ON THE DETERMINATION OF SETS BY THE SETS OF SUMS OF A CERTAIN ORDER

B. Gordon, A. S. Fraenkel and E. G. Straus

1. Introduction. Let $X=\left\{x_{1}, \cdots, x_{n}\right\}$ be a set of (not necessarily (iistinct) ${ }^{1}$ elements of a torsion free Abelian group. Define $P_{s}(X)=$ $\left\{x_{i_{1}}+x_{i_{2}}+\cdots+x_{i_{s}} \mid i_{1}<i_{2}<\cdots<i_{s}\right\}$. Thus $P_{s}(X)$ has $\binom{n}{s}$ (not necessarily distinct) elements. We introduce the equivalence relation $X \sim Y$ if and only if $P_{s}(X)=P_{s}(Y)$. Let $F_{s}(n)$ be the greatest number of sets X which can fall into one equivalence class. Our purpose in this paper is to study conditions under which $F_{s}(n)>1$. Clearly $F_{s}(n)=\infty$ if $n \leqq s$ so that we may restrict our attention to $n>s$.

In [5] Selfridge and Straus studied this question, restricting attention to sets of elements of a field of characteristic 0 . In $\S 2$ we show that the numbers $F_{s}(n)$ remain the same even if we restrict ourselves to sets of positive integers. Thus the results in [5] remain valid in our case. These included a necessary condition for $F_{s}(n)>1$ and the proof that $F_{2}(n)>1$ (and hence $F_{n-2}(n)>1$) if and only if n is a power of 2. Also $F_{s}(2 s)>1$.

In § 3 we give a simpler form of the necessary condition in [5].
In § 4 we examine this necessary condition and prove that for $s>2$ we have $F_{s}(n)=1$ for all but a finite number of n. This was conjectured in [5]. The method seems to be of independent interest since it can be applied to a class of Diophantine equations in two unknowns which are algebraic in one and exponential in the other variable.

In $\S 5$ we apply the methods of [5] to show that $F_{2}(8)=3, F_{2}(16) \leqq$ $3, F_{3}(6) \leqq 6$ and $F_{4}(12) \leqq 2$.

The fact that $F_{2}(8)=3$ disproves the conjecture $F_{2}(n) \leqq 2$ made in [5]. Except for the corresponding result $F_{6}(8)=3$ we have not found another nontrivial case in which we can prove $F_{\mathrm{s}}(n)>2$.

In the final section we adapt a method of Lambek and Moser [3] to the case $s=2$ and get a partial characterization of those sets which are equivalent to other sets.
2. Reduction to sets of integers. In this section we demonstrate that there exist $F_{s}(n)$ distinct equivalent sets of positive integers so that in any effort to evaluate $F_{s}(n)$ we may restrict our attention to sets of integers.

[^0]Let $N=F_{\mathrm{s}}(n)$ and let $X_{1}=\left\{x_{11}, \cdots, x_{n 1}\right\}, \cdots, X_{N}=\left\{x_{1_{N}}, \cdots, x_{n_{N}}\right\}$ be the members of a maximal equivalence class. Since the $x_{i j}$ form of a finite set of elements of a torsion-free Abelian group, they generate a group with basis y_{1}, \cdots, y_{m} over the integers (see e.g. [2], Theorem 6). In other words every $x_{i j}$ can be represented as an m-vector, $x_{i j}=$ ($a_{i j}^{1}, \cdots, a_{i j}^{m}$) with integral components. The addition of a fixed m-vector with sufficiently large components to all $x_{i j}$ does not effect the equivalence of the X_{j} so that we may assume that every $a_{i j}^{k}$ is non-negative. Now let A be an integer with $A>s \max a_{i j}^{k}$ and associate to each $x_{i j}$ the number

$$
y_{i j}=a_{i j}^{1}+a_{i j}^{2} A+\cdots+a_{i j}^{m} A^{m-1}
$$

It is now clear that two sums of s or fewer $y_{i j}$ are same if and only if the corresponding sums of $x_{i j}$ are the same. In other words the sets of integers $Y_{j}=\left\{y_{1 j}, \cdots, y_{n j}\right\}(j=1, \cdots, N)$ form an equivalence class with $N=F_{s}(n)$ distinct members.
3. Simplification of the necessary conditions for $F_{s}(n)>1$.

In this section we show that the Diophantine equation $f(n, k)=0$ of [5] can be writen in the form

$$
\begin{equation*}
\binom{n}{s-1}-\binom{n}{s-2} 2^{k-1}+\binom{n}{s-3} 3^{k-1}-\cdots+(-1)^{s-1} s^{k-1}=0 \tag{1}
\end{equation*}
$$

To see this we start with the expression given in [5], namely

$$
f(n, k)=\frac{1}{s} \sum_{P}(-1)^{s t} n^{t-1} \sum_{i=1}^{r} a_{i} i^{k}
$$

where P runs through all permutations on s letters, a_{i} is the number of cycles of length i in P, and $t=\Sigma a_{i}$ is the total number of cycles in P. Changing the order of summation we get

$$
f(n, k)=\sum_{i} i^{k-1}(-1)^{s-1} \frac{i}{s} \sum_{t=1}^{s-2}(-n)^{t-1} N_{i t},
$$

where $N_{i t}$ is the number of permutations P which contain exactly t cycles, including at least one i-cycle. Since there are $\binom{s}{i}(i-1)$! choices of the one i-cycle, and $[(s-i)!/(t-1)!] \sum_{z c_{j=s-i}} 1 /\left(c_{1} c_{2} \cdots c_{t-1}\right)$ choices of the other cycles of length c_{1}, \cdots, c_{t-1}, we have

$$
\begin{aligned}
f(n, k) & =\sum_{i} i^{k-1} \frac{(-1)^{s-1} i}{s} \frac{s!}{(s-i)!i!}(i-1)!(s-i)! \\
& \cdot \sum_{t=1}^{s-1} \frac{(-n)^{t-1}}{(t-1)!} \sum_{c_{j}=s-i} \frac{1}{c_{1} c_{2} \cdots c_{t-1}} \\
= & \sum_{i} i^{k-1}(-1)^{s-1}(s-1)!\sum_{t=1}^{s-i} \frac{(-n)^{t-1}}{(t-1)!} \sum_{\Sigma c_{j}=s-i} \frac{1}{c_{1} c_{2} \cdots c_{t-1}}
\end{aligned}
$$

Now if $|x|<1$, we have

$$
\begin{aligned}
-\log (1-x) & =\sum_{c=1}^{\infty} \frac{x^{c}}{c}, \\
(-1)^{v} \log ^{v}(1-x) & =\sum_{w=v}^{\infty} x^{w} \sum_{v_{j}=w} \frac{1}{c_{1} c_{2} \cdots c_{v}} .
\end{aligned}
$$

Multiplying by $(-n)^{n} / v$! and summing over v we obtain

$$
\begin{aligned}
(1-x)^{n}=e^{n \log (1-x)} & =\sum_{v=0}^{\infty} \frac{n^{v} \log ^{v}(1-x)}{v!} \\
& =\sum_{p=0}^{\infty} x^{p} \sum_{v=0}^{p} \frac{(-n)^{v}}{v!} \sum_{c_{1}+\cdots+c_{v}=p} \frac{1}{c_{1} c_{2} \cdots c_{v}}
\end{aligned}
$$

from which we deduce that

$$
(-1)^{w}\binom{n}{w}=\sum_{v=0}^{w} \frac{(-n)^{v}}{v!} \sum_{c_{1}+\cdots+c_{v}=w} \frac{1}{c_{1} c_{2} \cdots c_{v}} .
$$

Putting $v=t-1, w=s-i$, we obtain

$$
\begin{aligned}
f(n, k) & =\sum_{i} i^{k-1}(-1)^{s-1}(s-1)!(-1)^{s-i}\binom{n}{s-i} \\
& =\sum_{i} i^{k-1}(s-1)!(-1)^{i-1}\binom{n}{s-i} .
\end{aligned}
$$

Therefore the equation $f(n, k)=0$ is equivalent to $\sum_{i} i^{k-1}(-1)^{i-1}\binom{n}{s-i}=0$.
4. Proof that for $s>2$ we have $F_{s}(n)=1$ for all but a finite number of n.

Lemma. For large values of k the equation (1) has $s-1$ real roots $n=n_{1}, \cdots, n_{s-1}$ where

$$
\begin{equation*}
n_{j}=(s-j)(1+1 / j)^{k-1}+O\left((1+1 / j)^{\delta k}\right), \quad \delta<1 \tag{2}
\end{equation*}
$$

Proof. Divide the left side of (1) by $(-1)^{j-1}\binom{n}{s-j-1} j^{k-1}$ and then consider its behavior in the neighborhood N_{j} of $n=n_{j}^{*}=(s-j)(1+1 / j)^{k-1}$ say $N_{j}=\left\{n \mid n_{j}^{*} / 2 \leqq n \leqq 2 n_{j}^{*}\right\}$. We have

$$
\binom{n}{s-i} i^{k-1} /\binom{n}{s-j-1} j^{k-1}<c_{1} n^{j-i+1}(i / j)^{k}<c_{2}\left(i(j+1)^{j-i+1} / j^{i-j+2}\right)^{k}=c_{2} l_{\imath j}^{k} .
$$

It remains to show that $l_{i j}<1+1 / j$ for all $i \leqq i<j$ and all $j+1<i \leqq$ $s-1$. For $i<j$ this leads to

$$
1+\frac{1}{j}<\left(1-\frac{j-i}{j}\right)^{1 /(i-j)}=1+\frac{1}{j}+\cdots
$$

and for $i>j+1$ to

$$
i / j<(1+1 / j)^{i-j}=1+(i-j) / j+\cdots
$$

Thus, if we set

$$
\delta=\max _{\substack{1 \leq i \leq j \\ j+1<i<s}}\{j-i+1+\log (i / j) / \log (1+1 / j)\}
$$

Then $\delta<1$ and (1) becomes

$$
\begin{equation*}
(n-s+j+1) /(s-j)-(1+1 / j)^{k-1}+O\left((1+1 / j)^{\delta k}\right)=0 \tag{3}
\end{equation*}
$$

for $n \in N_{j}$. Thus (1) must have a root in N_{j} and according to (3) this is the real root given in (2).

Theorem. If $s>2$ then there is only a finite number of n for which $F_{s}(n)>1$.

Proof. If the Diophantine equation (1) has solutions for arbitrarily large k then by the Lemma the solutions are of the form

$$
n=(s-j)(1+1 / j)^{k-1}+O\left(n^{\delta}\right)
$$

where $1 \leqq j \leqq s-1$ and $\delta<1$.
On the other hand all solutions of (1) satisfy $n \mid(s-1)!s^{k-1}$ so that all prime factors of n are less than or equal to s. The same holds for the prime factors which occur in the numerator and denominator of $(s-j)(1+1 / j)^{k-1}$.

Now according to a Theorem of Ridout [4] for any $\varepsilon>0$ there is at most a finite number of integers p, q whose prime divisors belong to fixed finite sets and which satisfy $0<|1-p / q|<1 / q^{\varepsilon}$; or, equivalently

$$
0<|q-p|<q^{1-8}
$$

But

$$
\left|n j^{k-1}-(s-j)(j+1)^{k-1}\right|<c j^{k-1} n^{\delta}<c_{1}\left(n j^{k-1}\right)^{1-\varepsilon}
$$

for some $\varepsilon>0$, so that if there is an infinite number of solutions we must have $n j^{k-1}=(s-j)(j+1)^{k-1}$ infinitely often. For large k, this implies $j=1$ and $n=(s-1) \cdot 2^{k-1}$. For $s=2$ this does indeed give an infinite family of solutions, but for $s>2$ we see that for $n=(s-1) \cdot 2^{k-1}$

$$
\begin{aligned}
& \binom{n}{s-1}-\binom{n}{s-2} 2^{k-1}=O\left(2^{(s-2) k}\right) \\
& \binom{n}{s-j} j^{k-1}=O\left(2^{(s-j) k} j^{k}\right)
\end{aligned}
$$

so that the third term in (1) dominates the sum of the first two terms
as well as all the subsequent terms and the equation cannot hold for large k.

Using a method of Davenport and Roth [1] we could obtain an upper bound on the number of n for which $F_{s}(n)>1$, but this bound would probably be far from best possible.
5. Special cases. As in [5] we put $S_{k}=\sum_{i=1}^{n} x_{i}^{k}$ and $\Sigma_{k}=$ $\Sigma\left(x_{i_{1}}+\cdots+x_{i_{s}}\right)^{k}$, the summation being extended over all indices i_{1}, \cdots, i_{s} with $1 \leqq i_{1}<i_{2}<\cdots<i_{s} \leqq n$. Then each Σ_{k} can be expressed as a polynomial in S_{1}, \cdots, S_{k}. Since all sets X of an equivalence class give rise to the same Σ_{k} 's, and since the elements of X are uniquely determined by S_{1}, \cdots, S_{n}, we can obtain an upper bound for $F_{s}(n)$ by estimating the number of different n-tuples (S_{1}, \cdots, S_{n}) corresponding to a given set of Σ 's. Since $\Sigma_{1}=\binom{n-1}{s-1} S_{1}$ we see that all members of an equivalence class have the same S_{1}. We can assume without loss of generality that $S_{1}=0$.

The case $s=2, n=8$.
In this case there are $28 \Sigma^{\prime}$'s, and the first 12 of them are given by the following expressions (for $S_{1}=0$)
(1) $\quad \Sigma_{1}=0$
(2) $\quad \Sigma_{2}=6 S_{2}$
(3) $\quad \Sigma_{3}=4 S_{3}$
(4) $\quad \Sigma_{4}=3 S_{2}^{2}$
(5) $\quad \Sigma_{5}=-8 S_{5}+10 S_{2} S_{3}$
(6) $\quad \Sigma_{6}=-24 S_{6}+15_{2} S_{4}+10 S_{3}^{2}$
(7) $\quad \Sigma_{7}=-56 S_{7}+21 S_{2} S_{5}+35 S_{3} S_{4}$
(8) $\quad \Sigma_{8}=-120 S_{8}+28 S_{2} S_{6}+56 S_{3} S_{5}+35 S_{4}^{2}$
(9) $\quad \Sigma_{9}=-248 S_{9}+36 S_{2} S_{7}+84 S_{3} S_{6}+126 S_{4} S_{5}$
(10) $\quad \Sigma_{10}=-504 S_{10}+45 S_{2} S_{8}+120 S_{3} S_{7}+210 S_{4} S_{6}+126 S_{5}^{2}$
(11) $\quad \Sigma_{11}=-1016 S_{11}+55 S_{2} S_{9}+165 S_{3} S_{8}+330 S_{4} S_{7}+462 S_{5} S_{6}$
(12) $\quad \Sigma_{12}=-2040 S_{12}+66 S_{2} S_{10}+220 S_{3} S_{9}+495 S_{4} S_{8}+792 S_{5} S_{7}+462 S_{6}^{2}$.

Equations (2), (3), and (5) show that S_{2}, S_{3}, and S_{5} are uniquely determined by the Σ 's. Furthermore (6), (7), and (8) imply that S_{6}, S_{7}, and S_{8} are uniquely determined by the Σ 's once S_{4} is known. So to prove $F_{2}(8) \leqq 3$, it is sufficient to show that corresponding to a given set of Σ 's, there can be at most 3 values of S_{4}. Now S_{9}, S_{10}, S_{11}, and S_{12} can be expressed in terms of S_{1}, \cdots, S_{8} using the theory of symmetric functions. Since these in turn can be expressed in terms of S_{4} and the Σ 's, equations (9), (10), (11), and (12) give us four equations involving S_{4} and the Σ 's. Now (9) is linear in S_{4}, (10) and (11) are quadratic in S_{4}, while
(12) is cubic in S_{4}. We shall show that the coefficient of S_{4}^{3} in (12) is not zero, which implies that S_{4} can have at most 3 values. Then, in order that it actually can have 3 values, we must have the coefficients of S_{4} in (9), (10), (11) and the coefficients of S_{4}^{2} in (10), (11) equal to 0 . This gives considerable information on the structure of the 3 -member equivalence classes.

First we compute the coefficient of S_{4}^{2} in equation (11). It arises only from the terms $-1016 S_{11}, 165 S_{3} S_{8}$ and $330 S_{4} S_{7}$. The last term contributes $330\left((35 / 56) S_{3}\right) S_{4}^{2}=(825 / 4) S_{3} S_{4}^{2}$, making use of (7). To compute the contribution of $-1016 S_{11}$ we use the relation from the theory of symmetric functions

$$
0=\frac{1}{11} S_{11}-\frac{1}{18} S_{2} S_{9}-\frac{1}{24} S_{3} S_{8}+\frac{1}{96} S_{3} S_{4}^{2}-\frac{1}{28} S_{4} S_{7}+\cdots
$$

This, combined with equations (7) and (8) gives

$$
\begin{aligned}
S_{11} & =\frac{11}{24} S_{3}\left(\frac{35}{120} S_{4}^{2}\right)+\frac{11}{28}\left(\frac{35}{56} S_{3} S_{4}\right) S_{4}-\frac{11}{96} S_{3} S_{4}^{2}+\cdots \\
& =\frac{979}{96.35} S_{3} S_{4}^{2}+\cdots
\end{aligned}
$$

From (8), the term $165 S_{3} S_{8}$ contributes $165 \cdot(35 / 120) S_{3} S_{4}^{2}$. Hence the coefficient of S_{4}^{2} in equation (11) is

$$
\left(-1016 \cdot \frac{979}{96.35}+\frac{825}{4}+\frac{165.35}{120}\right) S_{3}
$$

where the number in parentheses is $\neq 0$. Thus in order for an equivalence class to contain 3 members, we must have $S_{3}=0$. Next consider the coefficient of S_{4} in equation (9) (supposing from now on that $S_{3}=0$). It arises from the terms $-248 S_{9}$ and $126 S_{4} S_{5}$. But

$$
0=\frac{1}{9} S_{9}-\frac{1}{20} S_{5} S_{4}+\cdots
$$

from which $S_{9}=(9 / 20) S_{5} S_{4}+\cdots$. So the coefficient of S_{4} is

$$
-248\left(\frac{9}{20} S_{5}\right)+126 S_{5}=\frac{72}{5} S_{5}
$$

Hence in order to have more than one member in such an equivalence class we must have $S_{5}=0$. Next consider the coefficient of S_{4} in equation (11) (supposing $S_{3}=S_{5}=0$). It arises from $-1016 S_{11}$ and from $330 S_{4} S_{7}$. Since $0=(1 / 11) S_{11}-(1 / 28) S_{4} S_{7}+\cdots$ the coefficient is

$$
-1016\left(\frac{11}{28}\right) S_{7}+330 S_{7}=\frac{-584}{7} S_{7}
$$

Hence we must have $S_{7}=0$ in order to have 3 sets in the same equivalence class. Finally the coefficient of S_{4}^{3} in equations (12) arises from $-2040 S_{12}$ and from $495 S_{4} S_{8}$. Using the relation

$$
0=\frac{1}{12} S_{12}-\frac{1}{32} S_{4} S_{8}+\frac{1}{6 \cdot 64} S_{4}^{3}-\cdots
$$

and (8), we obtain a coefficient of

$$
(-2040)\left(\frac{12}{32}\right)\left(\frac{35}{120}\right)-2040\left(\frac{-12}{6 \cdot 64}\right)+495\left(\frac{35}{120}\right) \neq 0
$$

which completes the proof that $F_{2}(8) \leqq 3$. Moreover we see from the proof that if X, Y, Z form a 3 -member equivalence class (with $S_{1}=0$), then X, Y, Z all have $S_{k}=0$ for k odd, and hence each consists of 4 members and their negatives. In addition, there can be only one such equivalence class having a given value for Σ_{6} and 3 given values for S_{4}. For the three given values of S_{4} determine the coefficients of the cubic equation (12), and hence determine Σ_{2}, Σ_{8}, and Σ_{13}. But then all other Σ 's are determined from these. Now if a, b, c, d are any 4 numbers, then the sets $X=X_{1} \cup-X_{1}, \quad Y=Y_{1} \cup-Y_{1}$, and $Z=Z_{1} \cup-Z_{1}$, where $X_{1}=\{a, b, c, d\}, \quad Y_{1}=\left\{\frac{1}{2}(-a+b+c+d), \frac{1}{2}(a-b+c+d), \frac{1}{2}(a+b-c+d)\right.$, $\left.\frac{1}{2}(a+b+c-d)\right\}$, and $Z_{1}=\left\{\frac{1}{2}(a+b+c+d), \frac{1}{2}(a+b-c-d), \frac{1}{2}(a-b+c-d)\right.$, $\left.\frac{1}{2}(a-b-c+d)\right\}$ are all equivalent. Furthermore if any 4 (complex) numbers $\Sigma_{6}, S_{4}^{\prime}, S_{4}^{\prime \prime}, S_{4}^{\prime \prime \prime}$ are given, it is possible to choose a, b, c, d so that $\Sigma_{6}(X)=\Sigma_{6}(Y)=\Sigma_{6}(Z)=\Sigma_{6}, S_{4}(X) S_{4}^{\prime}, S_{4}(Y)=S_{4}^{\prime \prime}, S_{4}(Z)=S_{4}^{\prime \prime \prime}$. Indeed, it is easy to see that the prescribed conditions merely determine the symmetric functions of a, b, c, d, and of course one can always find complex a, b, c, d for which these have preassigned values. It follows that the sets X, Y, Z give a parametric representation of all 3 -member equivalence classes (with $S_{1}=0$).

Other values of $F_{s}(n)$. A similar treatment can be given for the other values of $F_{s}(n)$ mentioned in the introduction. We will omit the details and merely sketch the general method in these cases. If $s=2$, $n=4$, the first S_{k} not uniquely determined by the Σ 's is S_{3}, and all other S_{k} are determined by S_{3} and the Σ 's. The equation for Σ_{6} then becomes a quadratic equation in S_{3} and the coefficient of S_{s}^{2} in this equation is not 0 . Hence, corresponding to a given set of Σ 's there can be at most 2 values of S_{3}, and accordingly at most 2 sets X and Y. Thus $F_{2}(4) \leqq 2$. An argument similar to that given above shows that $F_{2}(4)=$ 2 and that all 2 -member equivalence classes are given by $X=\{a, b, c, d\}$, $\left.Y=\frac{1}{2}(-a+b+c+d), \frac{1}{2}(a-b+c+d), \frac{1}{2}(a+b-c+d), \frac{1}{2}(a+b+c-d)\right\}$. In the case $s=2, n=16$, we find that S_{5} is the first S_{k} not uniquely determined by the Σ 's, and that all other S_{k} are uniquely determined by S_{5} and the Σ 's. The equation for Σ_{17} gives a cubic equation for S_{5},
the coefficient of S_{5} being a nonzero multiple of S_{2}. By § 2 we can assume that the sets X are real, and hence $S_{2}>0$. This proves $F_{2}(16) \leqq$ 3. On the other hand $F_{2}(16) \geqq 2$ as was shown in [4]. We do not know at present whether $F_{\varepsilon}(16)=2$ or 3 . This type of reasoning can probably be made to yield the estimate $F_{2}\left(2^{k}\right) \leqq \alpha$, where α is the least integer such that $(k+1) \alpha>2^{k}$; however, this seems to be far from the best possible result.

For $s=4, n=12$ the first S_{k} not uniquely determined by the Σ 's is S_{6}, and all other S_{k} are uniquely determined once S_{6} is known. The equation for Σ_{14} gives a quadratic equation for S_{6}, the coefficient of S_{6}^{2} being a nonzero multiple of S_{2}. Hence $F_{4}(12) \leqq 2$. We do not know whether $F_{4}(12)=1$ or 2 .

Finally, if $s=3, n=6$, then the equations for the Σ 's in terms of the S 's show that S_{2} and S_{4} are uniquely determined by the Σ 's, while S_{6} is determined by the Σ 's and by S_{3}. The equations for Σ_{8} contains a term in $S_{3} S_{5}$ with nonvanishing coefficient. Hence it can be used to write $S_{5}=\left(\alpha S_{3}^{2}+\beta\right) / S_{3}$, where α, β depend on the Σ 's.

Then the expression for Σ_{12} yields a sextic equation for S_{3} and the coefficient of S_{3}^{6} is nonzero. Hence $2 \leqq F_{3}(6) \leqq 6$.
6. Generating functions for the case $s=2$. In this section we use a method suggested by Lambek and Moser [2] to obtain some results on equivalent sets in the case $s=2$.

Suppose $A=\left\{a_{1}, \cdots, a_{n}\right\}$ (where $0=a_{1} \leqq a_{2} \leqq \cdots \leqq a_{n}$) and $B=$ $\left\{b_{1}, \cdots, b_{n}\right\}$ (with $0 \leqq b_{1} \leqq \cdots \leqq b_{n}$) are equivalent sets of nonnegative integers. Construct the generating polynomials $f(x)=\Sigma x^{a_{i}}, g(x)=\Sigma x^{b_{i}}$. Then the generating polynomial for the set of sums is $\frac{1}{2}\left(f^{2}(x)-f\left(x^{2}\right)\right)=$ $\frac{1}{2}\left(g^{2}(x)-g\left(x^{2}\right)\right)$. Hence $f^{2}(x)-g^{2}(x)=f\left(x^{2}\right)-g\left(x^{2}\right)$. Let $F=f+g, G=$ $f-g$; then $F(x) G(x)=G\left(x^{2}\right)$, so that $G(x) \mid G\left(x^{2}\right)$. This is possible only if every zero of G has a square which is itself a zero of G, in other words only if

$$
G(x)=c x^{\alpha} \prod_{i} \varphi_{i}(x)
$$

where the φ_{i} are cyclotomic polynomials. We can write this, in the customary way, as

$$
\begin{equation*}
G(x)=c x^{\alpha} \Pi\left(1-x^{\beta_{i}}\right) / \Pi\left(1-x^{\gamma_{j}}\right) \tag{13}
\end{equation*}
$$

where the β_{i} and γ_{j} are positive integers, and hence

$$
\begin{equation*}
F(x)=\frac{G\left(x^{2}\right)}{G(x)}=x^{\alpha} \Pi\left(1+x^{\beta_{i}}\right) / \Pi\left(1+x^{\gamma_{j}}\right) \tag{14}
\end{equation*}
$$

Since $F(1)=2 n$ is a power of 2 we have here a new and simple proof of the fact that $F_{2}(n)>1$ only when n is a power of 2 .

The problem of finding equivalent sets of integers now reduces to that of determining the β_{i} and γ_{j} (we must clearly set $\alpha=0$) for which the polynomials F and G have nonnegative coefficients. This makes $|c|=$ $|G(0)| \leqq F(0)=1$ in (13) necessary so that $c=1$. We certainly get nonnegative coefficients if there are no denominators (no γ_{j}) which proves $F_{2}\left(2^{k}\right)>1$ and permits a simple construction of equivalent classes of order 2^{k} :

Given $k+1$ numbers $\alpha_{0}, \cdots, \alpha_{k}$ let X be the set of sums of an even number of α 's and Y the set of sums of an odd number of α 's. Clearly $P_{2}(X)=P_{2}(Y)$. These are the sets which were obtained in [5].

However there do exist cases in which the γ_{j} are not absent, for example

$$
G(x)=(1-x)^{4}\left(1-x^{2}\right)^{2}\left(1-x^{3}\right)^{3}\left(1-x^{6}\right)^{3}\left(1-x^{12}\right) /\left(1-x^{4}\right)
$$

This cyclotomic polynomial leads to the following two sets A and B with 2^{11} elements each:

 multiplicity in $B \begin{array}{llllllllllllllllllll}0 & 4 & 2 & 7 & 11 & 22 & 23 & 14 & 34 & 45 & 59 & 22 & 52 & 105 & 78 & 47 & 47 & 122 & 108 & 46\end{array} 40136$ element $\quad 43424140393837363534333231$

The symmetry in the multiplicities is typical since the cyclotomic polynomials are reciprocal. We have no example with non-trivial denominators in (14) which leads to two sets without multiple elements.

A complete characterization of the possible functions F, G seems therefore difficult.

The fact that $F_{2}(8)=3$ in the notation of the introduction and the characterization of the classes containing three equivalent sets can now be understood from this point of view by noting that f need not determine F uniquely. Namely if we write $F=\left(1+x^{\alpha_{1}}\right)\left(1+x^{\alpha_{2}}\right)\left(1+x^{\alpha_{3}}\right)\left(1+x^{\alpha_{4}}\right)$ and $F^{*}=\left(1+x^{\beta_{1}}\right)\left(1+x^{\beta_{2}}\right)\left(1+x^{\beta_{3}}\right)\left(1+x^{\beta_{4}}\right)$ then F and F^{*} give rise to the same f whenever the set of sums of an even number of α 's is the same as the set of sums of an even number of β 's. In other words, whenever $\beta_{i}=\frac{1}{2}\left(\alpha_{1}+\alpha_{2}+\alpha_{3}+\alpha_{4}\right)-\alpha_{i}$ (after suitable reordering). The generating functions $f, g_{1}=F-f$ and $g_{2}=F^{*}-f$ then describe the three equivalent sets given in § 5 .

The question whether $F_{2}(n) \leqq 2$ for $n>8$ reduces to that of whether two different $F(x)$ and $F^{*}(x)$ can give rise to the same f when $F(1)>16$.

References

1. H. Davenport and K. F. Roth, Rational approximations to algebraic numbers, Mathematika, 2 (1955), 160-167.
2. I. Kaplansky, Abelian Groups, Michigan University Press.
3. J. Lambek and L. Moser, On some two way classifications of integers, Can. Math. Bull., 2 (1959), 85-89.
4. D. Ridout, Rational approximations to algebraic numbers, Mathematika, 4 (1957), 125131.
5. L. J. Selfridge and E. G. Straus, On the determination of numbers by their sums of a fixed order, Pacific J. Math., 8 (1958), 847-856.

University of California,
Los Angeles

[^0]: Received March 29, 1961. The work of the third author was supported in part by the National Science Foundation.
 ${ }^{1}$ Throughout this paper we use the word "set" to mean "set with multiplicities" in the sense in which one speaks of the set of zeros of a polynomial.

