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y"(χ) + f(y(χ))p(χ) = o

H. C. HOWARD

1. In recent papers Moore and Nehari [6] and Atkinson [1] studied
the differential equation

<1.1) y"(x) + y(xYn+1p(x) = 0

where n is a positive integer and p(x) is positive and continuous for
Ό < x < oo. In the latter paper a necessary and sufficient condition for
the existence of a nonoscillatory solution of (1.1) is established while in
the former paper results concerning the nonoscillatory and asymptotic
characteristics of the solutions of (1.1) are obtained by use of variational
(and other) techniques. As pointed out in [6] an equation of type (1.1)
may possess solutions, yx and y2 say, such that yx has an infinite number
of zeros for 0 < x < oo while y2 has only a finite number of zeros for
0 < x < oo. The object here is to give sufficient conditions for a differ-
ential equation of the type

(1.2) y"(x) + f(y(x))p(x) - 0

to have all of those solutions existing for 0 < x < oo oscillatory (pos-
sessing an infinite number of zeros in a < x < oo, for all a > 0) or to
have some of those solutions existing for 0 < x < oo nonoscillatory (pos-
sessing a finite number of zeros in a < x < oo, for some a > 0) where
f(y) as a function of y is of class C" for — oo < y < oo and p(x) is
continuous and nonnegative for 0 < x < oo, but this last requirement will
be relaxed in certain theorems. This definition of oscillation is used since
it seems natural, for example, to classify the solution y(x) = exp((/(#)) — 1
of the equation y"(x) + (y(x) + l)p(x) = 0, where p(x) = — (g'(x)f + g"{x)>
g{x) = (x - I)5 sin(l/(α? - 1)), x Φ 1, g(l) - g'(l) = g"(l) = 0, as nonoscil-
latory rather than oscillatory, even though it has an infinite number of
zeros in 0 < x < oo. For a further discussion of what should be called
a "nonoscillatory" solution see [6]. For f(y) = y the results reduce to
known criteria for this type of problem. Cf. [2,4,5,7 & 8].

2 In this section we prove the following oscillation theorem for
equation (1.2).

THEOREM 1. If

1. y(x) is a solution of (1.2) existing for 0 < x < oo.
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2. f(y)lv ^ 7 > 0 /or — oo < /̂ < oo, 7 α constant,
3. /or some

α > 0, fc(a?) Ξ (β[7ff(ί)p(ί) - i(g'(t)Ylg(t)]dt +i(g'(x)) - «

monotonely as x —> oo, where

4. p(#) ^ 0 /or α ^ x < oo αwd

(Hg{t))dt —> oo αs

/(χ) ίs απ oscillatory solution of (1.2).

The proof is by contradiction. Suppose the solution y(x) of hy-
pothesis 1 possesses a last zero at x = xQ where we may clearly assume
without loss of generality that 0 < x0 < a. Changing to a new depend-
ent variable w = w(x) in (1.2), where w{x)\g{x) — — (yf(x))ly(x) and
x ^ α, we get

(2.1) w'(x) = (l/flr(aθ)(w(aθ + ig'(x)f +

+ [g(χ){f(y(χ))ly(χ)}p(χ) -

Eliminating the term in square brackets of the second member of (2.1)
by setting w(x) = z(x) + hλ{x) where

fΦ) = \*Mt){f(y(t))ly(t)Mt) - Ud'(t)fl9(t)] dt

we get

(2.2) z\x) = (llg(x))(z(x) + h(x))\ h(x) = ^(a?) + 40'(α), « ^ α .

By use of hypotheses 2 and 4 we have h(x) ^ &(x), a? ^ α. Noting (̂a?)
is an increasing function and using hypothesis 3 we conclude that there
exists a point ax > a such that

z(x) + h(x) ^ z(x) + k(x) ^ z(x) + k{aλ) ^ z(a±) + k{aλ) = l/α2 > 0, a; ^ αt .

Thus for x ^ αx we must have

s'(a>) = (llg(x))(z(x) + h(x)f ^ (llg(x))(z(x) + fc(αx))2 .

Integrating (z'(x))l(z(x)) + k(a^))2 ^ l/^(x) from ax to a? > αx we get

- l/(s(a>) + k{aλ)) ^ - a2 + [ {Vg(t))dt

and, therefore,

(2.3) z(x) ^ - k{aλ) + l/[α,

By use of hypothesis 5 we see there exists a point α3 > a1 such that
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I (ljg(t))dt = a2. But we know y(x) is continuous and not zero in [aly
Jal

α3], and an inspection of the transformations used to obtain (2.2) from
(1.2) shows that z(x) must also be continuous in the interval [a19 a3].
Hence \z(x)\ must be bounded in [alf α3]. But (2.3) shows z(x) assumes
arbitrarily large positive values in [al9 α3), a contradiction. This proves
the theorem.

3 In this section we prove another oscillation theorem for equa-
tion (1.2).

THEOREM 2. / /

1. y(x) is a solution of (1.2) existing for 0 < x < oo,
2. f'(y) Ξ> 7i > 0 for — co <y < coy j± a constant,
3. f(y) = 0 if and only if y = 0,

[g(t)p(t) — i(g'(t)yiyg(t)] dt is such
a

that k(x, 7i) — i ( | g'(x) |)/Ti —> oo monotonely as x —> oo, where

5. #(#) is as m hypothesis 5, Theorem 1, £/̂ w 2/(#) is a^ osciZ-
latory solution of (1.2). /£ is ίo 6e noted that there is no
restriction on the sign of p(x).

The proof is similar to the proof of Theorem 1. As before we
assume the existence of a last zero of the solution y(x) of hypothesis 1
at #o, 0 < x0 < a and show this leads to a contradiction. By use of
hypothesis 3 we see a new dependent variable w = w(x) is well defined
for equation (1.2) by w(x)/g(x) = — y'(x)lf(y(%)), x ^ a. Equation (1.2)
becomes

(3.1) w'{χ) = [/'(^(χ))Mχ)] [w(aθ + ϊ(g\χ))lf\v(χ))Y + g(χ)p(χ)
x ^ a

By setting w(a ) = 2(a?) + hx(x) where

Iφ) = \X[g(t)p(t) - i(g*(t)Ylo(t)f'(y(t))]dt

we get

(3.2) z'(x) = [f'(y(x))lg(x)} [z(x) + H(x)
H(x) = K{x)

By combining hypotheses 2 and 4 and noting «(a?) is an increasing func-
tion we see there exists a point ax> a such that for x 2Ϊ ax

z(x) + H(x) ^ φ ) + fe(ίκ, 70 - i(| g'{x) DM
^ z(aθ + k(au 70 - i(| 0'(α,) DM = l/c2 > 0
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therefore we have

z\x) ^ (ΎMx))[z(x) + k(alf TO - Ml fl^i)

and, integrating from ax to x > ax we get

(3.3) z(x) ^ - {(l/α2) - φ j + l/Γα2 - TiΓ (l/ff(t))<Zί]} for x ^ αx .

By use of hypothesis 5 we have the existence of a point α3 > α: such

S α 3

(llg(t))dt. Hence we reach a contradiction as before by
noting that «(a?) is continuous in a closed interval, by its construction,,
but unbounded by (3.3), an impossibility. This proves the theorem.

4. In this section we prove an oscillation theorem that applies to
equation (1.1). Clearly, neither of the two theorems proved so far may
be used to give results concerning the oscillatory behavior of solutions
of equation (1.1).

THEOREM 3. If

1. y(x) is a solution of (1.2) existing for 0 < x < oo,
2. f(y) is odd and f(y) > 0 if y > 0,
3. f(y)ly ^ Ti > 0 if y ^ 72 > 0, 7X and τ2 constants,

4. for some a > 0 k(x) = ("[7flf(ί)p(ί) - lW{t)flg{t)\dt + i(g'(x)) — co

monotonely as #—• oo, /or αw# 7 > 0, where
5. p(x) ^ 0 /or α ^ α? < oo, αwd
6. g(αj) is as in hypothesis 5, Theorem 1, £feew t/(x) is an osciί-

latory solution of (1.2).

The proof is almost a duplicate of the proof of Theorem 1. If y(x)
is assumed to have a last zero at x0 where 0 < xQ < a then there is no
loss in generality in assuming that y(x) eventually positive, since f(y)
is odd. If y(a) = 72 > 0 then since y"{x) = — f(y(x))p(x) ^ 0 for a? ̂  α,
2/(#) must be an increasing function, for if y'(x) < 0 for some x ^ a
then, using #"(#) ̂ 0 we have y(x) = 0 for some a? > α, a contradiction.
Hence y(x) ^ 72 for x ^ α. From this point the remainder of the proof
parallels the proof of Theorem 1 exactly and details are accordingly
omitted.

5 In this section we prove a final oscillation theorem for equations
of type (1.2).

THEOREM 4. / /

1. y(x) is a solution of (1.2) existing for 0 < x < oo,
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2. f(y) = 0 if and only if y = 0,
3. τ2 ^ f'{y) ^ Ti > 0 /or — oo < y < oo, 7X and 72 constants,
4. /or some α > 0 &(#, 7) is as in hypothesis 4, Theorem 2, wΐ£fc

α = lim sup [k(x, 7i) - i(l #'0*0 DM] >
X —> 00

β = lim inf [fc(a!, 72) + i( | fl'(») |)/7x] ,
x -* 00

l im inf fc(x, 7i) > — 00, w h e r e

5. g(x) > 0, flf(α ) e C 2 / o r α ^ ^ < o o , (l/g(t))dt —> 00 a s a? —> 00,
Jα

ίfeere exists a constant L such that g(x) + | ̂ '(x) | + | g"{x) \ < L
for a ^ x < 00, α^d

6. either the integrand of k(xy yλ) is bounded universally from
below, or the integrand of k(x, 72) is bounded universally
from above, for a <Ξ x < 00, then y(x) is an oscillatory solu-
tion of (1.2).

The proof is again by contradiction. Suppose, as before, y{x) has a
last zero at x09 0 < x0 < a. Then we repeat the argument initially used
in the proof of Theorem 2 and transform (1.2) into, for x ^ α,

(5.1) z'(x) = [f'(y(x))lg(x)] [z(x) + H{x)f

where

H{x) = \X[9(t)p(t) - i(g'(t)Ylg(t)f'(y(t))]dt
Ja

It is readily verified by use of hypotheses 3, 4, 5 and 6 that

(5.2) H(x) ̂  k(x, yt) - i(l g'fr) DM, *(», 7,) + id ff'O*) DM ^

and

lim inf H(x) > — 00 .
* — » 0 0

We shall next show that lima._+ββ z(x) = 00. Suppose this is not so. Since
jz(ίc) increases, lim^*, z(x) would exist and have value N, say. Then
z(x) — N — ε(x), where e(x) —»• 0+ as α; —> 00. We shall only treat the
case in which the integrand of fc(x, 7i) is bounded universally from
below, by — M2, say, since the details for the case of the integrand
bounded from above are completely analogous. There are several pos-
sibilities, of which only two need be considered. Details are provided
below for the situations in which N + a = δx > 0, or N + β = δ2 < 0,
for if N + a ^ 0, then Λ Γ + / 3 < 0 o r i f i V r + / 3 ^ 0 , then N + a > 0.

In this paragraph we treat the case in which N + a — δx > 0, and
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the integrand, of k{x, 7i) is bounded from below by — M'\ Suppose for
the moment that a < oo. By definition of a we know there exists a
sequence of points, {&;} say, where bλ > α, bi+1 > bt + 1, ί = 1, 2, , and
k(bi9 7i) — 4(19'Φi) |)/7i > α — δi/4. Moreover we have, for all i sufficiently
large, zφi) > N — δJ4, since 2(0?) — N — ε(a?), where e(a?) —> 0+ as a? —> 00.
Now consider the interval I{ — [bif 6< + ξ] where 0 < | < 1, for the
moment, but to be chosen specifically below. For any x e I{ we have

Jc{χ, 70 - k(bif 70 + j * [9(t)p(t) - ϊ(9'(t)Yhi9(t)]dt ^ k(bi9 70 + (ξ)( - M3);

and iflflΦODM ^ i(lff'(δ<)l)/7i + (L/2)(f/7i) by an application of the mean
value theorem. Combining our results we have that for any i suffi-
ciently large, if a? 6 Iit then z(x) + H{x) ^ z(x) + k(x, Ύι) - i(\g\x)\)hi ^
z(b%) + fc(6if 70 - ξM2 - id flf'ίW DM - (L/2)(|/7!) ^ ΛΓ - δχ/4 + α - δJ4 -

- (L/2)(f/7i) = δJ2 - | M 2 - (L/2)(£/7i). Now choose f so small that
+ (L/2)(|/7i) < δi/4. Hence if α? e /*, (any i sufficiently large) s'(&) >

(7i/L)(δJ/16) and we conclude as a? —> 00 s'(#) is bounded away from zero
on a set whose measure —> 00. Hence z(x) eventually exceeds N, a
contradiction. Thus lim z{x)x_oo = 00. If a — 00 we need merely replace
δj by any positive number greater than N + β and repeat the argument.

In this paragraph we treat the case in which N + β — S2 < 0, and
the integrand of k{x, 7i) is bounded from below by — M2. We note
first that since k(x, 7i) ^ k(x, 72) that β > — co by use of hypythesis 4,
and by use of the definition of k(x, 7) that the integrand of k(x, 72) is
bounded below by — M2 also. As before, by definition of β we know
there exists a sequence of points, {6f} say, where 6χ > α, 6 ί+1 > b{ + 1,
i = 1, 2, , such that k(bif 72) + Ml #'(&;) DM < /3 - δa/2. Now consider
the interval Iι = [6̂  — | , δ j where 0 < | < 1, for the moment, but to
be chosen specifically below. For any x e Ii we have k(x, 72) = k{biy 72) —
\\g(t)p(t) - ϊ(9'(t)Yl9(t)Ύ2]dt. But ^[g(t)p(t) - t(g'(t)Ylg(tyγΛ]dt ^

i - x)(- M2) ^ - ξM2. Hence k(x, 72) ^ A?(6<, 72) + ξM2. Combining our
results we have that for any i sufficiently large, if x e Iiy then z(x) +
H(x) £ z(x) + k(xt 72) + h{\g'{x)\)K ^N+k(biy 72)
(L/2)(f/TO ^N + β - δ2/2 + | M 2 + (L/2)(f/7θ - δ2/2
Now choose | so small that |ilf2 + (L/2)(|:/71) < — δa/4. Hence if a? e /,-,
(any i sufficiently large) z\x) ^ (7i/L)(δ2/16). As before we have, even-
tually, z(x) > -ZV, a contradiction. Hence we must have lim^oo^aO = 00.

Now the proof may be concluded just as in the proof of Theorem 2.
For we have, since lim^oo z(x) — 00, and lim i n f ^ H(x) = ξ > — 00, that
there exists a point a± > a such that, for a? ^ α l t 2;(a;) + iϊ(^) Ξ>
z(x) + f - 1 ^ φ θ + f - 1 = l/α2 > 0. Hence for a? ̂  al9 z\x) ^ [7i/flf(a?)]
[a (ίc) + ξ — I] 2 and we have, after an integration,

z(x) ^ - [(1/αO - φ j ] + l ^ α 2 - 7 l j " (l/flf(ί))dt] for a? ^ αx .
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As before a contradiction is easily reached from this last inequality.
The details are omitted. This concludes the proof of Theorem 4.

6. The same type of reasoning may be used to show the, existence
of nonoscillatory solutions of equations of the form (1.2). The following
two lemmas will be found useful.

LEMMA 1. If

1. y(x) is a solution of equation (1.2) existing for 0 < x < oo,
2. y(x0) φ 0, y{x^} — 0, with x1 the first root of the equation

y(x) = 0 to the right of x0,

3. f(y) = 0 i / and only if y = 0,
4. iφO = I y'(x)ly(x) I, iφ) = | y'(χ)lf(y(x)) \

then lim sup uλ(x) = lim sup w2(#) = oo.

It is clear that if we prove the result for u2(x) we shall have
proved it for uτ{x), by choosing f(y) = y. The proof is by contradiction.
Suppose there exists a constant k > 0 such that u2(x) > k for all x in
[a?0, ^ ) . For such x we have | i/'(»)//(i/(flj)) | < k so |[^(^)/ ;(^(x))]//(^)) | ^
fc |/'(2/(α0)| < &i by the continuity of the function fr{y{x)) in [α?0, α?J.

Thus we have [y'(t)f'(y(t))lf(y(t))]dt = \Ln\f(y(t))\to\ ^

which is a contradiction, since as x —> ίcf we have | L^ |/(i/(ί)) |ϊ01
by use of hypothesis 2 and hypothesis 3, while the right hand side of
the last inequality is bounded. This proves the lemma.

LEMMA 2. / /

1. z(x) is a solution of the differential equation z\x) — F(x, z(x))
for 0 < a ^ x g b, where f(x, z) is continuous in the x — z
plane.

2. there exists a function φ(x) of class C for a ^ x ^b such
that φ'(x) > F(x, φ(x)) for a ^ x ^b with <p(a) ^ z(a), then
φ(x) > z(x)f for a < x ^ 6 .

For a proof of this result see [3].
We have the following nonoscillation theorem as typical of the
results that can be obtained.

THEOREM 5. / /

1. y(x) is a solution of equation (1.2) existing for 0 < x < oo,
with y(a) Φ 0, a some positive number,

2. g(x) > 0, g(x) eC for a ^x < ™,

3. for every b > a, h(x) = [[g(t)p(t)f(y(t))ly(t) - i(g'(t)Ylg(t)]dt +

ϊg'{x)y where a ^ x ^ 6 , can be appraised so that one can dem-
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onstrate the existence of functions φ(x) and ψ(x), of class Cr

and C for a ^ x ^ b, respectively, with the properties that,
for a ^ x ^ ί>, — φ(x) < h(x) < — φ(x) + f{x), φ\x) ^
(llg(x)(ψ(x)f, and φ(a) — c, c an arbitrarily large positive
number, then y(x) is a nonoscillatory solution.

The proof is by contradiction. Suppose y(x) is an oscillatory solu-
tion. Then there exists a first zero of the equation y(x) — 0 after the
point a mentioned in hypothesis 1, at x = b, say. Therefore for x in
a ^ x < b we can transform equation (1.2) into equation (2.2) as in the
proof of Theorem 1. By use of Lemma 1 we see (with the notation of
Theorem 1) that | u{x) \ — | — yr(x)/y(x) \ must assume arbitrarily large
values in [α, 6). The same must be true of | z(x) | by an inspection of
the transformations used to obtain (2.2) for (1.2) and our knowledge, by
use of hypothesis 3, that h(x) is bounded in [a, b]. But from hypothesis 3
we have the existence of a function φ(x) such that φ'{x) ̂  l/g(%)[ψ(%)]2 >
(φ(x) + h(x)f with φ(a) = c ^ z(a) since c was arbitrarily large and pos-
itive. Hence by Lemma 2 z{x), the solution of (2.2), is bounded for
a S % ^ bf a contradiction. This proves the theorem.

7. Precisely the same type of reasoning may be used to prove the
following nonoscillation theorem.

THEOREM 6. If

1. y(x) is a solution of equation (1.2) existing for 0 < x < co,
with y(a) Φ 0, a some positive number,

2. g(x) > 0, g(x) e C1 for a g x < oo,
3. 7i ^f\y) for — oo < y < oo, and y — 0 is an isolated zero

of the equation f(y) = 0,

4. for every b > a, H(x) = \*[g(t)p(f) - i(9f(t)Ylg(t)f(y(t))]dt +
Ja

i(9'(χ))lf'(y(χ))> where a ^ x ^ δ, can be appraised so that
one can demonstrate the existence of functions <p(x) and ψ(x)τ

of class C and C for a ^ x ^ 6 , respectively, with the prop-
erties that, for a ^ x ^b, — φ(x) < H(x) < — φ(x) + ψ(x),
φf(x) ^ (7ilg(x))(ψ(x)Y, and φ{a) = c, c an arbitrarily large
positive number, then y(x) is a nonoscillatory solution.

The proof is very similar to the proof of Theorem 5. Suppose
y(x) is an oscillatory solution. Then there exists a first zero of the
equation y(x) = 0 after the point a mentioned in hypothesis 1, at x — b,
say. Assume that a is so close to b that f(y(x)) Φ 0 for a g x < b and
then transform equation (1.2) into equation (3.2) as in the proof of
Theorem 2. It is easy to modify the proof of Lemma 1 so that the
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conclusion of that lemma holds under the hypotheses on f(y) as given
in hypothesis 3 above. As in the proof of Theorem 5 we can conclude
that I z(x) I must assume arbitrarily large values in [α, b). But by hypoth-
esis 4 we have the existence of a function φ(x) such that φ'(x) ^
(Ύjg(x))(Ψ(%)Y > [f\v(x))lg(x)][<P(x) + H(x)]2 with φ(a) = c ^ z(a). Hence,
by Lemma 2, z(x) is bounded in [α, 6], a contradiction. This proves the
theorem.
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