A NOTE ON WEAK SEQUENTIAL CONVERGENCE

R. D. MCWILLIAMS

1. Let X be a real Banach space, J_x the canonical mapping from X into X^{**} , and K(X) the set of all elements F in X^{**} which are X^* -limits of sequences in $J_x X$. Thus $F \in K(X)$ if and only if there exists a sequence $\{x_n\}$ in X such that

$$F(f) = \lim_{n \to \infty} f(x_n)$$

for all $f \in X^*$. While the closure of $J_X X$ in the X*-topology is X** [4, p. 229], it is not true in general that $K(X) = X^{**}$. By using properties of the space of continuous real functions defined on a real interval, we shall prove that the subspace K(X) is norm-closed in X^{**} .

2. If x is a bounded real function defined on a closed interval [a, b], let $||x|| = \sup \{|x(s)| : a \leq s \leq b\}$. If x is a bounded Baire function of the first class, then there exists a sequence $\{x_n\} \subset \mathcal{C}$ [a, b] such that $x(s) = \lim_n x_n(s)$ for all $s \in [a, b]$ and $||x_n|| = ||x||$ for all n [2, p. 138]. However, if a bounded function x is the pointwise limit of an unbounded sequence of elements of a subspace X of \mathcal{C} , then it is not necessarily true that x is the pointwise limit of a bounded sequence in X.

LEMMA 1. Lex X be a subspace of \mathcal{C} , and let x be a real function which is the pointwise limit of a bounded sequence in X. Then there exists a sequence $\{x_n\}$ in X such that x is the pointwise limit of $\{x_n\}$ and $||x_n|| = ||x||$ for all n.

Proof. If $\{y_n\}$ is a sequence in X which converges pointwise to x, with $\sup_n ||y_n|| = M < \infty$, let continuous functions $\varphi, \varphi_1, \varphi_2, \cdots$ be defined by

(2.1)
$$\begin{cases} \varphi(s) \equiv ||x|| \\ \varphi_n(s) = \max(y_n(s), ||x||) \end{cases}$$

for all $s \in [a, b]$. Then $\{\mathcal{P}_n\}$ converges to \mathcal{P} in the \mathscr{C}^* -topology of \mathscr{C} [1, p. 224], and hence [3, p. 36] for each positive integer *n* there exist nonnegative numbers a_{n1}, \dots, a_{nk_n} such that

(2.2)
$$\sum_{k=1}^{k_n} a_{nk} = 1$$
, $\left| \left| \sum_{k=1}^{k_n} a_{nk} \varphi_{n+k} - \varphi \right| \right| < n^{-1}$.

Define $\{z_n\} \subset X$ by

(2.3)
$$z_n = \sum_{k=1}^{k_n} a_{nk} y_{n+k}$$
.

Received February 2, 1961.

Then $\{z_n\}$ converges pointwise to x, and $-M \leq z_n(s) \leq ||x|| + n^{-1}$ for each n.

If a sequence $\{\psi_n\}$ is now defined in \mathscr{C} by $\psi_n = \min(z_n, -\varphi)$, an argument like that used with $\{\varphi_n\}$ shows that there exist, for each n, nonnegative numbers b_{n1}, \dots, b_{nj_n} such that

(2.4)
$$\sum_{j=1}^{j_n} b_{nj} = 1 , \quad \left| \left| \sum_{j=1}^{j_n} b_{nj} \psi_{n+j} + \varphi \right| \right| < n^{-1} .$$

If $\{u_n\} \subset X$ is defined by

(2.5)
$$u_n = \sum_{j=1}^{j_n} b_{nj} z_{n+j}$$
,

then x is the pointwise limit of $\{u_n\}$, and $||u_n|| \to ||x||$ as $n \to \infty$. Since it may be assumed that $||u_n|| \neq 0$ for each n, the desired sequence $\{x_n\}$ is obtained by defining $x_n = (||x||/||u_n||) u_n$.

3. The conjugate space \mathscr{C}^* of \mathscr{C} is equivalent with the space of all finite regular signed Borel measures on [a, b], under a mapping U such that if $f \in \mathscr{C}^*$ and $\mu_f = Uf$, then

$$f(x) = \int_a^b x d\mu_f$$

for all $x \in \mathscr{C}$ [4, p. 397]. It follows that if X is a closed subspace of \mathscr{C} and $F \in X^{**}$, then $F \in K(X)$ if and only if there exists a bounded, pointwise-convergent sequence $\{y_n\}$ in X with the property that

(3.2)
$$F(f|X) = \int_a^b (\lim y_n) \, d\mu_f$$

for all $f \in \mathscr{C}^*$.

LEMMA 2. If X is a real Banach space and $F \in K(X)$, then there exists a sequence $\{x_n\}$ in X such that F is the X*-limit of $\{J_X x_n\}$ and $||x_n|| = ||F||$ for all n.

Proof. Case 1. If X is a closed subspace of \mathscr{C} and $F \in K(X)$, there must be a bounded, pointwise-convergent sequence $\{y_n\} \subset X$ such that (3.2) holds for all $f \in \mathscr{C}^*$. If $x(s) = \lim_n y_n(s)$ for $a \leq s \leq b$, then by Lemma 1 there exists a sequence $\{x_n\}$ in X such that x is the pointwise limit of $\{x_n\}$ and $||x_n|| = ||x||$ for all n. Thus F is the X*-limit of $\{J_X x_n\}$ and it is easily verified that $||F|| = ||x_n||$ for each n.

Case 2. If X is an arbitrary real Banach space and $F \in K(X)$, then there is a sequence $\{y_n\}$ in X such that F is the X^{*}-limit of $\{J_X y_n\}$. If Y is the closed subspace of X generated by $\{y_n\}$, we can define

334

$$G \in Y^{**}$$
 by

$$(3.3) G(f|Y) = F(f) \text{ for all } f \in X^*,$$

and this definition is unambiguous since F is the X^* -limit of a sequence in $J_X Y$. It is easy to verify that $G \in K(Y)$ and ||G|| = ||F||. Since Yis separable, Y is equivalent with a closed subspace of \mathscr{C} [1, p. 185], and hence by Case 1, there is a sequence $\{x_n\}$ in Y such that G is the Y^* limit of $\{J_T x_n\}$ and $||x_n|| = ||G|| = ||F||$ for all n. Finally, if $f \in X^*$, then

(3.4)
$$F(f) = G(f|Y) = \lim_{n} f(x_n)$$
,

so F is the X^{*}-limit of $\{J_x x_n\}$, and the lemma is proved.

4. THEOREM. If X is a real Banach space, then K(X) is normclosed in X^{**} .

Proof. If $F \in \overline{K(X)}$, then there is a sequence $\{F_n\}$ in K(X) such that $F_n \to F$ in norm, and $||F_n - F_{n-1}|| < 2^{-n}$ for each n > 1. If we let $F_0 = 0$, then by Lemma 2 there exists, for each $n \ge 1$, a sequence $\{x_{nk}\}$ in X such that $||x_{nk}|| = ||F_n - F_{n-1}||$ for all k and such that $F_n - F_{n-1}$ is the X*-limit of $\{J_X x_{nk}\}$.

For each k the series $\sum_{n=1}^{\infty} x_{nk}$ converges to an element $x_k \in X$ such that

$$\left| \left| x_k - \sum\limits_{n=1}^j x_{nk} \right|
ight| < 2^{-j} ext{ for each } j.$$

Given $0 \neq f \in X^*$ and $\varepsilon > 0$, there exist positive integers J and K such that $2^{-j} < \varepsilon/(3||f||)$ and $|F_J(f) - f(\sum_{n=1}^{J} x_{nk})| < \varepsilon/3$ for all $k \ge K$. Hence for $k \ge K$,

$$(4.1) |F(f) - f(x_k)| \leq |(F - F_J)(f)| + |F_J(f) - f(\sum_{n=1}^J x_{nk})| + |f(\sum_{n=1}^J x_{nk} - x_k)| < \varepsilon,$$

so that F is the X^{*}-limit of $\{J_X x_k\}$.

References

- 1. S. Banach, Théorie des opérations linéaires, Warsaw, 1932
- 2. C. Goffman, Real functions, New York, Rinehart, 1953.

3. E. Hille and R. S. Phillips, Functional analysis and semigroups, Amer. Math. Soc. Colloquium Publications, **31**, 1957.

4. A. E. Taylor, Functional analysis, New York, Wiley, 1958.

FLORIDA STATE UNIVERSITY