A THEOREM ON FAMILIES OF ACYCLIC SETS
AND ITS APPLICATIONS

A. KOSINSKI

In the first part of this note we discuss a group of theorems dealing
with geometric configurations arising when we assign in continuous way
compact, acyclic sets to k-planes in the Euclidean n-dimensional space
E,. A fairly representative example of those theorems is as follows:

Suppose that to every (unoriented) k-plane H through a point a of
E, there is upper semi-continuously assigned a compact and acyclic set
O(H) < H. Then for some plane H,, a € @(H,).

In fact, we will prove a much more general theorem of which the
above is one of the consequences.

In the second part of this note we give various applications of the
above theorems. They are related to the theory of convex sets (§ 2.1-2.4),
mappings of manifolds (§2.6), and to some relations between vector fields
and involutions on S, (§2.5).

The author wishes to acknowledge his indebtedness to Dr. M. Hirsch for
valuable suggestions and to Dr. J. W. Jaworowski whose generalization of
the author’s previous results was the starting point for the present paper.

1. Families of compact sets over Grassmannians.

1.1 H,(X) will denote the nth Cech homology group of the space
X with the group Z, of integers mod 2 as the group of coefficients. We
will say that X is acyclic if X is connected and H,(X) =0,n =1,2, «--,.

Let X be a compact metric space and let @: X —2Y be an upper
semi-continuous mapping of X into the space 27 of all nonempty com-
pact subsets of a space Y. The triple & = {X, Y, @} will be called a
family [3]. The set X will be called the basis of 5, the sets @(zx)—
the elements of .7, the set U.cx @(x) € Y — the field of # . The field
will be also denoted @(X). A family & is said to be acyclic if all its
elements are acyclic.

If & ={X,7,?}is a family then the subset M = {(z, ¥) | ¥ € @(x)}
of the cartesian product X x Y is called the graph of & .

M is a closed subset of X x Y (and, hence, compact) because of the
upper semi-continuity of @, and this is the only reason for requiring the
upper semi-continuity of @.

G,, will denote the Grassmannian of (unoriented) g-planes through
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the origin of the p-dimensional Euclidean space E,.

Let T be a fixed k-plane in E, and let » > k. Let E,_, be the
Euclidean space orthogonal to 7 in E, and for e G,_,,—, let H(x) be
the r-plane in FE, spanned by = and 7. The correspondence x— H(x)
is obviously one-to-one correspondence between G,_,,., and the set of
all r-planes in E, containing 7. Henceforth we will say that H(x) is
the r-plane corresponding to z.

1.2. THEOREM. Let T be a fixed k-plane in E,. For every
xe€G,p,—i let H(x) be the r-plane in E, containing T and corresponding
to x.

If F ={G.—i.,—i, E., O} 1s an acyclic family then there exists an
r€G,_,—r sSuch that H(x) N &(x) # 0.

Proof. Let us remark first that it is enough to prove the theorem
in case »r =k + 1. For in a general case we may always choose an
(r — 1)-plane T, containing 7T and the Grassmannian of all »-planes con-
taining T, is a subset of G,_i.,_.

Therefore we will assume that » =k + 1, i.e., the basis of & is
the set of all (¥ + 1)-planes containing a given k-plane 7. Then

Gn~k,r~k = Gn—k.l = Pn—k—l

and we may write .% = {P,_._., E,, @}, where P,_,_, denotes the (n —
k — 1)-dimensional projective space.

Let S be an (n — 1)-sphere in E, with center o in T and containing
the field of .# in the interior. Since the field of % is compact such
a sphere exists. Let @,(x) = H(x) N S for every € P,_,—,. Thus @,(x)
is a k-dimensional great circle in S and & = {P,_s—1, £,, 9.} is a family.

Let JC P, ,,xE, xIxE, I=<0,1> be the union of all
sets of the form

v (@) X O(@) X I X O(x),xeP,

i.e., (&, y,t,y)ed if and only if ye @(x), y,€ D,(x), t€0,1>.
We shall identify in J

(wr Y, 1’ yl) with (9_37 Y, 1) gl) if = T,y=19y
and
(.’l), Y, 0; '.7/1) with (a_';v B 0, ?71) if x= Z, Y% = Yy -

Denote the set obtained from J by these identifications by M. Then
M is the union of sets of the form (x) x @(x)*@,(x) where xe P,_,,
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and AxB is the notation for the join' of A with B. It is easy to see
that because of the upper semi-continuity of @ M is compact.

Let M, ¢ M be composed of points with ¢ = 0; more precisely, M,
is the image under the identification mapping J — M of the subset of J
composed of points of the form (x,v,0,v,). Let ¢: M,— S and p: M, —
P, ., be defined by q(z, v, 0, ¥) = v, p(®, ¥,0,%) = 2. Then

(i) M, is an (n — 1)-manifold, and q s a mapping of degree 1. If
k=0 then p is a covering map. In particular, for every k=0
p.H,_ (M) =0 and q . H, (M) = H,_(S).

For let M, be the graph of @,, i.e. the set of points (x,2)= P,_,_;, X E,
satisfying ze @(x). Let p: M, — P, ., and q;: M, — S be defined by
»(x, 2) = x, q,(x,2) =z and let h: M, — M, be defined by hi(x,y,0,y,) =
(z, ). Then the diagram

MO __p_) Pﬂ.—lc—-l
1 \h I
ql N
S <q—M1

is commutative. Moreover, because of identifications, & is a homeomor-
phism. But it is easy to see that M, is a fibre space over P,_,_, with
the fibre S, and p, as the fibering map. This proves that M, is an
(n — 1)-manifold. Now, since

2@xyNnoy)ycTnS

if « # y it follows that ¢, maps ¢7(S — T') homeomorphically onto S — T.
This proves that g is of degree 1. If k = 0 then ¢, is 2 homeomorphism
and p, is a covering map. This proves (i).

Now, let us consider the diagram

MO L‘) M d Pn-—k—l
s
J
S — G
where ¢ and j are inclusion maps, 5: M — P,_,_, is defined by 7(z, v, t, ¥,) =

x and g(x, ¥y, t, ¥,) = point in E, dividing the segment yy in the ratio
t/(1—t); G = g(M). Since

9, y,0,9) =y = qx,v,0,v)
the diagram is commutative.

! ie., the set obtained from A X I X B by identifying A X < 0 > X B with A and 4 X
<1> X B with B by means of the mappings (x,0,%) > 2 and (x,1,%) = y.
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Observe that
(i) p7'(x) is acyclic and nonempty for every x e P,_,_,.

For p~'(x) is homeomorphic with @(x)*®,(x) and join of an acyclic
set with a compact set is acyclic.’

Therefore it follows from the Vietoris Mapping Theorem [2]| that in
the diagram

H, (M) -2 H, (M) % H, (P,_,_)

e

Hn—l(S) 7 Hn—l(G)

D4 is an isomorphism onto. But p7 = p and it follows from (i) that p,
i trivial for every k = 0. Therefore

(i) 7, 1s trivial .

Now, again by (i), ¢, is onto Thus (iii) implies that j, is trivial, i.e.,
that S bounds in G. Therefore G must contain the ball bounded by S
and we conclude that the center o of S is in G. This means that for
some « € P,_,_; there exist points y € @(x), y, € @,(x) such that the segment
joining y, with ¥ contains o. Since y, € H(x) and oe H(x) it follows
that ye H(z), i.e., ye @(x) N H(x). This proves the theorem.

1.3. COROLLARY. Let G, .-, be the Grassmannian of all (n — r)-
planes contained in an (n — k)-plane T. For every x€G,_;.,.—, let
H*(x) be the orthogonal complement in E, of the plane representing x.
Let & ={G,—t.n_r, E,, @} be an acyclic family. Then there exists an
%€ Gu_pnr SUch that

O(x) N H*(x) # 0.

Proof. Let T* be the orthogonal complement of T in E, and
G,-1.-— the Grassmannian of all r-planes in E, containing 7*. For
every ¥ € G,_.... let G(y) be the plane representing y and G*(y) its
orthogonal complement. Then G*(y) N T represents an element x = f(y)
of G, .—r. Moreover it is easily seen that

(i) Gly) = H*(fv)) -

Let % ={G,—v,—1» E., O(f(¥))}. Then & is an acyclic family and
by Theorem 1.2 there exists an y € G,_,,—, such that @(f(y)) N G(y) # 0.
Compared with (i) this gives

2 Short proof. Let AxB be the join of A with B. Suppose that A is acyclic and let
f:A*B > A*B be defined by f(x,¢, y) = (wo.t,y) where 2o is a fixed point of A. Then
f~ao, t, y) is homeomorphic with A if ¢ # 1 and is a point if ¢ = 1. In both cases f~1(x,
t,y) is acyclic and, by Vietoris mapping theorem [2], f induces an isomorphism of Hy(A*B)
onto Hy( f(A*B)), k=0,1,2,---,. But f(A*B) = (x)*B is acyclic, therefore A*B is also.
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Px)y N H*(x) # 0 Q.E.D.

In the following two corollaries we suppose that a point pe E, is
given and a natural one-to-one correspondence x — H(x) between the
set of all k-planes H (x) through p is fixed once and for all.

1.4. COROLLARY. Let & = {G,., E,, @} be an acyclic family.
Then for some x,€ @G, ,, @(x,) N H(x,) # 0 and for some x, € G, ;, D(x,) N
H*(x,) # 0.

Proof. (The second part of this corollary was first proved in an-
other way by Dr. J.W. Jaworowski.) Existence of z, follows from the
Theorem 1.2 with k = 0; existence of z, follows from the Corollary 1.3
with »r =n — k.

1.56. CoROLLARY. Let & ={G,., E,, @} be an acyclic family satis-
fying the condition @(x) C H(x) where H(x) is the plane through p
representing x. Then for some x, p € @(x).

Proof. By Corollary 1.4, for some x @(x) N H*(x) +# 0. Since
&(x) C H(x) this implies @(x) N H(x) N H*(x) #+ 0 and in view of p =
H(x) N H*(x) this proves the corollary.

2. Applications.

2.1. We start with a simple application of 1.5. Let A C E, be a
compact subset of E, and k a fixed integer, 1<k <n —1. Let A4,
be the set of such points p € E, that every k-plane H through p inter-
sects A in an nonempty acyclic set. Applying 1.5 to the family & =
{G.., E,, HN A) we infer that pe 4,i.e. 4, C A.

In a subsequent paper we will prove that A is star-shaped with
respect to every point of A,, i.e. if xe¢ A and pe A, then the segment
xp < A. In particular, it follows A, = A4,.,k=1,---,n — 2.

2.2. The following is a generalization of a theorem of H. Steinhaus
[8] (see also S.K. Stein [7]).

THEOREM. Let A be a convex subset of E, and pelnt A. Then
there exists a sequence of planes H,, H,, ---, H,_, such that H; is an
-plane, H,C H;,, 1 =1, +--,n — 2, and p is the center of gravity of
ANH,t1=1,2,---,n — 1.

Proof. For every k-plane H through p let x(H) be the center of
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gravity of H N A. Then our assumptions about A insure that & =
{G.., E,, x(H)} is a family. Therefore it follows from 1.5 that x(H) = p
for some H. Thus to prove the theorem we start with ¥k =% — 1 and
find the (n — 1)-plane H,_, such that «(H,_,) = p. Then in AN H,_,,
which is again convex and pe Int A N H,,, we find H, ,, and so we
continue until the sequence is complete.

We may remark that the assumption that A is convex and pe Int 4
are needed only to insure that x(H) is a continuous function of H.
Also we may suppose that a continuous positive density is given on A.
The theorem may be correspondingly generalized without a change in
proof.

2.3. The following theorem, first proved by G. Aumann [1], is an
easy consequence of 1.5.

THEOREM. Let M be a compact subset of E, and suppose that for
some k =1 intersection of every k-plane with M 1is either empty or
acyclic. Then M is convex.

This is a consequence of the following lemma which we will prove
first:

LEMMA. Let M be a compact subset of E, and suppose that some
k-plane H intersects the convex hull of M but does mot imtersect M.
Then there exists a k-plane H, such that M N H, is not connected.

Proof. Let p,qe M, let r be a point of the segment pq and let H
be a k-plane in E, such that HNpqg =7 and HN M =0. Let H' be
the (k + 1)-dimensional plane in E, containing H and the line through
»,q. Then H disconnects H' between p and q. Thus if H,is a k-plane
in H’' containing p and g then H, N M is not connected. This proves
the lemma.

Proof of the theorem. Let M satisfy the conditions of the theorem
and let C(M) denote the convex hull of M. Let peC(M). By the
lemma every k-plane through p intersects M. Since the intersection is
acyclic it follows from Corollary 1.5 that pe M, i.e. M = C(M). This
proves the theorem.

2.4. The following theorem gives homological conditions insuring
that a set M C E, shall be a convex sphere S,_,. (For the case n =3
see J. Schreier [6]).

THEOREM. Let M be a compact subset of E,. We suppose that
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@) H,..(M)=2Z, and M is an irreducible carrier of the nonzero
element a of H,_,(M).?

(b) There exists an integer k,0 <k < n — 1, such that for every
K-plane T intersecting M

0 Jor i <k—1
H(T n M) =
{70 M) 0 or Z, for i=k—1.

Then M is a convex S,_,.

Proof. It is well known that (a) implies that M disconnects FE,
into two sets and is the boundary of each. Let G be the bounded
.component of £, — M and let M* =M U G. Then
(i) M* s compact and M = Fr M*

Let peG and let T be a k-plane through p. We will prove
(ii) TN M* s acyclic.

Since TN M*=(TNM)u(TnG)and T N G+ 0 it follows that
T N M disconnects 7. Therefore by (b)

(i H(T oMy = {0 STtk
Z, for i1=k—1.

It follows that 7' — M has exactly two components; let the bounded

.component be H. Then pe H and we have T N G = H. Thus we have

proved

({iv) T N M* is the union of T N M and the bounded component H of

T—Tn M.

Now, this implies that Fr(T N M*) c T N M and we may consider the

sequence

H(Fr(T 0 M*) =% H(T 0 M) =% B(T 0 M*)

where t,, 7, are induced by inclusions. By [4] j,?, is onto, thus such
is also 7, and by (iii) this implies H,(T N M*) =0 for I < k — 1. Since
(iv) implies that T N M* does not disconnect 7, also H,_(T N M*) = 0,
which completes the proof of (ii).

Now, by the theorem mentioned in 2.1, (ii) implies that M* is star-
‘shaped with respect to every point of G. Let now pe M and ze M*.
Let p, € G, p, — p, by the remark above segments p,x are in M*. Since
p,x — px it follows that px < M* and thus M* is star-shaped with
respect to every point. Thus M* is convex. Together with (i) this
proves the theorem.

3 j.e., for every proper compact subset ACM « is not in the image Hyp—1(A)>Hy—1(M)
finclusion homomorphism).
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2.5. It is interesting to note that the following theorems, connected
with the Borsuk-Ulam theorem (see e.g. [5]), follow easily from the
results in § 1.

S, will stand for the unit n-sphere in E,., a:S,— S, will denote
the antipodal involution on S,.

2.51. THEOREM. Let f:S,— S, be a continuous mapping and
suppose that f(x) + a(x) for every xe€ S,. Then for some x,€ S, af(x,) =
fa(z,).

Proof. For every xe S, let a(x) = x + f(x) and let H(x, a(x)) be
the n-plane through 0 and perpendicular to the line through x and a(zx).
Then a(x) lies on a sphere of radius 1 and with center at x and it fol-
lows from the assumption f(x) # a(x) that the points a(x) and a(a(x))
are distinct and lie in distinct components of E,,, — H(x, a(x)). There-
fore the intersection @(x, a(x)) of the segment a(x)a(a(x)) with H(x, a(x)):
is nonempty and . &# = {P,, E,, @} is an acyclic family. Thus, by 1.3,
for some x @(x, a(x)) intersects also the orthogonal complement of
H(z, a(x)). It follows that for some =z, @(x, a(x)) =0. Then 0, a(x),
a(a(x)) are distinet and collinear. It is easy to see that this implies.
aa(x) = a(a(x)), i.e., af(x) = fa(x). Q.E.D.

By similar method one can obtain the following generalizations of
2.51 (proofs are omitted):

2.52. THEOREM. Let F:S,— S, be an acyclic upper semicontinuous
map and suppose that F(x) N (a(x)) = 0. Then for some x,, a(F(x,)) N
Fla(x,)) + 0.

2.53. THEOREM. Let B be the antipodal involution in the bundle
B of unit vectors tangent to S,. Let F:S, — B be a multivalent acyclic
cross-section. Then for some x,€S,, BF(x,) N F(a(x,)) + 0.

2.6. In the following two theorems M will denote a differentiable.
(n — 1)-manifold in E,. If pe M then T(p) will denote the tangent.
plane to M at p. T|| T’ will mean that T is parallel to 7".

2.61. THEOREM. Let f:M— E, be a continuous mapping such that
if T(p) is parallel to T(p') then the vector pf(p) is not zero and parallel
—_— _—
to p'f(»). Then for some p,€ M p,f(p,) is perpendicular to T(p,).

Proof. It is known that for every (n — 1)-plane H through the origin
there exists a p € M such that H|| T(p). Let then @(H) be the endpoint

of the unit vector parallel to pf(p). By our assumption about f, the.
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family & = {P,.,, E,, @} is well-defined and, obviously, acyclic. The
theorem follows then from 1.4.

Theorem 2.61 can be again generalized to acyclic multivalent maps
f:M— FE, Instead, we prove:

2.62. THEOREM. Let f:M— E, be an immersion such that if
TP T®') then T(f(E) I T(f(P")). Then for some p,e M, T(p)|l T(f(po)).

Proof. We suppose M oriented and a field of normal unit vectors
given on M. This defines a field of unit vectors normal to f(M) and
we define the family & = {P,, E,, @} as follows: Let H(x) represent
a point xe P,, there exists a point pe M such that T(p)|| H(x). We
define @(x) = the endpoint of the unit vector normal to f(M) at f(p).
By our assumption about f the family & is well-defined. Then the
‘theorem follows from 1.4.
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