SOME CONGRUENCES FOR THE BELL POLYNOMIMALS

L. Carlitz

1. Let $\alpha_{1}, \alpha_{2}, \alpha_{3}, \cdots$ denote indeterminates. The Bell polynomial $\phi_{n}\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \cdots\right)$ may be defined by $\phi_{0}=1$ and

$$
\begin{equation*}
\phi_{n}=\phi_{n}\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \cdots\right)=\sum \frac{n!}{k_{1}!(1!)^{k_{1}} k_{2}!(2!)^{k_{2}} \ldots} \alpha_{1}^{k_{1}} \alpha_{2}^{k_{2}} \cdots, \tag{1.1}
\end{equation*}
$$

where the summation is over all nonnegative integers k_{j} such that

$$
k_{1}+2 k_{2}+3 k_{3}+\cdots=n .
$$

For references see Bell [2] and Riordan [5, p. 36]. The general coefficient

$$
\begin{equation*}
A_{n}\left(k_{1}, k_{2}, k_{3}, \cdots\right)=\frac{n!}{k_{1}!(1!)^{k_{1}} k_{2}!(2!)^{k_{2}} \cdots} \tag{1.2}
\end{equation*}
$$

is integral; this is evident from the representation

$$
A_{n}\left(k_{1}, k_{2}, k_{3}, \cdots\right)=\frac{n!}{k_{1}!\left(2 k_{2}\right)!\left(3 k_{3}\right)!\cdots} \cdot \frac{\left(2 k_{2}\right)!}{k_{2}!(2!)^{k_{2}}} \frac{\left(3 k_{3}\right)!}{k_{3}!(3!)^{k_{3}}} \cdots
$$

and the fact that the quotient

$$
\frac{(r k)!}{k!(r!)^{k}}
$$

is integral [1, p. 57].
The coefficient $A_{n}\left(k_{1}, k_{2}, k_{3}, \cdots\right)$ resembles the multinomial coefficient

$$
M\left(k_{1}, k_{2}, k_{3} \cdots\right)=\frac{\left(k_{1}+k_{2}+k_{3}+\cdots\right)!}{k_{1}!k_{2}!k_{3} \cdots} .
$$

If p is a fixed prime it is known [3] that $M\left(k_{1}, k_{2}, k_{3}, \cdots\right)$ is prime to p if and only if

$$
\begin{array}{cc}
k_{i}=\sum_{j} a_{i j} p^{j} & \left(0 \leqq a_{i j}<p\right), \\
k_{1}+k_{2}+k_{3}+\cdots=\sum_{j} a_{j} p^{j} & \left(0 \leqq a_{j}<p\right)
\end{array}
$$

and

$$
\sum_{i} a_{i j}=a_{j} \quad(j=0,1,2, \cdots)
$$

It does not seem easy to find an analogous result for $A_{n}\left(k_{1}, k_{2}, k_{3}, \cdots\right)$. For some special results see § 3 below.

Bell [2] showed that

$$
\phi_{p} \equiv \alpha_{1}^{p}+\alpha_{p} \quad(\bmod p)
$$

and also determined the residues $(\bmod p)$ of $\phi_{p+1}, \phi_{p+2}, \phi_{p+3}$. He also obtained an expression for the residue of ϕ_{p+r} as a determinant of order $r+1$. Generalizing (1.3) we shall show first that

$$
\begin{equation*}
\phi_{p^{r}} \equiv \alpha_{1}^{p^{r}}+\alpha_{p}^{p^{r} r-1}+\cdots+\alpha_{p^{r}} \tag{1.4}
\end{equation*}
$$

and that

$$
\begin{equation*}
\phi_{p n}\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \cdots\right) \equiv \phi_{n}\left(\phi_{p}, \alpha_{2 p}, \alpha_{3 p}, \cdots\right) \quad(\bmod p) \tag{1.5}
\end{equation*}
$$

for all $n \geqq 1$. Note that on the right the first argument in ϕ_{n} is ϕ_{p} and not α_{p}.
2. From (1.1) we get the generating function

$$
\begin{equation*}
\sum_{n=0}^{\infty} \phi_{n} \frac{t^{n}}{n!}=\exp \left(\alpha_{1} t+\alpha_{2} \frac{t^{2}}{2!}+\alpha_{3} \frac{t^{3}}{3!}+\cdots\right) \tag{2.1}
\end{equation*}
$$

Indeed this may be taken as the definition of ϕ_{n}. Differentiating with respect to t we get

$$
\sum_{n=0}^{\infty} \phi_{n+1} \frac{t^{n}}{n!}=\sum_{n=0}^{\infty} \phi_{n} \frac{t^{n}}{n!} \sum_{r=0}^{\infty} \alpha_{r+1} \frac{t^{r}}{r!},
$$

so that

$$
\begin{equation*}
\phi_{n+1}=\sum_{r=0}^{n}\binom{n}{r} \phi_{n-r} \alpha_{r+1} . \tag{2.2}
\end{equation*}
$$

Since the binomial coefficient

$$
\binom{p n}{r} \equiv 0
$$

unless $p \mid r$ and

$$
\binom{p n}{p r} \equiv\binom{n}{r}
$$

it follows from (2.2) that

$$
\begin{equation*}
\phi_{p n+1} \equiv \sum_{r=0}^{n}\binom{n}{r} \phi_{p(n-r)} \alpha_{p r+1} \quad(\bmod p) \tag{2.3}
\end{equation*}
$$

If for brevity we put

$$
A(t)=\sum_{r=1}^{\infty} \alpha_{r} t^{r} / r!
$$

so that

$$
\sum_{n=0}^{\infty} \phi_{n} \frac{t^{n}}{n!}=\exp A(t)
$$

it is easily seen by repeated differentiation and by (1.3) that

$$
\begin{equation*}
\sum_{n=0}^{\infty} \phi_{n+p} \frac{t^{n}}{n!} \equiv\left\{\left(A^{\prime}(t)\right)^{p}+A^{(p)}(t)\right\} e^{\mathbf{A}(t)} \quad(\bmod p) \tag{2.4}
\end{equation*}
$$

(By the statement

$$
\sum_{n=0}^{\infty} A_{n} \frac{t^{n}}{n!} \equiv \sum_{n=0}^{\infty} B_{n} \frac{t^{n}}{n!} \quad(\bmod m)
$$

where A_{n}, B_{n} are polynomials with integral coefficients, is meant the system of congruences

$$
\left.A_{n} \equiv B_{n} \quad(\bmod m) \quad(n=0,1,2, \cdots)\right)
$$

Hurwitz [4, p. 345] has proved the lemma that if $a_{1}, a_{2}, a_{3}, \cdots$ are arbitrary integers then

$$
\left(\sum_{n=1}^{\infty} a_{n} \frac{x^{n}}{n!}\right)^{k} \equiv 0
$$

The proof holds without change when the a_{n} are indeterminates. Since

$$
A^{\prime}(t)=\sum_{n=0}^{\infty} \alpha_{n+1} \frac{t^{n}}{n!},
$$

it follows easily from Hurwitz's lemma that

$$
\left(A^{\prime}(t)^{p}=\left(\alpha_{1}+\sum_{n=1}^{\infty} \alpha_{n+1} \frac{t^{n}}{n!}\right)^{p} \equiv \alpha_{1}^{p} \quad(\bmod p)\right.
$$

Thus (2.4) becomes

$$
\sum_{n=0}^{\infty} \phi_{n+p} \frac{t^{n}}{n!} \equiv\left(\alpha_{1}^{p}+\sum_{r=0}^{\infty} \alpha_{r+p} \frac{t^{r}}{r!}\right) \sum_{n=0}^{\infty} \phi_{n} \frac{t^{n}}{n!}
$$

which yields

$$
\begin{equation*}
\phi_{n+p} \equiv\left(\alpha_{1}^{p}+\alpha_{p}\right) \phi_{n}+\sum_{r=1}^{n}\binom{n}{r} \alpha_{r+p} \phi_{n-r} \quad(\bmod p) \tag{2.5}
\end{equation*}
$$

In particular, for $n=0$, (2.5) reduces to Bell's congruence (1.3). Similarly

$$
\begin{gathered}
\phi_{p+1} \equiv\left(\alpha_{1}^{p}+\alpha_{p}\right) \alpha_{1}+\alpha_{p+1} \equiv \phi_{p} \alpha_{1}+\alpha_{p+1} \\
\phi_{p+2} \equiv \phi_{p} \phi_{2}+2 \alpha_{p+1} \alpha_{1}+\alpha_{p+2}
\end{gathered}
$$

and so on.
We remark that (2.5) is equivalent to Bell's congruence involving a determinant [2, p. 267, formula (6.5)]. Also for $s=\alpha_{1}=\alpha_{2}=\cdots$, (2.5) reduces to

$$
\begin{align*}
a_{n+p}(s) & \equiv\left(s^{p}+s\right) a_{n}(s)+s \sum_{r=1}^{n}\binom{n}{r} a_{n-r}(s) \tag{2.5}\\
& \equiv a_{n+1}(s)+s^{p} a_{n}(s)
\end{align*}
$$

$$
(\bmod p)
$$

where [5, p. 76]

$$
a_{n}(s)=\phi_{n}(s, s, \cdots)=\sum_{k} S(n, k) s^{k}
$$

and $S(n, k)$ denotes the Stirling number of the second kind. The congruence (2.5)' is due to Touchard [6].

If in (2.5) we replace n by $p n$ we get

$$
\begin{equation*}
\phi_{p(n+1)} \equiv \phi_{p} \phi_{n p}+\sum_{r=1}^{n}\binom{n}{r} \alpha_{p(r+1)} \phi_{p(n-r)} \tag{2.6}
\end{equation*}
$$

for all $n=0,1,2, \cdots$. Thus $\phi_{p n}$ is congruent to a polynomial in ϕ_{p}, $\alpha_{2 p}, \alpha_{3 p}, \cdots$ alone. Moreover, comparing (2.6) with (2.2), it is clear that

$$
\begin{equation*}
\phi_{p n} \equiv \phi_{n}\left(\phi_{p}, \alpha_{2 p}, \alpha_{3 p}, \cdots\right) \quad(\bmod p) \tag{2.7}
\end{equation*}
$$

so that we have proved (1.5).
Replacing n by $p n$ in (2.7) we get

$$
\phi_{p^{2} n} \equiv \phi_{p n}\left(\phi_{p}, \alpha_{2 p}, \alpha_{3 p}, \cdots\right) \equiv \phi_{n}\left(\phi_{p}^{p}+\alpha_{p^{2}}, \alpha_{2 p^{2}}, \alpha_{3 p^{2}}, \cdots\right) .
$$

In particular for $n=1$

$$
\phi_{p^{2}} \equiv \phi_{p}^{p}+\alpha_{p^{2}} \equiv \alpha_{1}^{p^{2}}+\alpha_{p}^{p}+\alpha_{p^{2}} .
$$

Again replacing n by $p n$ we get

$$
\phi_{p^{3} n} \equiv \phi_{n}\left(\phi_{p^{2}}^{p}+\alpha_{p^{3}}, \alpha_{2 p^{3}}, \alpha_{3 p^{3}}, \cdots\right),
$$

so that in particular

$$
\phi_{p^{3}} \equiv \phi_{p^{2}}^{p}+\phi_{p^{3}} \equiv \alpha_{1}^{p^{3}}+\alpha_{p}^{p^{2}}+\alpha_{p^{2}}^{p}+\alpha_{p^{3}} .
$$

Continuing in this way we see that

$$
\begin{equation*}
\phi_{p^{r} n} \equiv \phi_{n}\left(\phi_{p^{r}}, \alpha_{2 p r}, \alpha_{3 p r}, \cdots\right) \tag{2.8}
\end{equation*}
$$

and

$$
\begin{equation*}
\phi_{p^{r}} \equiv \phi_{p r-1}^{p}+\alpha_{p^{r}} \equiv \alpha_{1}^{p^{r}}+\alpha_{p}^{p^{r-1}}+\cdots+\alpha_{p^{r}} \quad(\bmod p) \tag{2.9}
\end{equation*}
$$

We have therefore proved (1.4) as well as the more general congruence (2.8).

Since

$$
\begin{aligned}
& \phi_{2}=\alpha_{1}^{2}+\alpha_{2} \\
& \phi_{3}=\alpha_{1}^{3}+3 \alpha_{1} \alpha_{2}+\alpha_{3} \\
& \phi_{4}=\alpha_{1}^{4}+6 \alpha_{1}^{2} \alpha_{2}+4 \alpha_{1} \alpha_{3}+3 \alpha_{2}^{2}+\alpha_{4}
\end{aligned}
$$

it follows from (2.8) that

$$
\left\{\begin{array}{l}
\phi_{2 p^{r}} \equiv \phi_{p^{r}}^{2}+\alpha_{2 p^{r}} \tag{2.10}\\
\phi_{3 p^{r}} \equiv \phi_{p^{r}}^{3}+3 \phi_{p^{r}} \alpha_{2 p^{r}}+\alpha_{3 p r}, \\
\phi_{4 p^{r}} \equiv \phi_{p^{r}}^{4}+6 \phi_{p r}^{2} \alpha_{2 p^{r}}+4 \phi_{p^{r}} \alpha_{3 p r}+3 \alpha_{2 p^{r}}^{2}+\alpha_{4 p^{r}}
\end{array}\right.
$$

and so on.
We note also that (2.3) implies

$$
\left\{\begin{array}{l}
\phi_{p^{r}+1} \equiv \phi_{p^{r}} \alpha_{1}+\alpha_{p^{r}+1} \tag{2.11}\\
\phi_{2 p^{r+1}} \equiv \phi_{2 p^{r}} \alpha_{1}+2 \phi_{p^{r}} \alpha_{p^{r+1}}+\alpha_{2 p^{r} r_{1}} \\
\phi_{3 p^{r+1}} \equiv \phi_{3 p^{r}} \alpha_{1}+3 \phi_{2 p^{r}} \alpha_{p^{r}+1}+3 \phi_{p^{r} r} \alpha_{2 p^{r}{ }^{r+1}}+\alpha_{3 p^{r+1}}
\end{array}\right.
$$

3. By means of (1.5) we can obtain certain congruences for the coefficient $A\left(k_{1}, k_{2}, k_{3}, \cdots\right)$. Indeed by (1.1) and (1.3)

$$
\begin{align*}
& \phi_{n}\left(\phi_{p}, \alpha_{2 p}, \alpha_{3 p}, \cdots\right) \tag{3.1}\\
\equiv & \sum A_{n}\left(k_{1}, k_{2}, k_{3}, \cdots\right)\left(\alpha_{1}^{p}+\alpha_{p}\right)^{k_{1}} \alpha_{2 p}^{k_{2}} \alpha_{3 p}^{k_{3}} \cdots \quad(\bmod p)
\end{align*}
$$

where the summation is over nonnegative k_{j} such that

$$
k_{1}+2 k_{2}+3 k_{3}+\cdots=n
$$

The right member of (3.1) is equal to

$$
\begin{equation*}
\sum_{\left(k_{j}\right)} A_{n}\left(k_{1}, k_{2}, k_{3}, \cdots\right) \sum_{r=0}^{k_{1}}\binom{k_{1}}{r} \alpha_{1}^{p\left(k_{1}-r\right)} \alpha_{p}^{r} \alpha_{2 p}^{k_{2}} \alpha_{3 p}^{k_{3}} \cdots \tag{3.2}
\end{equation*}
$$

On the other hand

$$
\begin{equation*}
\phi_{p n}=\sum A_{p n}\left(h_{1}, h_{2}, h_{3}, \cdots\right) \alpha_{1}^{h_{1}} \alpha_{2}^{h_{2}} \alpha_{3}^{h_{3}} \cdots, \tag{3.3}
\end{equation*}
$$

summed over

$$
\begin{equation*}
h_{1}+2 h_{2}+3 h_{3}+\cdots=p_{n} \tag{3.4}
\end{equation*}
$$

It follows from (1.5) that

$$
A_{p n}\left(h_{1}, h_{2}, h_{3}, \cdots\right) \equiv 0
$$

except possibly when

$$
\begin{equation*}
h_{j}=0 \tag{3.5}
\end{equation*}
$$

$$
(j>1, p+j)
$$

When this condition is satisfied (3.4) becomes

$$
h_{1}+p\left(h_{p}+2 h_{2 p}+\cdots\right)=p n ;
$$

consequently $h_{1}=p k_{1}$ and (3.3) becomes

$$
\phi_{p n} \equiv \sum A_{p n}\left(p k_{1}, 0, \cdots, 0, h_{p}, \cdots\right) \alpha_{1}^{p k_{1}} \alpha_{h}^{h p} \alpha_{2 p}^{h_{p} p} \cdots .
$$

We have therefore proved the following result:
Theorem 1. The coefficient $A_{p n}\left(h_{1}, h_{2}, h_{3}, \cdots\right)$ occurring in (3.3) is certainly divisible by p unless (3.5) is satisfied and $h_{1}=p k_{1}$. If these conditions are satisfied then

$$
A_{p n}\left(h_{1}, h_{2}, h_{3}, \cdots\right) \equiv\binom{k_{1}}{h_{p}} A_{n}\left(k_{1}-h_{p}, h_{p}, h_{2 p}, \cdots\right) \quad(\bmod p)
$$

If we make use of (1.4) we obtain the following simpler
Theorem 2. Let

$$
h_{1}+2 h_{2}+3 h_{3}+\cdots=p^{r} .
$$

Then the coefficient $A_{p^{r}}\left(h_{1}, h_{2}, h_{3}, \cdots\right)$ is divisible by p except when

$$
h_{i}=0 \quad(i \neq j), \quad h_{j}=p^{s},
$$

for some j, in which case

$$
A_{p^{r}}\left(h_{1}, h_{2}, h_{3}, \cdots\right) \equiv 1 \quad(\bmod p)
$$

Using (2.10) and (2.11) we can obtain additional results. For example take

$$
h_{1}+2 h_{2}+3 h_{3}+\cdots=2 p^{r} .
$$

Then $A_{2 p r}\left(h_{1}, h_{2}, h_{3}, \cdots\right)$ is divisible by p unless (i) all $h_{s}=0(s \neq j)$, $h_{j}=1$ or 2 ; (ii) all $h_{s}=0(s \neq i, j), h_{i}=h_{j}=1$. In case (i) $A \equiv 1$, in case (ii) $A \equiv 2(\bmod p)$.

For $n=3 p^{r}$ the corresponding results are more complicated.
4. We turn now to the polynomial $C_{n}\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \cdots\right)$, the cycle indicator of the symmetric group [5, p. 68]:

$$
\begin{align*}
C_{n} & =C_{n}\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \cdots\right)=\phi_{n}\left(\alpha_{1}, \alpha_{2}, 2!\alpha_{3}, \cdots\right) \tag{4.1}\\
& =\sum \frac{n!}{k_{1}!k_{2}!k_{3} \ldots}\left(\frac{\alpha_{1}}{1}\right)^{k_{1}}\left(\frac{\alpha_{2}}{2}\right)^{k_{2}}\left(\frac{\alpha_{3}}{3}\right)^{k_{3}} \cdots,
\end{align*}
$$

where the summation is over all nonnegative k_{j} such that

$$
k_{1}+2 k_{2}+3 k_{3}+\cdots=n .
$$

It is convenient to define $C_{0}=1$.

Put

$$
\begin{equation*}
c_{n}\left(k_{1}, k_{2}, k_{3}, \cdots\right)=\frac{n!}{k_{1}!k_{2}!k_{3} \cdots 1^{k_{1}} 2^{k_{2}} 3^{k_{3}} \cdots} \tag{4.2}
\end{equation*}
$$

the general coefficient of C_{n}. Clearly $c_{n}\left(k_{1}, k_{2}, k_{3}, \cdots\right)$ is integral and indeed a multiple of $A_{n}\left(k_{1}, k_{2}, k_{3}, \cdots\right)$.

From (4.1) we get the generating function

$$
\begin{equation*}
G(t)=\sum_{n=0}^{\infty} G_{n} \frac{t^{n}}{n!}=\exp \left(\alpha_{1} t+\frac{1}{2} \alpha_{2} t^{2}+\frac{1}{3} \alpha_{3} t^{3}+\cdots\right) \tag{4.3}
\end{equation*}
$$

For brevity put

$$
C(t)=\sum_{n=1}^{\infty} \frac{1}{n} \alpha_{n} t^{n}
$$

Differentiating (4.3) with respect to t we get

$$
G^{\prime}(t)=C^{\prime}(t) G(t),
$$

that is

$$
\sum_{n=0}^{\infty} C_{n+1} \frac{t^{n}}{n!}=\sum_{r=0}^{\infty} \alpha_{r+1} t^{r} \sum_{n=0}^{\infty} C_{n} \frac{t^{n}}{n!}
$$

This implies

$$
\begin{equation*}
C_{n+1}=\sum_{r=0}^{n} \frac{n!}{r!} \alpha_{n-r+1} C_{r} \tag{4.4}
\end{equation*}
$$

so that

$$
\begin{equation*}
C_{n+1} \equiv \alpha_{1} C_{n} \quad(\bmod n) \tag{4.5}
\end{equation*}
$$

By repeated differentiation of (4.3) we get (compare (2.4))

$$
\begin{equation*}
\frac{d^{p}}{d t^{p}} G(t) \equiv\left\{\left(C^{\prime}(t)\right)^{p}+C^{(p)}(t)\right\} G(t) \quad(\bmod p) \tag{4.6}
\end{equation*}
$$

Now since

$$
C^{\prime}(t)=\sum_{n=0}^{\infty} \alpha_{n+1} t^{n}, \quad C^{(p)}(t)=\sum_{n=0}^{\infty}(n+p-1)!\alpha_{n+1} \frac{t^{n}}{n!},
$$

it is clear that

$$
\left(C^{\prime}(t)\right)^{p} \equiv \alpha_{1}^{p}, \quad C^{(p)}(t) \equiv-\alpha_{p} \quad(\bmod p) ;
$$

at the last step we have used Wilson's theorem. Thus (4.6) becomes

$$
\sum_{n=0}^{\infty} C_{n+p} \frac{t^{n}}{n!} \equiv\left(\alpha_{1}^{p}-\alpha_{p}\right) \sum_{n=0}^{\infty} C_{n} \frac{t^{n}}{n!}
$$

so that

$$
\begin{equation*}
C_{n+p} \equiv\left(\alpha_{1}^{p}-\alpha_{p}\right) C_{n} \tag{4.7}
\end{equation*}
$$

$$
(\bmod p)
$$

In particular we have

$$
\begin{equation*}
C_{p} \equiv \alpha_{1}^{p}-\alpha_{p} \tag{4.8}
\end{equation*}
$$

and

$$
\begin{equation*}
C_{n+r p} \equiv\left(\alpha_{1}^{p}-\alpha_{p}\right)^{r} C_{n} \tag{4.9}
\end{equation*}
$$

We remark that for $p=3,5,7,(4.8)$ is in agreement with the explicit values of C_{n} given in [5, p.69].

By (4.9) with $n=0$ we find that the coefficient

$$
c_{r p}\left(k_{1}, k_{2}, k_{3}, \cdots\right) \equiv 0
$$

unless all k_{j} except k_{1} and k_{p} vanish and k_{1} is a multiple of p; in this case we have

$$
\begin{equation*}
c_{r p}\left(p k, 0, \cdots, 0, k_{p}, \cdots\right) \equiv(-1)^{k_{p}}\binom{r}{k} \quad(\bmod p) \tag{4.10}
\end{equation*}
$$

References

1. P. Bachmann, Niedere Zahlentheorie, vol. 1, Leipzig, 1902.
2. E. T. Bell, Exponential polynomials, Annals of Math., 35 (1934), 258-277.
3. L. E. Dickson, Theorems on the residues of multinomial coefficients with respect to a. prime modulus, Quarterly J. Math., 33 (1902), 378-384.
4. A. Hurwitz, Über die Entwickelungscoeffizienten der lemniscatischen Functionen, Mathematische Werke, Basel, 2, (1933), 342-373.
5. J. Riordan, An Introduction to combinatorial analysis, New York, 1958.
6. J. Touchard, Propriétés arithmétiques de certains nombres recurrents, Ann. Soc. Sci. Bruxelles, A53 (1933), 21-31.

DUKe University

