bγ βFQ = F + S where ί7 e £** is an
arbitrary extension of Fo. Define multiplication in $0* so that β (and
thus β-1) is an algebra isomorphism. For / e Qf0, define φ*f by φ*f(x) =
(β~~1(p(x))(f), x e A. Then #>*/ is linear and since £> is bounded
II^JX^II^IM! IN! 11/11, and <pJeA\

Let Qf0' be the w*-closure of the range of φ*, and let $' = $V"
Clearly $' is w*-closed. We next show that $' is an ideal of A**. Let
fe%. Then for any x,y e A,<cpJ,x){y) - ^ / ( a y ) - {β'ιφ{xy))f =
(β~1(P(yx))(f), since the range of <p is commutative. Suppose that 9(1/) =
tf + & and 9>(a?) = F + $ so that ?>(yaθ = UV+%. Then <fi-x<p(xy)){f) =
ί/F(/) - C7([F, /]). Since fe 3f0, and 3 - 3 ^ is an ideal, flr = [7, /] e 3 0

by Lemma 3.5. Hence (β'Wyx))(/) - C/(sr) - {^-^y))^) = 9>*ff(»), for
all 1/6A We therefore have <(<£>*/, x> = φ*g and so ζ<P*f,xyeί3Ό for
any a eA and / e ^ 0 Suppose next that g e $„', and ίceA. Say fir =
w* -lim 9>*/Λ with /Λ e $0. Then for ί/ei , <̂ r, x>(y) = ^(^) = lim φJΛ{xy) =
l i m ^ / β , x>(|/), and hence <flr, a?> = w* — l im<^/ Λ , a?>. However, by
the above, <$>*/„, x> e Qfo

f, and %' is ^*-closed so <flr,a?> e $50' for any ^ e So'
and a; e A.

Let GeA** and let / e $ 0 \ Let {̂ α} be a net in A such that
w*-limπa?Λ = G. Then [G,/](«) = G«/ f a?» = lim πa?β(</, «» = lim
</, ^>(xa) = lim /(αajΛ) = lim fζx^x) = lim </, £*>(#) for cc G A. Consequently
[G, /] = w* - lim (f,x*y, and is thus in $0 ' as %' is ^;*-closed. Hence, by
Lemma 3.5, 9f = ^o'-1 is a w*closed ideal of A**.

For F e A**, define γF(/) = F{φJ) for / e ^ 0 Clearly 7F is a
bounded linear functional on $0, and so has an extension of the same
norm which is an element of 5**. We again denote the extension by
7F. Thus γ is a bounded linear map from A** into 2?**. Note that if
F.-F.e ft' and fe So, then y(F1 - F2)(f) = (F, - F2) (<?*/) 0, and thus

. Thus for any Fe Fo + 3, (|γF0 + 3 ' | | = | |γF+3f| | ^
^ H and hence \\ΎF0 + 9f|| ^ | | F 0 + SΊI Il9>*ll

Define ψ. on A**/^' by ψ(F + ^') - γί 7 + ft. By the above, we see
that ψ is a bounded linear mapping of A**/$' into J5**/g. Also for
αeil,ψ.(;rc + S') r=r γ ^ + 3. Since γτί£(/) = πx(φj) = ^^/(aj) =
(/3-V(^))(/) for /eSo, 7*Γ<B - /5~VW e 3, and ψ(πa? + 3)' - ?>(&).

Thus all that remains is to see that ψ satisfies the required multi-
plicative property of a homomorphism. Let F,GeA**. To see that
ψ(FG)=ψ(F)ψ(G), we must show that for fe &, M-F7)r(G)-7(ίτG)}(/) = 0.
Since {7(F)γ(G) -γ(FG)}(/) -7(F)([7(G),/])~FG(^,/)-F(^[γ(G),/]-
[G,9>*/]), it suffices if we show that 9>*[7(G),/] - [G, ̂ / ] = 0. Let
x,yeA and suppose that φ(x) = U + $, 9>(») = ^ + S, and thus 9>(a?») =
9>(»α?)= Fi7+^. It follows that <φ*f,xXy)=φ*f(xy)= VU(f) = F([C7, /]).
Now, since / e &, [U,f]e ^ 0 by Lemma 3.5. We therefore have (Φ,. f. χ>(y) =



1228 PAUL CIVIN

<P*[U, f](y) for all ye A, and consequently <9>*/, a?> = 9>*[ϊ/,/]. Thus
[G, Ψj]{x) = G«<p*f, x» =G(φ*[U,f]) = 7G([U,f] = (yG)U(f). On the
other hand, <p*[lG, /](%)= U([yG, / ] ) = UyGif). Since under our hypothesis
9>(a?) = C/ + 3f is in the center of B**/$, UyG(f) = (jG)U(f) for fe%
and we have the desired result.

It should be noted that the ideal $ ' in general is dependent on the
homomorphism φ. Two instances should be noted where this is not the
case. The first, when $ ' = 0, has already been treated in the discussion
of w*-continuous extensions of homomorphisms of A into the center of
-B**. The other is the following.

3.7 THEOREM. Let A and B be commutative Banach algebras. Let
ψ be a homomorphism of A into JB**/2)-L(JB). Then there is a homomor-
phism ψ of A**/Dx(-B) such that ψ(πx + ψ) = <p(x).

Proof. If in the proof of Theorem 3.6, $ 0 = 2)(5), it follows from
Lemma 3.6 of [3] that for any fe% which is a multiplicative linear
functional on B, that φ*f is a multiplicative linear functional on A.
Hence, the norm closure of the range of φ* is contained in ?)(A). In
view of Lemma 3.6 of [3], the subspace tyL{A) is a w*-closed ideal of
A**, and if used in the role of & affords the same conclusion. Note
that the homomorphism φ is not postulated to be bounded or with range
in the center of 5**/2)J-(JB). This is legitimate since in view of Theorem
3.7 of [3], J?**/^)-1 is automatically commutative and semi-simple, and
thus φ is automatically bounded.

If A and B are the group algebras of the compact groups ® and
ξ>, then A**lψ{A) and B**l%)L{B) may be identified with the measure
algebras M(®) and M(ξ>) respectively by Theorem 3.18 of [3]. Thus
Theorem 3.7 includes in the case of compact groups, the result of
P. J. Cohen [4] quoted in the introduction.

4 Group algebras* Let @ be a locally compact abelian group.
As in §3, we denote the group algebra of @ by L((S) and the algebra of
finite regular Borel measures on @ by M(®). For notational purposes,
it is also convenient to identify the character group © of (S with the
subset of !/*(©) consisting of the nonzero multiplicttive linear functional
on L((S). The topology of @ is then in agreement with the w*-topology
of © as a subset of L*(@).

Suppose that ξ> is a locally compact abelian group. A continuous
homomorphism v of © into ξ> is called nonsingular if for every Borel
set E is ξ> with zero Haar measure, v~\^) is of zero Haar measure in ©.

A complete characterization of all homomorphisms φ of L(@) into
was given by P. J. Cohen [4]. He utilized the function φ* from

into {©, 0} defined by <pj(x) = φ(x)(f), x e L(®),fe &
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4.1 THEOREM. (P. J. Cohen) Let © and ξ> be locally compact dbelian
groups, φ a homomorphism of L(@) into M(!Q), φ* the induced map of
φ into, {©, 0}. Then there are a finite number of sets Sti9 which are
cosets of open subgroups of φ, and continuous maps ψt: k{ —* ©, such
that

(4.1) ψiix + y-z) = ψiix) + ψM - ψάz)

for all x, y and z in Bif with the following property: There is a
decomposition of £> into the disjoint union of sets &j9 each lying in
the Boolean ring generated by the sets ®i9 such that on each @y, φ* is
either identically zero or agrees with some ψi9 where @y c Sί#

Conversely, for any map of ξ> into {©, 0}, there is a homomorphism
of L((§>) into M(fg) which induces it. The map φ carries L(@) into
L(fQ) if and only if φ^r1 of every compact subset of © is compact.

Suppse that the sets Bt are cosets of the subgroups It; of φ. There
is a closed subgroup £>; of £>, ̂  = {h e φ[ (hf h) — 1, h e UJ, such that Û
may be viewed [6, p. 130] as the character group of £>/£>;. Let α{ e ̂ i y

and define ψ/: U< -> © by

(4.2) ψ/(x) = ψMi + x) - ψi(ai), x e U4.

The condition (4.1) on ψi is then equivalent to the assertion that ψ/ is
a homomorphism of U* into @, and ψ/ is continuous along with ψim We
may also consider the dual homomorhism p^. @ —> Ui = ξ>/ξ>;, defined dy

(4.3) (ψ/(a?), g) - (a?, A(flr)), a? e U, = (φ/^Γ, flf e (8.

In view of the Cohen theorem, the homomorphism ψ is determined by
the sets &i9 @y and the functions /3ίβ The notation introduced above
will be used in the sequel without further comment. We also use the
notation p* as the mapping of .L*(ξ>) into L*(@) which is defined by
P*f(x) = p{x){f), K e L(@), fe L*(§), whenever ^ is a bounded linear map
of L(®) into L**(φ).

4.2 LEMMA. Lei X be a nonsingular homomorphism of © m£o a
locally compact abelian group &. Then λ induces a homomorphism p
of L(©) into L**($) such that for feSl,p*(f)=fo λ.

Proof. For fc e L*(£), define λ ί̂fe) by

aeG.

We first must show that λ^ is a well-defined bounded linear mapping of
L*($) into L*(©). Suppose that Kt andur2 are two bounded Borel measur-
able functions on ® such that kλ{β) = k2(β) for almost all β in ffi. Let
© = {a e ©I fc2 (X{a)) Φ k2(X(a))}. Then © - λ-χ(λ(@)) and by the hypothesis
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of non-singularity © has measure zero in ©. Since it is now immediate
that |λ*(fe)(α:)| ^ ||fc|| for almost all a in ©, it follows that λ* is a
bounded linear map of L*($) into Z/*(@).

For x e L(®), define ρ(x) on L*(St) by

Clearly p(x) e L**(£B), and /> is a bounded linear mapping from L(@) into
L**(Λ), and ^ / = / o λ .

We next show that /> satisfies the multiplicative condition for a
homomorphism. Let x,ye L(©) and / e L*(β). Then

- β)dβda

For any 2 e L(SΪ), and δ e ®, it is easily seen [3] that </, z>(δ)

(s + δ)«(γ) dγ. Therefore,

Since the order of integration may be reversed, we see that for

lp(y),f](v) = j φ / ( 7 + X{β))y{β)dβ. Hence,

X(β))y(β)x(a) dβ da .

Since we thus have ρ(xy)(f) = p(x)p(y)(f), for all feL*(K), p is a
homomorphism.

4.3 THEOREM. Lei © αmZ § 6β locally compact abelian groups,
with ξ> compact. Let φ be a homomorphism of L((§>) into M(ξ>). Le£
M(ξ)) 6e regarded as I#* *(©)/?) "L(Φ)> α ^ ί e ί ^ ^ e *^e natural mapping
of L**(!Q) onto L**(^)/?)J"(©)- Γfce^ i / βαcfc homomorphism βif de-
termined by φ, is nonsingular, there is a homomorphism p of L(®)
into L**(ξ>) such that φ — θ o p.

Proof. The justification for considering M(§) as L**(©)/?) 1(ξ>) is
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Theorem 3,18 of [3].
If <?*(/) = 0 for all /e@ y , define p3: L(@)->L**(ξ>) by pά{x) =

0, xeL(®).

Suppose that @, c ^ c ^ , and £>*(/) = ^h(/) for / e @iβ In view
of (4.1), the homomorphism ψ/ of Ui into G may be defined by ψi'(k) =
ψi(/c + &;) — ψi(&i) for an arbitrary h{ e @iβ The dual homomorphism ft
of © into £>/£>; is by hypothesis nonsingular. Thus by Lemma 4.2, there
is a homomorphism p/ of L(G) into !/**(©/©<) such that ft*'(fc) = fc o ft,
for fc e (£/&Γ = Wi

For/eL(φ/&) define £<(/) on © by 0<(/)Gβ) =/(/S + &)• Suppose
that the Haar measure on £>; is normalized so that the measure of &
is one. The formula relating integration on a group with that on a
quotient group shows that θ{ is an isometric isomorphism of L(ξ>/fe)
into L(ξ>). Thus by Theorem 6.1 of [3], θ** is a homomorphism of

) into L**(£). Also for any WGL(§fe), and / e !,*(£),

= Sβ/ί- S§
where dβ is the Haar measure on £>/£>*. Thus

f(β + 7)

and we conclude that θffφ) = \ f(β + γ) dy.

It is well known that in a group algebra the pointwise multiplication
by a character is an automorphism of the algebra. We next show that
the same situation prevails in the second conjugate algebra of a group
algebra. Let % be a locally compact abelian group and define, for
ηeX, ψg and τ]og by pointwise multiplication on X if x e L(Z) and
geL*(X). Define η o G(g) = G(r] o g) for GeL**(2) . Clearly the map
G—>τ]oG is a one-to-one bounded linear map of L**(£) onto itself.
Let F, GeL**(5ε) and ^ G L * ( 2 : ) . It remains for us to show that
(ψF){ψG)(g) = η?(FG)(g). Since {ψF)(ψG)(g) - ?o FφyoG, flr]) =
^ o ^ o G , g]), while ψ(FG){g) = FG{ψg) = F([G, ψg\), it suffices if we

show that for all a? e L(£), ^DyoG, #1 (*)== 1^' ^°^ W ^ o w ^°[^0^^ ff] ί̂ ) =
[^°G, g](yoχ)=ηoG«g, ηoXy) = G(ηo<β, ηoχ», while [G, ηog\(x)=G«r)og, α?»,
so it suffices if we show that for all # e L(%), ηoζg, rjoχy{y) =(flog, x}(y).
Since ψζg, ψxy(y) = g((ηoχ)(ηoy)) = g(^o^) = ^o^r^) = <^og, a.>(y), the
original assertion follows.

Define the mapping ^ by

(4.4) pax) = kγ'oθ^



1232 PAUL CIVIN

where the dot at each occurrence indicates multiplication of the appro-
priate functions. Since fc* e |>, and ψ (fc ) e ©, p5 is a composite of four
homomorphisms and is thus a homomorphism of L((S) and L**(φ).

Suppose that /e@y cffi<, so that <P*f=ψif. Since $ f is a coset of
I!;, there is a fc e U* such that f=k{ + k. We use the same notation
for k when it is viewed as a member of (ξ>/ξ>;)"\ For any x e

p'j{ψi{k%)oχ)θ*(k). From the formula obtained earlier for 0**, it is
immediate that 0** simply transfers k from being viewed as a member
of Hi c ξ), to being viewed as a member of (φ/φ<)~ c L*(ξ)/^). Thus

= j β (fc, ftW^ifeJW^a)^ = J@ (ψl(k), a)ψi(ki)(a)x(a)da ,

by use of (4.3). Thus by use of the definition of ψl in terms of kiy we have

ifc), a)x{a) da

), 0L)x(a) da = j @ <p*f(a)x(a) da .

We therefore conclude that ρ3 *f(x) = <P*f{%) for all & e L(@) or that

Prf=<P*ftoτ ft®*.
Now, by the Cohen theorem, ξ> is the disjoint union of the sets @5 .

The characteristic function of @, is then the Fourier transform of an
idempotent measure in M(!g) = I / * * ^ ) / ? ) 1 ^ ) . Let i^ be any member
of L**(ξ>) such that ^JP,- is the Fourier transform of the characteristic
function of <&Jm Then F) - Fά e S ) 1 ^ ) . Now, Theorem 3.15 of [3] states
that SHξ)) is the radical of £**(£>), and therefore Theorem 2.3.9 of [5]
yields Eά e L**(ξ>) such that E) = Ej and ΘE5 = ^ .

We next show that if i Φ j , then E{FE5 = 0 for any .Fe L**(φ).
Suppose that / e φ , then Lemma 3.6 of [3] yields

F o r / e £ , Ek(f) = Fk(f) = χ(@k)(f), where χ(@fc) is the characteristic
function of @Λ. Thus since S* and S3 are disjoint EiFE3-(f) = 0. Hence
EiFEj ey)1, the radical of L**(ξ>). For a compact group φ, the radical
is also the right annihilator of !/**(£>) by Theorem 3.5 of [3]. Thus
since E, = El E{FE5 = E^FE,) = 0.

Let jθ be defined on L(®) by

/o(») - E1p1(x)E1 + + Erpr(x)Er, x e L(®),

where © = @i U U @r. Clearly /> is a bounded linear transformation
of L(®) into L**(φ), and to see that p is a homomorphism it suffices if
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we show that Eiρi{xy)Ei = Eφ^Eφ^Ei. The latter equality is
ertablished by an identical argument to that used above to show EiFEj =
0 for i Φ j . Thus p is a homomorphism of L(&) into L**(§).

To see that θop = φ9 it suffices if we show that φ*{f) =
(θ°P)*(f) for fe f>. Suppose that fe <&k. Then for x e L(@), (#°iθ)*(/)(#) =
Oop(x){f) = Ekpk(x)Ek(f), since ^ ( / ) = 0 if i =£ fc. Thus {0op)^f)(x) -
Pk(%)(f) = ^ * / as was shown earlier.
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