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1. Introduction. We consider the Banach space L of (classes of)
bounded measurable complex functions on the unit circle /7,. It has a
subspace H = H* consisting of those functions z which are the boundary
value functions (existing almost everywhere by Fatou’s theorem) of
bounded analytic functions h in the interior S, of I, By the Hahn-
Banach theorem, any bounded linear functional ¢ defined on H> can be
extended over L> with no increase in norm. It is the primary purpose
of this paper to prove that this extension is unique, provided that ¢ is
defined (over H) by an integral with kernel in L'. Without this hy-
pothesis, uniqueness may fail," as we shall see in 10.1.

The simplest case of the theorem occurs when ¢(k) is defined to be
.E(O)(h € H); then, for the unique norm preserving extension ¢, of ¢, ¢.(f)
is the average value of f on /..

If we assume that the extended functional is also defined through
a kernel in L', then the uniqueness follows easily. The key to the proof
(with no such assumption) is contained in lemma 8.1, asserting that any
real nonnegative function f in L™ may be approximated from below in
the L' norm by a nonnegative function f' whose harmonic extension
through S, has a bounded conjugate function. At first sight this might
seem surprising; for f' must in general be discontinuous, and the con-
jugate of a harmonic function whose boundary value function has a
simple discontinuity is unbounded.

The proof, in the case of a nonnegative kernel, follows quickly from
the lemma. For a general Ke L' which is extremal over H, i.e. such

that sup SthH = SIKI df (requiring he H and ||| =<1), an extremal

function h,€ H(i.e. || k|| = 1, ShOKdH = SIKI df) is made use of; with
its help, the proof of uniqueness is reduced to the previous case. If ¢
is defined through an arbitrary kernel Je L', we use a lemma of Rogo-
sinski and Shapiro to replace J by an extremal kernel K.

In the second half of the paper we consider the analogous problem
on a compact bordered Riemann surface S, with border /. In general,
uniqueness of the extension fails; a simple example is given in 10.2.
The extension of the given functional ¢ is unique at least as far as a
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certain subspace of finite codimension o in L=, where p is the first Betti
number of S. If ¢ is defined in H by a real nonnegative kernel K,
then the subspace mentioned is the annihilator G of a space P defined
through considering the periods of conjugates of harmonic functions (see
6.16 and 6.17). The set of all norm preserving extensions through L~
forms a closed convex cell of dimension at most o; in particular, the
extension is unique if o =0. For p > 0, the extension may or may
not be unique, depending on the nature of the kernel K. Some examples.
of this are given in § 10. The principal facts are summarized in Theo-
rem 9.1.

2. Preliminaries. A function f€ L™ has a unique harmonic extension
7 over S, such that the boundary value function of f equals f a.e.
(almost everywhere). If f is continuous, the boundary values are taken
on contlnuously If f=/f,+tf,, where f; and f. are real functions,
then f =47 + ifs; now fe H if and only if f, is a harmonic conjugate:
of fl, then f is the analytic function with boundary values f.
Furthermore, H is the set of all ~€ L~ such that

S h(@)e'do = 0 , n=1,2
L1

It follows that, on considering L= as the conjugate space of L' (setting

f-K —S fKdo for fe L°, Ke L), H is closed in the weak™* topology.
Since the bounded analytic functions in S, form an algebra, passing to.
boundary values shows that H is an algebra.

Denote by || ||, || |l;, the norms in L~ and L' respectively. For
a subspace E of L=, || ¢ ||z denotes the norm of the functional ¢ considered
in E only.

The first (well known) lemma applies to L=(X) for any measure space X..

2.1. LEMMA. Suppose ¢ 1is a bounded linear functional on L=
such that

(2.2) o) =1l¢ll.

Then ¢ is real and nonnegative; that is, #(f) s real if f is real a.e.,.
and ¢(f) =0 tf £=0 a.e. Moreover,

(2.3) ¢(Re f) = Re ¢(f) , fel>.

Proof. The case ¢ = 0 being trivial, we suppose || ¢ || > 0; we may"
normalize so that ¢(1) =||¢| = 1. Take any fe L*. Now

Reg(f) = Reg(f+ A) —A=|[f+All-A



THE EXTENSION OF LINEAR FUNCTIONALS DEFINED ON H« 165

for any real constant A; letting A — o gives

Re ¢(f) = ess sup {Re f(0)} .
Replacing f by —f gives
Re ¢(f) = essinf {Re f(0)} .

Hence if f is purely imaginary, Re ¢(f) = 0, and ¢(f) is purely imagi-
nary; it follows that if f is real then ¢(f) is real. The last inequality
shows that ¢ is nonnegative. Finally, if f = f; + of, then ¢(f) = 4(f) +
16(f), and (2.3) follows.

To state that a function has bounded real part is to state that its
values lie in a vertical strip. We approximate to such functions by
bounded functions by means of the following lemma.

We consider a half closed vertical strip and half the unit disk;

Tv-—:{x:0§Rex<g[}’ Si =f{e:Rez =0, ]2 <1}.

2.4. LEMMA. The map N — tan ) carries T conformally onto Sy .
Moreover,

(2.5) Rearctan (a¢tan ) < Rex ¢f xe T, a real, 0 = a <1.

Proof. The first statement is standard. To prove the second, it is
sufficient to show that Re arctan aB, regarded as a function of the real
variable «, is monotone increasing provided that ReS > 0. Since

¢c=[1+aB8)1+aB)] >0,

we have

B
1+ a*f?
= cRe[B(1 + a*B?)] = cRe|B + a*| B'B] >0,

—a—Re arctan af = Re—g— arctan a8 = Re
oa oa

as required.
3. Approximation from below. We can now prove

3.1. LEMMA. Given the real nonnegative function f in L=, there
exists a sequence {h,} of functions wn H such that

(3.2) for all n,0 < Reh, = f a.e.,
(3.3) Reh,— f in L.

Proof. We may assume f(f) < /4 a.e. The harmonic extension f is
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the real part of an analytic function ¢ in S, where g¢(0) is real. Since
0 < Reg(z) < m/4, g maps S; into T*. Set

(3.4) 9.(2) = arctan [(1 — 1/n) tan g(2)] .

Clearly g, is a bounded analytic function in S,. Let k, be the boundary
value function of g,. By (2.5), Reg,(z) < Reg(z), and (3.2) follows.
Moreover,

| — Reh, ||, = Sr (f — Reh,)do
= 2rn[Reg(0) — Reg,(0)] = 27[g(0) — 9.(0)]

by the mean value theorem for harmonic functions. Since arctan is
continuous in the real interval [0, 1], this tends to 0, and (8.3) is proved.

4. The theorem for nonnegative kernels. The theorem in this case
is:

4.1. THEOREM. Suppose ¢ is a bounded linear functional on L*
such that

) 1611 =116l
and
(*.3) 45 = | FOK @O

Sfor all f in H, where K is a real nonnegative function in L'. Then
(4.3) holds for all fe L~.

Proof. By (4.8), |¢(h)| < ||| -]l K|, h e H; hence (since 1€ H)

Holl=1g¢llx = 1Kl =9¢@) =lloll.

Therefore ¢(1) = || 4|/, and Lemma 2.1 applies.
Suppose fe L= is real and nonnegative. Choose the sequence {&,}
by Lemma 3.1. By Lemma 2.1, ¢(f) = ¢(Re k,) = Re ¢(h,), and hence

|75 = 6 = | 1K — Re[nk = |7 - Ren)EK .
Now Ke L', the functions f — Reh, are uniformly essentially bounded,
and f — Reh, — 0 in L'; it is elementary to show therefore that S( f—

Reh,)K— 0. Thus ¢(f) = S FK for real nonnegative fe L~.
If fe L~ is real, pick a real number « so that a < f(0) a.e. Then
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S = 8(f = @) + ap() = |(f — K + |k = (7K.

Replacing f by —f gives the opposite inequality; hence (4.3) holds for
real f. Since ¢ is linear, (4.8) holds also for complex f.

5. The general theorem for the unit circle. Given any linear func-
tional +» on L~ and any measurable subset Z of I, with characteristic
function y7,, define

(5.1) Vo (f) = “/’(Xzf) .

5.2. LEMMA. Let « be a bounded linear functional on L=, and
let X and Y be complementary measurable subsets of I',. Then

(5.3) il = 1l¥x l + el

Proof. Since ¥ =4y + Yy, [| ¥ || = |l¥x || + || ¥y |l. Conversely, given
¢ > 0, choose g, and g, in L= so that v ,(g9,) and +¥,(g,) are real, || g, =
lg.1l=1, and

Vx(@) Z |vxll —e,  Yu(g) = vy | —e.
Set g = %x9: + %r9.. Then [[g|| =1, and

v(9) = V¥x(g) + V(g = [ Vx| + [V || — 2¢,
giving the opposite inequality.

5.4. THEOREM. Suppose that + is a linear functional on L=, K
1s in L',

(5.5) ol =l = 1K I
and
(5.6) W) =\ fOREW

Sfor all fe H. Then (5.6) holds for all fe L=.

Proof. Since the unit ball B in L= = (L)* is weak* compact (see
for instance [2], p. 37) and H is weak* closed, H N B is weak* compact.
Because of (5.6), ¥ is weak* continuous in H; hence v(H N B) is com-
pact, and there is an h,e H such that

(5.7 holl =1, (k) = l[¥]ly .
The equality, with (5.6) and (5.5), gives
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(5.8) S hy(6)K (6)d0 = S |K(6)|d6,
Iy 1
from which we conclude that
(5.9) h(0)K(0) is real and nonnegative a.e., and
(5.10) for almost all 6, either |h(0)| =1 or K(6) =0.

We remark aside that %, is unique a.e. (unless 4 = 0); for a second
such element %, would agree a.e. with &, wherever K + 0, by (5.9) and
(5.10), hence &, = h, on a set of positive measure, and it is known that
this implies that &, = h, a.e. (see for instance [6], vol. II, p. 203).

Set

(5.11) o(f) =y(hf), feL™.
Since H is a ring,

6(h) = (k) = ShhoK ,  heH.

Also || holl =1, || hof 1l £ I fIl, and hence ||¢|| = ||¥]|]. Now

Noll =llvll=1KlL=¢) =llolla =],
giving || 4]l = [/ ¢|lz. By Theorem 4.1,

P(ef) = 6(f) = thoK for all fe L= .

If h, had a bounded inverse h,, we could use this to give (f) =
Y(hoh f) = g fK; but this need not be the case, as we shall see by an

example in 10.4. B
By (5.10), h,h K = K a.e.; hence replacing f by h,f in the above
equation gives

(5.12) V(holtof) :S fK for all fe L~ .

Let X be the subset of I, where K vanishes, and let Y be the
complementary subset. Then A/, =1 a.e. on Y. In the notation of
Lemma 5.2,

Vo) = ¥t f) = Vo) = |1 f K = (K

for all fe L*, whence, with the aid of (5.5) and (5.3),

Vel = 1K= vl =¥l + ¥ell .
Therefore 4+, = 0, and
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w(f — hoﬁof) = “/’(Xx(f - hoﬁof)) = '\”x(f — hoﬁof) =0

for all fe L. Thus (5.12) gives (5.6) for all fe L=, as claimed.

We wish to give a theorem without the hypothesis on the norm
of the kernel. For this, the given kernel must be replaced by an “ex-
tremal kernel”. This is possible, by the following lemma of Rogosinski
and Shapiro, [4], Theorem 8, p. 303. (A proof will be given in 8.9.)

5.13. LEMMA. Suppose + ts a linear functional defined on H by
W(h) = th (he H), where Je L*. Then there is a function K € L', unique

a.e., such that (k) = ShK (he H) and | K|l = |7 |lx.

Combining the last two results gives

5.14. THEOREM. Suppose v is a bounded linear functional on H
such that

(5.15) w(h) = Sr WO)J()d0 for all he H ,

where Je L'. Then « has a unique norm preserving ertension r, over
L>. Moreover, there is a Ke L', unique a.e., such that

(5.16) Vo(f) :S FOK(©)A0 for all fe L,

I

we have || K|l = || ]ly = lv.ll. If |1 = |4 ]z, then K =J a.e.

6. Bordered Riemann surfaces. We now turn our attention to the
analogous problem for a compact bordered Riemann surface S. The
theorems are similar to those of the preceding sections and the methods
of proof are essentially the same, but we must take account of the fact
that not every harmonic function is the real part of an analytic function.
In this section we recall some of the facts about harmonic and analytic
functions on S.

6.1. A bordered Riemann surface S is a connected surface carrying
an oriented conformal structure which is everywhere locally isomorphic
to a relatively open subset of the closed upper half plane, these isomor-
phisms being given by the local coordinate functions (see for instance
[3]). Let S denote the interior of S, and I", the border; S is a Riemann
surface in the ordinary sense. We assume always that S is compact
and I” is not empty; then I" is a real analytic manifold with a natural
orientation, consisting of a finite number of disjoint Jordan curves.
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6.2. For any real continuous function f on I” there is a unique
harmonic function 7 in S which extends f continuously over S (see also
6.7). For each point p € S there is a real and everywhere positive analytic
differential w, on I" such that, for all f as above,

(6.3) io = fo,.

Choose p, € S; this point will be fixed throughout the paper. The dif-
ferential w, defines a measure £ on I (called the harmonic measure
for p,). Expressing @, in terms of ®,, (6.3) becomes

6.4) @) = r@ktp, duta) .

For each pe S, k(p, q) is an everywhere positive real analytic function
on I'. Furthermore, & is continuous in S x I', and for each fixed g, is
harmonic in S.

6.5. Measure theoretic statements will always refer to the measure
¢. We form as usual the spaces L' and L~ of integrable and of bounded
complex valued measurable functions respectively, and use || ||, and || ||
for the corresponding norms. Let L}, and Lj; denote the spaces of
real functions in L' and L~ respectively. To reduce the notation we
shall not distinguish between measurable functions and their equivalence
classes modulo null sets. With the pointwise operations of addition and
multiplication, the Banach space L= becomes a Banach algebra.

As in §2, L~ is the conjugate space of L', under the definition
fK= g fKdp. Again, the closed unit ball B in L~ is weak* compact,
as is BReF: BN Lg in Lg,. Since L' is separable, the weak* topology
of B is metrizable ([1], p. 426), so that questions of convergence in B
can be handled with sequences and the Bolzano-Weierstrass theorem ap-
plies.

6.6. The space L', defined through the choice of p,, is not intrinsi-
cally related to S. This defect may be remedied as follows. Let C be
the space of continuous functions on /. An analytic differential ® on
I" determines a linear functional ¢, on C by the formula

sf) =\ fo.

The norm is given by || ¢.|| = Spla)l. Let M be the closure, in the
conjugate C* of C, of the set of all ¢, Clearly, M is intrinsically
related to S. It is easy to identify L' with M, since any differential
form on I" may be written as a multiple of ®,, (see 6.2). The choice of
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p, enables us to interpret elements of M as functions on I"; this is
valuable because of the corresponding identification of M* with L> and
because the analytic properties of & may be used. Since the null sets
on I" do not depend on the choice of p, the space L= is intrinsic a
priori; it is easy to check that its identification with M* is independent
of the choice of p,.

6.7 For each complex function fe L», its harmonic extension f
through S may be defined by (6.4); it is bounded by || f||, and has the
boundary value functions f a.e. on I".

6.8. LEMMA. Let f and the sequence {f,} be im L>. If f,—>f
weak™, then f, — f pointwise. If the f, are uniformly bounded and
fo— f pointwise, then f, — f weak™.

The first statement follows from (6.4). Conversely, suppose the 7
are uniformly bounded, fn—> f in S, but f, » f weak* is false. Since
AB in the weak™ topology is metrizable and compact for any real \, we
may find a subsequence {f,,} conveArging weak* to g, where || f — gl >
0. Then f,,— g in S, hence § = f in S, and hence g = f a.e. on I', a
contradiction.

6.9. As in the case of the unit circle, H is the space of boundary
values of bounded analytic functions in S. Again, for any fe L=, fe H
if and only if f is analytic in S, or (setting f = f, + of, with f, and f,
real) fg is a conjugate of fl. As before, H is a subalgebra of L~.

6.10. LEMMA. H s weak™ closed in L*.

Proof. By [2], p. 89, it is sufficient to show that H N B is weak*
closed. As noted in 6.5, convergence in B is sequential. Suppose that
{h,} is a sequence in H N B which converges to fe L~ weak*. By
Lemma 6.8, i,—f in S. Since the %, are uniformly bounded, f is
analytic, by a general convergence theorem; hence fe H, as required.

6.11. Let fe L. We form the harmonic extension f, its differential
df, and the conjugate harmonic differential (df)*. Suppose f had a con-
jugate function f *, Then if v is a Jordan arc from p, to p, in S, with
normal vector n, we would have

7o) — 7o) = | 2L Pas — | 270 g,
v 08 on

v

substituting in (6.4) and changing the order of integration gives
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6.12) Frw) = 7w = | F@2@dutq) i F* exists,
where
©.13) o) = | 2D,

the integral being defined with the help of the local conformal structure
of S.

6.14. In the general case, f* exists if and only if S fOdp =0
r

for each closed curve 8 in S, or equivalently, for each closed curve of

a homology basis. Let &, ---, 35, be such a basis. Here p is the first
Betti mumber of S or S, and

o=1—y=29+m—1,

where y is the Euler characteristic of S, ¢ is its genus, and m is the
number ofA components of I,
Now f* exists if and only if the periods

(6.15) |, @) = roa@ine,  a@ =00,

all vanish. The «a; are real analytic on I" and are therefore in L'.

6.16. Let P and P, be the complex and real spaces respectively
spanned by the a;; then P,, = P N L}, .

Let ¢, +++, ¢, be given real numbers. There exists an analytic dif-
ferential @ on S which can be extended analytically over the double of
S and which has the periods dc, «-+, ¢, (see [3], p. 172). Since the
periods of Re @ vanish there is a harmonic function f in S with d f =
Re w; now f is bounded in S, and (d f)* = Im @ has the periods ¢, «--,
¢, It follows from (6.15) that a,, ---, @, are linearly independent over

the reals. Therefore P, has real dimension p, and P has complex
dimension p.

6.17. Considering Pc L', let G ¢ L~ be its annihilator space.
Then G is weak* closed and has codimension p in L*. Hence every
linear functional on L~ which vanishes on G has the form f— | fa for
some a€ P. Moreover Gz, = G N L;, is the annihilator of P, Fin Lz,
and G = Gg, + 1Gs. The definitions of P and G show that for any

felL~, 7 has a harmonic conjugate (not necessarily bounded) if and
only if feG. It follows that H < G.
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7. The theorem with an extremal kernel. Given the linear function-
al ¢ on H, defined by means of an extremal kernel K, we show here
that any norm preserving extension over L= is given by means of a
modified kernel, and we study the set of norm preserving extensions.

As before, the proof is based on an approximation lemma. Recall the
definition of G, in 6.17.

7.1. LEMMA. Given the nonnegative function f<€ Gp,, there exists
a sequence {h,} of functions in H such that 0 < Reh, < f a.e. in I" and
Reh, — f in L.

Proof. As in §3, assume f(q) < w/4 a.e. in ['. Since feGg, we

may find ¢, g, and &, as before. Then 0 < Reh, < f, and that Reh, —
f in L' follows from

1f = Reh,l=| (5 = Reh)dp = Reg(p) — Reg,(p)~ 0 .

7.2. THEOREM. Suppose ¢ 1s a linear functional on L= such that
Noll=1¢llz and

(1.3) o(f) = | rKap
for all fe H, where Ke L' is real and mnonnegative. Then (7.3) holds

for all feG. Moreover, there exists a function &€ Py, such that K +
« 18 nonnegative and

(7.4) 5(f) = Spf(K + aydy for all fe L= .

Proof. The first statement follows as in the proof of Theorem 4.1,
with Lemma 7.1 replacing Lemma 3.1.
To derive the second statement, set

W) = o)~ | Ky, felr;
then (¢9) = 0 for all g€ G, and (see 6.17) there is an a € P such that
wf) =\ fadp  rer-.

These two relations give (7.4). Since ¢(1) = || ¢ || (compare § 4), ¢ is real
and nonnegative (Lemma 2.1); hence K + « is real and nonnegative.

7.5. THEOREM. Let ¢ be a linear functional defined on H by (7.8),
where Ke L' 1s real and nonnegative. Then the set of norm preserving
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extensions of ¢ over L= is im one to one correspondence with the set W
of functions ae Py, such that K + a is nonnegative. The set W 1is a
compact convex cell of real dimension at most p, the first Betti number

of S.

Proof. By the last theorem, every norm preserving extension cor-
responds to some « € W; clearly this correspondence is one to one. It

is onto W. For suppose ae€ W. Then if ¢,(f) = S f(K +a)dy, ¢, = ¢
r
over H, since HC G. Since 1€G,

1K + all= & + wap = (Kap = 1 K,
therefore || 4. = || ¢, and ¢, is a norm preserving extension of ¢ corres-
ponding to a.

Clearly W is a closed convex subset of P, and hence is of dimen-
sion < p. Since ||K + a||, = || K|, W is bounded and hence compact.

7.6. THEOREM. Suppose that + is a linear functional defined on
H by

.7 vy = | nkap,

where Ke L' and || K|, = ||v||z. Then there is a function h,c H such
that every norm preserving extension ., of v over L= has the form

(1.8) b f) = SF F(K + ah)dy, where K + ahye Lt

for some ac Py, (See also (7.14), (71.15) and (7.12).)

Proof. We follow the proof of Theorem 5.4 (using 6.5 and 6.10),
finding the extremal function k, for 4 such that

@9 lhl=1, k) =l¥ll.,  (hKdp=[Kldp.

Again we conclude that for almost all ge I,

(7.10) h(@)K(g) = 0 and either |h(q)| =1 or K(q) =0.
Given +,, set

#(f) =Vl f), feL™.
Then
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$(h) = (o) = | BhKap, heH,
since hhe H. Also, as in §5, ||¢|l =|lv|lg =|l6lla. Therefore for
some « € Py,
(7.11) Vilnf) = 9(5) = | F0K + aydpe, fer~,

by Theorem 7.2, and
(7-12) hoK+ az=0 a.e., HhoK +a'|[1 = H¢ ” = H"‘/’”H .

Since h, = 0, h, = 0 at most in a set a measure 0 (see [6], vol. II,
p. 203); hence there is a measurable function g on I such that gh, =1
a.e. on I'. Set

E,={qel:]9(q)| = n},

let y, be the characteristic function of E,, and set +.(f) = ¥v.(/ ).
By Lemma 5.2, which extends to the present case,

(7.13) o lle = Yl = Iyl + [[9e — vrall -
Since g fy.€ L>, (7.11) gives

VolF) = drghaf 1) = | 957 hK + )
= |, 7K + agyge, feL~.
Hence
|, 1K +aglde =yl < vl
and letting n — o« gives

K +agell, K+ agll = |[v.ll .
Therefore, with the help of (7.9) and (7.11),

el = 1l = 00) = | (K + adp

= SF]ZO(K‘f—O.’g)d/l é SI‘|K+ ag]d/'[ é u“f’fe” ’

and
lim ||, | =grlK+ag|d#=lI«/fe|l-

Now (7.13) gives lim ||+, — 4, || = 0; consequently
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Vlf) = lim(f) = | FK + agyp, feLs.

From the equalities |[%,|| =1 and ShD(K + ag)dy = S(K +oag|dp

we conclude that for almost all qeI”, either |h(q)| =1 or K(q) +
a(q)g(q) = 0. Comparing this with (7.10) shows that

(7.14) a.e. in I, either |h(9)| =1 or K(q) = a(q) =0 .

Since gh, =1 a.e., we have ag = ah, a.e., and the theorem is proved.
Note that Khs, = K a.e., by (7.10); hence (7.8) may be written in
the form

(7.15) Vol f) = Sr FhhoK + a)dy for all fe L= .

8. Existence of extremal kernels. In order to obtain a result ana-
logous to Theorem 5.14 for bordered Riemann surfaces we must extend
the lemma of Rogosinski and Shapiro 5.13 to the more general setting.
Our first object is to prove that, if A is the space of complex valued,
real-analytic functions on /7, then H N A is weak™ dense in H. Note
that H N A is the space of restrictions to I” of functions holomorphic
on S.

8.1. LEMMA. Let E be any real or complex Banach space and let
B be the closed unit ball in its conjugate space E*. Suppose G is a
weak™ closed linear subspace of E* of finite codimension. Suppose
0< A1 and that A is a linear subspace of E* such that A N B is
weak* dense in X\B. Then A N G N B is weak* dense in G N \B.

Proof. Since G is weak™ closed, G is the annihilator of a certain
closed linear manifold P C E. Since G has finite codimension in E*,
say m, P has dimension m. Elements of A are linear functionals on P
by restriction, and indeed a total set of linear functionals, for if not
there would be a pe P such that p + 0 and a(p) =0 for all ac A and
A N B would not be weak* dense in AB. Hence we can find an m-
dimensional linear subspace F < A which is total on P. Then F'is a
linear complement of G in E*.

Now let g, be any element of G N AB. We must show that g, is
the weak* limit of some directed system in A N G N B. By hypothesis
there is a directed system {a,} in A N B such that a,— g, weak®.
Write a, = f, + 9, where f,€F,g9,€G. Then g,€ AN G. For any
pe P, a,(p)— gp) = 0; hence f,(p) —> 0. Since F is finite dimensional
and the elements of P determine a total set of linear functionals on F,
this implies that f, — 0 in the norm. Hence g, — g, weak*. Now put
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Eo =1 + [ ful)'. Then &, — 150 .9, — 9, weak™. Moreover, || £.9. | =
Eallas — foll S E(l + [ ful) =1, so £.9.€ AN G N B. This completes
the proof.

For the next lemma, let A be the space defined at the beginning of
§8, and set A, = AN L3,.

8.2. LEMMA. Let ge Gy, (defined in 6.17). Then there exists a
sequence {h,} in H N A such that

(8.3) | Reh, || =lgll,
(8.4) Reh,— g weak* in L= .

Proof. L%, is the real conjugate space of Lk, and Gg, is the annihi-
lator of the finite dimensional subspace P, of L%. It is well known
that Az, N Bg is weak® dense in B, where B, is the unit ball of Lg,.
By Lemma 8.1, A;, N Gg. N By, is weak* dense in Gz, N Bg,.

To prove the lemma we may clearly suppose that ||g||=1. As
noted in 6.5, the weak* topology of B, is metrizable, so there is a
sequence {fu}in Ap, N Gy, N By, such that Ju—m 9 weak*. Since f, € Gg,,
fn has a conjugate function, and fn = Reh where h is a holomorphic
function on S. On the other hand, since f, has real analytic boundary
values, &, is analytic on S. Thus h,e HN A and Reh, = f,. Now (8.4)
has already been established and (8.3) follows because f, € B, so that
Ifll=1=]gll.

We can immediately deduce the following fact which may be useful
in other connections.

8.5. THEOREM. Let H={h:hec H}. Then H + H is weak* dense
m G.

Proof. Let M be the weak* closure of H + H. Since Hc G and
H c G while G is weak™* closed, M c G. On the other hand, by the last
lemma, every gec G, is the weak* limit of a sequence {1/2(h, + h,)} in
H+ H, so ge M. Thus M > G,,. By linearity M > G, + 1Gr, = G.

8.6. LEMMA. HN A is weak™ dense im H. Indeed, HN AN B
18 sequentially weak* dense in H N B.

Proof. Given he HN B we must find a sequence in HN AN B
which converges weak* to h. If h is constant, this is trivial, so we
suppose not. Then arctan i maps S holomorphically into the open strip
T={\:—7r/l4 < Rex < m/4}. Now Re arctan h has a boundary value
function g € G,,; by Lemma 8.2 we can choose a sequence {&,}in HN A
so that
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7) {H Reh,|| < n/4, Reh, — g weak* ,

Im ﬁn(po) = I'm arctan ﬁ(po).

Since h,c HN A and tan is holomorphic in 7, tan h,e HN A N B.
Given pe S, let v be an arc from p, to p; now (6.12) and (8.7) give

Imii(p) — Inh(p) = | Reh,0.dp
- | 901 = 3@ — "0 ;

using (8.7) again gives Im ﬁn(p) — Im arctan ﬁ(p). Also, by Lemma 6.8,
Re ﬁn(p) — Rearctan ﬁ(p); thus ﬁn(p) — arctan ﬁ(p). Therefore tan ﬁn(p) —
ﬁ(p) in S, and by Lemma 6.8, tan h, — h weak™, completing the proof.

We shall need the following extension of a theorem of F. and M.
Riesz.

8.8. LEMMA. Let C be the space of continuous complex-valued
functions on I'. A Borel measure on I" which is orthogonal to HN C
18 absolutely continuous with respect to any harmonic measure.

For a proof see Wermer [5] Lemma 3. Because of the context in
which he is working, Wermer’s statement includes the hypothesis that
I consists of a single Jordan are, but this hypothesis is not used in the
proof.

We are finally in a position to extend the lemma of Rogosinski and
Shapiro.

8.9. LEMMA. Suppose + is a linear functional defined on H by
w(h) = S hJdp for all he H,
r

where Je L'. Then there exists a function K in L' such that || K|, =
[y llz and

(8.10) (k) = Sthd'“ for all he H .

Proof. Following [4], we consider v+ on H N C and take a norm
preserving extension over C. The extension can be represented by a

Borel measure v. Now || V|| = ||V |lane and (k) = Shdv for he HN C.

Hence Sh(dv — Jdp) =0 for he HN C. By Lemma 8.8, we may write

dy — Jdp = Mdyp where Me L'. Put K =J + Me L' and we have dv =
Kdp and |[v|| = || K|l
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The linear functional i — gh(K — J)dp¢ vanishes for he HNC.

Since HN A c HN C is weak* dense in H (Lemma 8.6), \h(K — J)dp =0

for all ke H, giving 8.10. Moreover, || v ||z = || K|, = [[v|| = [|¥ |lgne =
|4 ||lg. This gives || K|, = ||¥ ||z and completes the proof.

9. The final theorem. Combining Lemma 8.9 with the theorems
of §7 gives

9.1. THEOREM. Let S be a compact bordered Riemann surface
with non-empty boundary I" and first Betti mumber p. Let H be the
space of boundary value functions of bounded analytic functions defined
on S. Suppose v is a bounded linear functional defined on H by

9.2) V) = | M@ @)dx() for all he H,

where p 1is the harmonic measure on I associated with some point
D€ R, and J s wn L' (). Then every morm preserving extension o,
of + over L~ has the form

9-3) () = | F@K@duta) for all fe L=,

where Ke L'(p). The set of all such extensions forms a compact convex
cell of dimension at most p; the extension is unique if P = 0.

The first part of the theorem follows directly from Lemma 8.9 and
Theorem 7.6.

By 7.6 again, the set of norm preserving extensions corresponds to
the set W of those functions @ € P,, such that insertion in (7.8) or in
(7.15) gives such an extension. As in the proof of Theorem 7.5, W is
a compact subset of P,; this space has dimension p.

To prove convexity, suppose

a,o,e W, 0<t<1, o, =1 — ta, + ta, ;

et ¢; be determined by (7.15), using «;. That 4, is an extension of
follows at once. Moreover, by (7.12), A,K + a; = 0 a.e. (¢ = 1, 2); hence
MK + a, = 0 a.e., and (7.15) and (7.14) give

sl = | 1R + ) dpe = | (hoK + a)dpe 5

the similar formulas hold for |[v | and [[v,]|. Since |[v,] = ||yl =
[|¥|lz, we have [|vs]| = |4 ||z, which completes the proof.
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10. Examples. We give here some particular cases where non-
uniqueness or uniqueness holds, and an example concerning the proof of
Theorem 5.4.

10.1. We give first the example promised in the introduction.

Suppose 4 is a nonzero bounded linear functional on L~ which va-
nishes on H and takes real values on L. By the Hahn decomposition
theorem ++ may be represented as the difference " — 4~ of two non-
negative linear functionals; here, 4+ is defined for nonnegative f by

YvH(f) =sup{y(9):0 =g = f},

and is extended over the rest of L~ by linearity. Since * and «~ are
real and nonnegative, ||v" || = *(1) and ||~ || = 4~ (1); since 1€ H,

Htlle =111, e =1lv .

Furthermore, 4" = 4~ over H, since 4 vanishes in H; thus "' and
are distinct norm preserving extensions over L* of the same linear
functional over H.

To complete the example we must construct ¥ with the given pro-
perties. Let v be an arc of the unit circle, and let v’ be its complement.
Let f, equal 1 on v and equal —1 on v'. Let Re H be the set of real
parts of functions in H; we shall show that f; is at a distance 1 from
Re H. If this were not so, we could find fe Re H with ||f — f,|| =1 —
g, €>0. Now f=¢convand f< — e on V'; the expression, in terms
of f, of the conjugate f * of the harmonic extension f of f over the
unit disk shows that f* is unbounded near the ends of v, so f ¢ Re H,
a contradiction. By the Hahn-Banach extension theorem there is a
bounded real linear functional on L% which vanishes on Re H but not
at f,. This extends by complex linearity over L= to give the required
functional .

10.2. To illustrate the theorem for Riemann surfaces, let S be the
annulus {z:a¢ < [z| = b}, where 0 <a <b. Here I consists of two
oppositely oriented circles, and the first Betti number o of Sis 1. A
function fe L, is in Gi if and only if Sr Jd0 = 0; using Lebesgue
measure ¢ on [, this shows that P is spanned by the single function «
on /I, defined by
1/b if |z] =0,

—1/a if |z]| = a .

az) =

Let K, be the constant function 1, defining the linear functional ¢
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on H. Then for any real ¢,
K((z)=Kyz) +tazy=20on I'if -b=t=Za,

but this fails for other values of ¢t. By Theorem 7.5, the set of norm
preserving extensions of ¢ corresponds to this set of values of ¢, and
is thus one dimensional.

On the other hand, if for instance K,(z) = | Rez| on /", then K, is
nonnegative but. K, 4+ ta takes on negative values if t is real and =+ 0;
by Theorem 7.5, the linear functional on H determined by K, has a
unique norm preserving extension over L=.

10.3. More generally, let S be any compact bordered Riemann
surface with first Betti number p > 0. Suppose ¢ is the linear functional
defined on H by a real kernel K, such that K, =a >0 on I". Then
for all @ in P, such that ||a]|| < a, K, + a« is nonnegative, so that
(Theorem 7.5) the set of extensions has real dimension p.

On the other hand, we shall show that (with measure ¢ as in 6.2)
there is an ¢ > 0 such that if @ is a measurable subset of I” with (@) < ¢
and K is the characteristic function of @, then the linear functional
over H defined by K has a unique norm preserving extension over L>.

To this end, note that every nonzero « in P, is continuous and

takes on both positive and negative values (since 1€ H and hence
gl cadp = 0). Let ay, -+, a, be a basis for P, and let D denote the
set of n-tuples v = (v,, +++, v,) with v} =1. For each ve D, set

U,={qgel:Jvalqy <0, p,=wmU,).

Clearly the function g, on D is lower semicontinuous; since D is com-
pact, ¢, takes on its lower bound ¢ > 0. Now if Q@ C I', Q) < ¢, then
every « #+ 0 in P takes on negative values outside of @; hence (see
Theorem 7.5) the characteristic function K of @ has the required property.

10.4. We show that there is a kernel on the unit circle /", whose
extremal function has a zero on I, and hence does not have a bounded
inverse; this was promised in the proof of Theorem 5.4. Through con-
formal mapping, we can replace the unit disk by the half disk S* =
{z:Rez =0,|2z| <1}, its boundary I replacing 7',. (We are now in the
setting of Theorem 7.6.)

Define K on I' by

z if [z]=1, Rez >0,

K =
@) 0 if Rez=0, |Imz| <1.

Set hy(2) = z in S*. If + is the linear functional on L~ defined by XK,
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using Lebesgue measure ¢ on I,
V) = | 2Kdp =z = | Kap = KI5

hence h, is the extremal function for K. But 0e 7" and h(0) = 0.
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