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1. Introduction* Let X = {xl9 •••, xn} be a set of (not necessarily
distinct)1 elements of a torsion free Abelian group. Define PS(X) =
!%h + %i2 + + xig I ii < it < < i.}. Thus PS(X) has (£} (not neces-
sarily distinct) elements. We introduce the equivalence relation X~ Y
if and only if P8(X) = P8(Y). Let Fs(n) be the greatest number of sets
X which can fall into one equivalence class. Our purpose in this paper
is to study conditions under which Fs(n) > 1. Clearly Fs(n) — oo if n ^ s
so that we may restrict our attention to n > s.

In [5] Selfridge and Straus studied this question, restricting atten-
tion to sets of elements of a field of characteristic 0. In § 2 we show
that the numbers Fs(n) remain the same even if we restrict ourselves
to sets of positive integers. Thus the results in [5] remain valid in our
case. These included a necessary condition for Fs(n) > 1 and the proof
that F2(n) > 1 (and hence Fn_2(n) > 1) if and only if n is a power of 2.
Also Fs(2s) > 1.

In § 3 we give a simpler form of the necessary condition in [5].
In § 4 we examine this necessary condition and prove that f or s > 2

we have Fs(n) = 1 for all but a finite number of n. This was con-
jectured in [5], The method seems to be of independent interest since
it can be applied to a class of Diophantine equations in two unknowns
which are algebraic in one and exponential in the other variable.

In § 5 we apply the methods of [5] to show that F2(8) = 3, F2(16) ^
3, JP3(6) ^ 6 and FA(12) ̂  2.

The fact that Fa(8) = 3 disproves the conjecture F2(n) <Ξ 2 made in
[5]. Except for the corresponding result F6(8) = 3 we have not found
another nontrivial case in which we can prove Fs(n) > 2.

In the final section we adapt a method of Lambek and Moser [3] to
the case s = 2 and get a partial characterization of those sets which
are equivalent to other sets.

2 Reduction to sets of integers* In this section we demonstrate
that there exist Fs(n) distinct equivalent sets of positive integers so
that in any effort to evaluate Fs(n) we may restrict our attention to
sets of integers.

Received March 29, 1961. The work of the third author was supported in part by the
National Science Foundation.

1 Throughout this paper we use the word "set" to mean "set with multiplicities" in
the sense in which one speaks of the set of zeros of a polynomial.
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Let N = Fs(n) and let Xx = {xlu , xnl}, , XN = {x1N, , xnN} be
the members of a maximal equivalence class. Since the xi3 form of a
finite set of elements of a torsion-free Abelian group, they generate a
group with basis yl9 " ,ym over the integers (see e.g. [2], Theorem 6).
In other words every xi3 can be represented as an m-vector, xi3 =
(a\j, , α™ ) with integral components. The addition of a fixed m-vector
with sufficiently large components to all xi3 does not effect the equiva-
lence of the Xό so that we may assume that every a\5 is non-negative.
Now let A be an integer with A > s max a% and associate to each xi3

the number

yi3 = a}3 + a\3A + + αSA"-1 .

It is now clear that two sums of s or fewer yi5 are same if and only
if the corresponding sums of xί3 are the same. In other words the sets
of integers Y3 = {yljf , ynj} (j = 1, , ΛΓ) form an equivalence class
with AT = -Fβ(tt) distinct members.

3* Simplification of the necessary conditions for Fs(n) > 1#

In this section we show that the Diophantine equation f(n, k) — 0
of [5] can be writen in the form

) " 1 - +ί-D'- 1 "- 1 =0> G - 1 ) - G - 2 ) 2 " 1 + G -
To see this we start with the expression given in [5], namely

f{n, k) = - Σ i-lY'n'-1 Σ a*i* ,

where P runs through all permutations on s letters, a{ is the number
of cycles of length ί in P, and t — Jα, is the total number of cycles in
P. Changing the order of summation we get

f(n, k) = Σ i^i-iy-1 i. Σ (-^-w ,̂

where Nit is the number of permutations P which contain exactly t
ί ^\

cycles, including at least one i-cycle. Since there are ( ) (ί — 1)! choices

of the one i-cycle, and [(s — ΐ)!/(ί — 1)!] Σrcj=β-< l/(^ 2 * ê-i) choices
of the other cycles of length cu , ct-l9 we have

f{n, k) = Σ ί*-1 ( ~ i r 1 ' ? — ^ T ^ r (ί - 1)! (s - <)!
* s (s — ι)\ ̂ !

ί=l (ί - 1) ! Σc^s-i ClC2

ί=l (ί — 1)! ΣCj = 8-i CjCg
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Now if I x I < 1, we have

c=i C

- a?) =

Multiplying by {—n)vjv\ and summing over # we obtain

— V r^ V

from which we deduce that

Putting -y = t — 1, w = s — i, we obtain

f(n, k) --= Σ i ^ X - l ) - 1 ^ - 1)! ( -

Therefore the equation f(nf k) = 0 is equivalent to Σ i*~1( — I)4"1! n ) = 0.

4 Proof that for s > 2 we have ^(w) = 1 for all but a finite
number of n.

LEMMA. For large values of k the equation (1) has s — 1 real
roots n = nlf , n8-! where

( 2 ) Uj — (s — j)(l + ljJY'1 + O((l + l/i)δfc), δ < 1 .

Proo/. Divide the left side of (1) by {-l)j-ι( Vϊ λj*-1 and then
\s — j — ij

consider its behavior in the neighborhood Nj of n = ̂ * = (s — i)(l + \jJY~1

s a y iV, = {n \ n*l2 ^ n ^ 2nf}. W e h a v e

It remains to show that li5 < 1 + 1/j for all i ^i < j and all j + 1 < i
s — 1. For i < j this leads to

A A \ι/(ί-j)
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and f or i > j + 1 to

i/j < (1 + 1IJY~J = 1 + (i - j)lj + .

Thus, if we set

δ = max {j - i + 1 + log (i/j)/log (1 + 1/i)}
i+κί<8

Then δ < 1 and (1) becomes

(3) (n-s+j + 1)1(8 - j) - (1 + 1/i)*-1 + O((l + l/i)δfc) = 0

for n e N3 . Thus (1) must have a root in Nj and according to (3) this
is the real root given in (2).

THEOREM. // s > 2 £/&ew £/&ere is only a finite number of n for
which Fs(n) > 1.

Proof. If the Diophantine equation (1) has solutions for arbitrarily-
large k then by the Lemma the solutions are of the form

n = (s - i)(l + 1/i)*-1 + O(n8) ,

where 1 ̂  j <Ξ s — 1 and δ < 1.
On the other hand all solutions of (1) satisfy n \ (s — 1)! sfc-1 so that

all prime factors of n are less than or equal to s. The same holds for
the prime factors which occur in the numerator and denominator of

Now according to a Theorem of Ridout [4] for any ε > 0 there is
at most a finite number of integers p, q whose prime divisors belong to
fixed finite sets and which satisfy 0 < 11 — p/q | < l/tfε; or, equivalently

0 < \q - P \< q1-* .

But

I nf-1 - (s - j)(j + I)*-11 < cj*-1 n8 < c^nj*-1)1-* .

for some ε > 0, so that if there is an infinite number of solutions we
must have njk~ι — (s — j)(j + I)*"1 infinitely often. For large k, this
implies j = 1 and n = (s — l )^*" 1 . For s = 2 this does indeed give an
infinite family of solutions, but for s > 2 we see that for n — (s — l )^*" 1

) (

n
-i

so that the third term in (1) dominates the sum of the first two terms



ON THE DETERMINATION OF SETS 191

as well as all the subsequent terms and the equation cannot hold for
large k.

Using a method of Davenport and Roth [1] we could obtain an
upper bound on the number of n for which F8(n) > 1, but this bound
would probably be far from best possible.

5 Special cases As in [5] we put Sk = Σ *=1

 χk%
Σ{Xix + + %is)

k, the summation being extended over all indices
iu # s i with 1 ^ ix < i2 < < is <Ξ n. Then each Σk can be ex-
pressed as a polynomial in Sl9 , Sk. Since all sets X of an equivalence
class give rise to the same Σk's, and since the elements of X are uniquely
determined by Si, * , S n , we can obtain an upper bound for F8(n) by
estimating the number of different ^-tuples (Si, •• ,SW) corresponding

to a given set of 2"s. Since Σ1 — (n

o~ Λsλ we see that all members

of an equivalence class have the same Slβ We can assume without loss

of generality that Sx — 0.
The case s = 2, n = 8.
In this case there are 282"s, and the first 12 of them are given by

the following expressions (for SL = 0)

( 2 )

( 3 )

( 4 )

( 5 )

( 6 )

( 7 )

( 8 )

( 9 )

(10)

(11)

(12)

Σ2

Σs

Σt

Σ,

Σt

Σ7

Σs

Σ,

Σ10

Σn

Σn

= 6S2

= 4S3

= 3Sί

= -8S5 + 10SA
= -24S 6 +

= -56S 7 +

= - 1 2 0 S 8 4

= - 2 4 8 S 9 4

= - 5 0 4 S 1 0 -

= -1016S,,

= - 2 0 4 0 S l a

152S4 + 10S3

2

21S2S6 + 35S3S4

- 28<S2Sβ + 56S3iS5 +

- 36S2S7 + 84S3S6 +

f 45S2S8 + 120S3S7 -

+ 55S2S9 + 165S3S ;

+ 66S2S1 0 + 220S3S,

35S4

2

126S4S5

f 210S4S6 + 126S5

2

8 + 330S4S7 + 462S6Se

, + 495S4S8 + 792S5S7 462S6

2 .

Equations (2), (3), and (5) show that S2J S3f and S5 are uniquely deter-
mined by the Σ's. Furthermore (6), (7), and (8) imply that Sβ, S7, and
S8 are uniquely determined by the I"s once S4 is known. So to prove
F2(S) ^ 3 , it is sufficient to show that corresponding to a given set of
2"s, there can be at most 3 values of S4. Now Sfl, S10, Sn, and S12 can
be expressed in terms of Slf , S8 using the theory of symmetric func-
tions. Since these in turn can be expressed in terms of S4 and the Σ'&,
equations (9), (10), (11), and (12) give us four equations involving S4 and
the ^'s. Now (9) is linear in S4, (10) and (11) are quadratic in S4, while
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(12) is cubic in S4. We shall show that the coefficient of S4

3 in (12) is
not zero, which implies that S4 can have at most 3 values. Then, in
order that it actually can have 3 values, we must have the coefficients
of S4 in (9), (10), (11) and the coefficients of S4

2 in (10), (11) equal to 0.
This gives considerable information on the structure of the 3-member
equivalence classes.

First we compute the coefficient of S! in equation (11). It arises
only from the terms -1016Sn, 165S3S8 and 330S4S7. The last term con-
tributes 330((35/56)S3)S4

2 - (825/4)S3S4

2, making use of (7). To compute
the contribution of —1016Sn we use the relation from the theory of
symmetric functions

0 = ΊΪSn ~ Ί&s& ~ΉSiSs + ~kSsS!~ -kSΆ + '"
This, combined with equations (7) and (8) gives

s" = £ S ( I s ? ) + 1 ( f S A ) S - i S Λ ' + • •
- O3O4 "Γ .

96.35

From (8), the term 165S3S8 contributes 165 (35/120)S3S4

2. Hence the
coefficient of S4

2 in equation (11) is

979 , 825 , 165.35

where the number in parentheses is =£0. Thus in order for an equiva-
lence class to contain 3 members, we must have S3 = 0. Next consider
the coefficient of S4 in equation (9) (supposing from now on that S3 = 0).
It arises from the terms -248S 9 and 126S4S5. But

from which S9 = (9/20)S5S4 + . So the coefficient of S4 is

Hence in order to have more than one member in such an equivalence
class we must have S5 = 0. Next consider the coefficient of S4 in equa-
tion (11) (supposing S3 = S5 = 0). It arises from — 1016Sn and from
330S4S7. Since 0 = (1/11)SU - (1/28)S4S7 + the coefficient is

_LJL \ Cf i^ Q Q Λ Π Oθ4r Q
1^7 "I OOV/O7 — O 7 .

28 / 7
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Hence we must have S7 = 0 in order to have 3 sets in the same equiva-
lence class. Finally the coefficient of S! in equations (12) arises from
—2040S12 and from 495S4S8. Using the relation

and (8), we obtain a coefficient of

(-2040)(i2 Y J L ) _ 2040 ( - ^ ) + W-**-) Φ 0 ,
V \ 32 A120/ \6-64/ \ 120 /

which completes the proof that F2(8) ^ 3. Moreover we see from the
proof that if X, Y, Z form a 3-member equivalence class (with Sx = 0),
then X, Y, Z all have Sk = 0 for k odd, and hence each consists of 4
members and their negatives. In addition, there can be only one such
equivalence class having a given value for ΣQ and 3 given values for S4.
For the three given values of S4 determine the coefficients of the cubic
equation (12), and hence determine Σ2, Σ8, and 2"13. But then all other
Σ's are determined from these. Now if α, 6, c, d are any 4 numbers,
then the sets X = Xx U —Xl9 Y= YX\J —Yl9 and Z = Zx U —£i, where
Xx = {α, 6, c, d}, Fx = {£(-» + 6 + c + d), i(α - 6 + c + d), J(α + 6 - c + d),
i(α + 6 + c - d)}, and Z2 = {i(a + b + c + d), i(a + b - c - d), i(a-b + c-d),
i(a — b — c + d)} are all equivalent. Furthermore if any 4 (complex)
numbers Σ6, S/, S/r, S4

r// are given, it is possible to choose α, 6, c, d so
that Σ6(X) = Σ6(Y) = ^ 6(Z) - ^ 6 , S4(X)S;, S4(Γ) - S/', S4(Z) - S Γ . In-
deed, it is easy to see that the prescribed conditions merely determine
the symmetric functions of a,b, c, d, and of course one can always find
complex α, b, c, d for which these have preassigned values. It follows
that the sets X, Y, Z give a parametric representation of all 3-member
equivalence classes (with Sx = 0).

Other values of Fs(n). A similar treatment can be given for the
other values of Fs(n) mentioned in the introduction. We will omit the
details and merely sketch the general method in these cases. If s — 2,
n = 4, the first Sk not uniquely determined by the 2"s is Sd, and all
other Sk are determined by S3 and the 2"s. The equation for J^ then
becomes a quadratic equation in Sd and the coefficient of S? in this equa-
tion is not 0. Hence, corresponding to .a given set of Σ's there can be
at most 2 values of S3, and accordingly at most 2 sets X and Y. Thus
2^(4) ^ 2 . An argument similar to that given above shows that F2(A) =
2 and that all 2-member equivalence classes are given by X = {α, 6, c, d],
Y = i(-a + b + c + d), b(a - b + c + d), ί(α + b - c + d), ί(α + b + c - d)}.
In the case s — 2, n = 16, we find that S5 is the first S^ not uniquely
determined by the 2"s, and that all other Sk are uniquely determined
by Sδ and the 2"s. The equation for Σ17 gives a cubic equation for S5,
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the coefficient of Sδ being a nonzero multiple of S2. By § 2 we can
assume that the sets X are real, and hence S2 > 0. This proves ^(16) ^
3. On the other hand ^(16) ^ 2 as was shown in [4]. We do not know
at present whether F2(16) = 2 or 3. This type of reasoning can pro-
bably be made to yield the estimate F2(2k) ^ α, where a is the least
integer such that (k + l)α > 216; however, this seems to be far from
the best possible result.

For s = 4, n = 12 the first Sk not uniquely determined by the Σ's
is Sβ, and all other Sk are uniquely determined once S6 is known. The
equation for Σu gives a quadratic equation for S6, the coefficient of S6

2

being a nonzero multiple of S2. Hence F4(12) ^ 2. We do not know
whether F4(12) = 1 or 2.

Finally, if s = 3, n — 6, then the equations for the Σ's in terms of
the S's show that S2 and S4 are uniquely determined by the Σ'a, while
S6 is determined by the 2"s and by S3. The equations for Σ8 contains
a term in SdSδ with nonvanishing coefficient. Hence it can be used to
write Sδ — (αS3

2 + β)/S39 where a, β depend on the 2"s.

Then the expression for Σ12 yields a sextic equation for Sd and the
coefficient of S3

6 is nonzero. Hence 2 g F3(6) ^ 6.

6 Generating functions for the case s — 2. In this section we use
a method suggested by Lambek and Moser [2] to obtain some results on
equivalent sets in the case s = 2.

Suppose A = {alf , an} (where 0 = ax ^ α2 ^ ^ an) and B =
{̂ i, , δn} (with 0 ^ 6X S ^ bn) are equivalent sets of nonnegative
integers. Construct the generating polynomials f{x) — ΣxH, g(x) = Σxh\
Then the generating polynomial for the set of sums is M/2(#) — f(χ2)) —
i(92(%) ~ 9(x2)). Hence f\x) - g\x) - f(x2) - g(x2). Let F - / + g, G =
f-g; then F(ί»)G(aj) = G(x2), so that G(x)\G(x2). This is possible only
if every zero of G has a square which is itself a zero of G, in other
words only if

G(x) = cα" Π ^ ( s ) ,
i

where the <p{ are cyclotomic polynomials. We can write this, in the
customary way, as

(13) G(x) = ^

where the β{ and <Yj are positive integers, and hence

(14) F(x) = - ^

Since i^(l) = 2^ is a power of 2 we have here a new and simple
proof of the fact that F2(n) > 1 only when n is a power of 2.
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The problem of finding equivalent sets of integers now reduces to
that of determining the β{ and y3- (we must clearly set a = 0) for which
the polynomials Fand G have nonnegative coefficients. This makes \c\ —
I G(0) I ̂  F(0) = 1 in (13) necessary so that c = 1. We certainly get non-
negative coefficients if there are no denominators (no jj) which proves
jP2(2

fc) > 1 and permits a simple construction of equivalent classes of
order 2fc:

Given k + 1 numbers α0, , ak let X be the set of sums of an
even number of α's and Y the set of sums of an odd number of α's.
Clearly P2(X) — P2{Y) These are the sets which were obtained in [5].

However there do exist cases in which the j ά are not absent, for
example

G(x) - (1 - x)\l - xj(l - xj(l - xQf(l - x12)/(l - x') .

This cyclotomic polynomial leads to the following two sets A and B
with 211 elements each:

element 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

multiplicity in A 1 0 6 8 14 10 19 41 26 29 35 78 69 37 58 104 114 22 56 129 120 48

multiplicity in B 0 4 2 7 11 22 23 14 34 45 59 22 52 105 78 47 47 122 108 46 40 136

element 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 26 24 23 22

The symmetry in the multiplicities is typical since the cyclotomic polynomials are
reciprocal. We have no example with non-trivial denominators in (14) which leads to two
sets without multiple elements.

A complete characterization of the possible functions F, G seems there-
fore difficult.

The fact that F2(8) = 3 in the notation of the introduction and the
characterization of the classes containing three equivalent sets can now
be understood from this point of view by noting that / need not determine
F uniquely. Namely if we write F = (1 + α"i)(l + x*ή(l + £*3)(1 + x"*)
and ί7* = (1 + xβi)(l + xβή(l + xβή(l + xβή then F and JP* give rise to
the same / whenever the set of sums of an even number of α's is the
same as the set of sums of an even number of /3's. In other words,
whenever βi = i(ax + a2 + a3 + a4) — at (after suitable reordering). The
generating functions f,Qx~F — f and g2 — F* — f then describe the
three equivalent sets given in § 5.

The question whether F2(n) ^ 2 for n > 8 reduces to that of whether
two different F(x) and F*(x) can give rise to the same / when F(l) > 16.
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