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l Introduction* We consider the Banach space L°° of (classes of)
bounded measurable complex functions on the unit circle Γl9 It has a
subspace H = H°° consisting of those functions h which are the boundary-
value functions (existing almost everywhere by Fatou's theorem) of
bounded analytic functions h in the interior Sx of /\. By the Hahn-
Banach theorem, any bounded linear functional φ defined on H°° can be
extended over L°° with no increase in norm. It is the primary purpose
of this paper to prove that this extension is unique, provided that φ is
defined (over H) by an integral with kernel in L1. Without this hy-
pothesis, uniqueness may fail,1 as we shall see in 10.1.

The simplest case of the theorem occurs when φ(h) is defined to be
.h(0)(he if); then, for the unique norm preserving extension φe of φ, φe(f)
is the average value of / on Γx.

If we assume that the extended functional is also defined through
a kernel in L1, then the uniqueness follows easily. The key to the proof
(with no such assumption) is contained in lemma 3.1, asserting that any
real nonnegative function / in L°° may be approximated from below in
the L1 norm by a nonnegative function / ' whose harmonic extension
through Si has a bounded conjugate function. At first sight this might
seem surprising; for / ' must in general be discontinuous, and the con-
jugate of a harmonic function whose boundary value function has a
simple discontinuity is unbounded.

The proof, in the case of a nonnegative kernel, follows quickly from
the lemma. For a general KeL1 which is extremal over H, i.e. such
that sup yiKdθ — \\K\dθ (requiring he H and || h || ^ 1), an extremal

function hoeH(i.e. \\ho\\ — 1, \h0Kdθ = \ \K\dθ) is made use of; with
its help, the proof of uniqueness is reduced to the previous case. If φ
is defined through an arbitrary kernel JeL1, we use a lemma of Rogo-
sinski and Shapiro to replace J by an extremal kernel K.

In the second half of the paper we consider the analogous problem
on a compact bordered Riemann surface S, with border Γ. In general,
uniqueness of the extension fails; a simple example is given in 10.2.
The extension of the given functional φ is unique at least as far as a
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1 An example of this was first given us by R. R. Phelps.

163



164 ANDREW M. GLEASON AND HASSLER WHITNEY

certain subspace of finite codimension p in L°°, where p is the first Betti
number of S. If φ is defined in H by a real nonnegative kernel K,
then the subspace mentioned is the annihilator G of a space P defined
through considering the periods of conjugates of harmonic functions (see
6.16 and 6.17). The set of all norm preserving extensions through L°°
forms a closed convex cell of dimension at most p; in particular, the
extension is unique if p — 0. For p > 0, the extension may or may
not be unique, depending on the nature of the kernel K. Some examples
of this are given in § 10. The principal facts are summarized in Theo-
rem 9.1.

2 Preliminaries. A function feL°° has a unique harmonic extension
/ over S1 such that the boundary value function of / equals / a.e.
(almost everywhere). If / is continuous, the boundary values are taken
on continuously. If / = fτ + if2, where fλ and f2 are real functions,
then / = /i + i/2; now feH if and only if f2 is a harmonic conjugate
of /JI then / is the analytic function with boundary values /.

Furthermore, H is the set of all he L°° such that

L h(θ)eίnθdθ = 0 , n = 1, 2,

It follows that, on considering L°° as the conjugate space of U (setting

f.K=\ fKdθ for feL°°,KeU), H is closed in the weak* topology.

Since the bounded analytic functions in Sx form an algebra, passing to-
boundary values shows that H is an algebra.

Denote by || ||, || ||i, the norms in L°° and L1 respectively. For
a subspace E of L°°, \\φ\\E denotes the norm of the functional ψ considered
in E only.

The first (well known) lemma applies to L°°{X) for any measure space X.

2.1. LEMMA. Suppose φ is a bounded linear functional on ZΛ
such that

(2.2) 0(1) = 11 011 .

Then φ is real and nonnegative) that is, φ(f) is real if f is real a.e,,,
and φ{f) ̂  0 if / :> 0 a.e. Moreover,

(2.3) φ(Ref) = Reφ(f), feL"..

Proof. The case φ = 0 being trivial, we suppose || φ || > 0; we may
normalize so that ^(1) = \\φ\\ = 1. Take any feL°°. Now

Re φ(f) = Reφ(f+A)-A£\\f+A\\-A
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for any real constant A; letting A —> oo gives

Re φ(f) ̂  ess sup {Ref(θ)} .

Eeplacing / by —/ gives

Re Φ(f) ̂  ess inf {Ref(θ)} .

Hence if / is purely imaginary, Re φ(f) = 0, and φ(f) is purely imagi-
nary; it follows that if / is real then φ(f) is real. The last inequality
shows that φ is nonnegative. Finally, if / = fx + if2 then φ(f) — ώ{f^) +
iώ(f2), and (2.3) follows.

To state that a function has bounded real part is to state that its
values lie in a vertical strip. We approximate to such functions by
bounded functions by means of the following lemma.

We consider a half closed vertical strip and half the unit disk;

Γ + = jλ: 0 ^ Re X < — j , St = {z: Re z ^ 0, | z \ < 1} .

2.4. LEMMA. The map X —> tan λ carries T+ conformally onto Sf.
Moreover,

•(2.5) Re arctan (a tan λ) g Re X if X e Tv, a real, O g c r ^ l .

Proof. The first statement is standard. To prove the second, it is
sufficient to show that Re arctan aβ, regarded as a function of the real
variable a, is monotone increasing provided that Re β > 0. Since

c = [(1 + α2/92)(l + α 2^ 2)]- 1 > 0 ,

Λve have

CS Q O

arctan aβ — Re— arctan aβ — Re-
da da 1 + a2β2

aψ)\ = ci?β[/9 + α21 /? |2^] >0 ,

as required.

3. Approximation from below. We can now prove

3.1. LEMMA. Given the real nonnegative function f in L°°, there
exists a sequence {hn} of functions in H such that

(3.2) for all n, 0 ^Rehn^f a.e. ,

(3.3) Rehn->f in L1 .

Proof. We may assume f(θ) < π/4 a.e. The harmonic extension / is
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the real part of an analytic function g in S± where g(0) is real. Since
0 ^ Reg(z) < π/4, g maps Sλ into T+. Set

(3.4) gn(z) = arctan [(1 ~ 1/ra) tan gr(z)] .

Clearly #w is a bounded analytic function in Su Let fc% be the boundary
value function of gn. By (2.5), Re gn(z) <Z Re g(z), and (3.2) follows.
Moreover,

f-ReKW^ \ (f-Rehn)dθ

= 2π[Reg(0) - lfeflrn(0)] = 2τr[flf(0) - gn(0)]

by the mean value theorem for harmonic functions. Since arctan is
continuous in the real interval [0,1], this tends to 0, and (3.3) is proved.

4 The theorem for nonnegative kernels. The theorem in this case
is:

4.1. THEOREM. Suppose φ is a bounded linear functional on L~
such that

(4.2) 11011 = 11011*

and

(4.3) ψ(f) = \ f(θ)K(θ)dθ

for all f in H, where K is a real nonnegative function in ZΛ Then
(4.3) holds for all feL°°.

Proof. By (4.3), | φ(h) | ^ || h || || K\\19 h e H; hence (since leH)

Therefore ^(1) = | | ^ | | , and Lemma 2.1 applies.
Suppose feL°° is real and nonnegative. Choose the sequence {hn}

by Lemma 3.1. By Lemma 2.1, Φ(f) ^ φ(Rehn) = Re φ{hn), and hence

j/SΓ - φ(f) £ j/SΓ - Re \hnK = J(/ - Re hn)K .

Now KeL1, the functions f — Rehn are uniformly essentially bounded,

and f—Rehn->0 in L1; it is elementary to show therefore that H/ —

Rehn)K-+ 0. Thus 0(/) ^ ί/K" for real nonnegative fe L°°.

If feL°° is real, pick a real number α: so that a < f(θ) a.e. Then
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Φ(f) = Φ(f -*) + *Φ(D ^ \(f -<*

Replacing / by —/ gives the opposite inequality; hence (4.3) holds for
real /. Since ό is linear, (4.3) holds also for complex /.

5 The general theorem for the unit circle. Given any linear func-
tional ψ on L°° and any measurable subset Z of Γx with characteristic
function χz, define

(5.1) fΛf) = filzf) .

5.2. LEMMA. Let ψ be a bounded linear functional on LΓ', and
let X and Y be complementary measurable subsets of Γλ. Then

(5.3) l l t l l = l l ^ l l + l l t r l l .

Proof. Since ^ = ^ + ^ , 1 1 ^ 1 1 ^ Ihhr II + II ψy ll Conversely, given
ε > 0, c h o o s e gλ a n d g2 i n L°° so t h a t ψ > ( 0 i ) a n d ψγ{g2) a r e r e a l , \\gx\\ =
\\g2\\ = 1, a n d

^ II fx II - ε , fγ(g2) ^ || ψτ || - ε .

Set g = χ A ^ + χF# 2. Then || ^ || ^ 1, and

Ψ(a) = ΨM + fAg*) ^ II ψx II + II fr II - 2ε,

giving the opposite inequality.

5.4. THEOREM. Suppose that ^r is a linear functional on L°°, K
is in Lι,

(5.5) l l t l l = l l t l l z r = 11^11! ,

and

(5.6) ψ(f) = \ f{θ)K{θ)dθ

for all feH. Then (5.6) holds for all fe L°°.

Proof. Since the unit ball B in Lr = (L1)* is weak* compact (see
for instance [2], p. 37) and i ϊ is weak* closed, H f) B is weak* compact.
Because of (5.6), ψ is weak* continuous in H; hence ψ(H f] B) is com-
pact, and there is an hoe H such that

The equality, with (5.6) and (5.5), gives
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(5.8) [ hQ(θ)K(θ)dθ = ( I K(θ) I dθ ,

from which we conclude that

(5.9) ho(θ)K(θ) is real and nonnegative a.e., and

(5.10) for almost all θ, either | ho(θ) | = 1 or K{θ) = 0 .

We remark aside that h0 is unique a.e. (unless ψ = 0); for a second
such element hλ would agree a.e. with hQ wherever K Φ 0, by (5.9) and
(5.10), hence hx = hQ on a set of positive measure, and it is known that
this implies that hx = h0 a.e. (see for instance [6], vol. II, p. 203).

Set

(5.11) Φ(f)=f(hf), feL~ .

Since if is a ring,

φ(h) = τjr(hQh) = \ h h Q K , h e H .

Also ||λoll ^ 1 , l|λo/ll ^ WfWf and hence | | ^ | | ^ \\f\\. Now

giving || φ || = || φ \\H. By Theorem 4.1,

- φ(f) = ^fh0K for all / e L " .

If h0 had a bounded inverse hlf we could use this to give ψ(f) =

\xf) = \fK; but this need not be the case, as we shall see by an

example in 10.4.

By (5.10), hohoK = K a.e.; hence replacing / by hof in the above
equation gives

(5.12) ΨiKhJ) =\fK for all fe L~ .

Let X be the subset of Γx where K vanishes, and let Y be the
complementary subset. Then hoho — 1 a.e. on Y. In the notation of
Lemma 5.2,

ψ ( f ) = i ί r ( γ v f ) = ^ ( Ύ v h a h n f ) = \Ύγ f K =

for all feL°°, whence, with the aid of (5.5) and (5.3),

Therefore ψΣ — 0, and
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f{f ~ hohj) - ψ(χx(f - KhJ)) = ψx(f ~ hQhQf) = 0

for all feL°°. Thus (5.12) gives (5.6) for all feL°°, as claimed.
We wish to give a theorem without the hypothesis on the norm

of the kernel. For this, the given kernel must be replaced by an "ex-
tremal kernel". This is possible, by the following lemma of Rogosinski
and Shapiro, [4], Theorem 8, p. 303. (A proof will be given in 8.9.)

5.13. LEMMA. Suppose ψ is a linear functional defined on Hby

f(h) = \hJ(he H), where Je L\ Then there is a function Ke L1, unique
J

 Γ

a.e., such that ψ(h) = \hK(heH) and (I JBΓ||x = \\ψ\\H.

Combining the last two results gives

5.14. THEOREM. Suppose ψ is a bounded linear functional on H
such that

(5.15) ψ(h) = ( h(θ)J(θ)dθ for all k H ,

where JeL1. Then ψ has a unique norm preserving extension ψe over
L°°. Moreover, there is a KeL1, unique a.e., such that

<5.16) γe(f) = \ f(θ)K(θ)dθ for all fe L~ ,

we have \\K\\, = \\f\\H = \\ψe\\. If \\J\\^ \\1r\\*, then K = J a.e.

6 Bordered Riemann surfaces. We now turn our attention to the
analogous problem for a compact bordered Riemann surface S. The
theorems are similar to those of the preceding sections and the methods
of proof are essentially the same, but we must take account of the fact
that not every harmonic function is the real part of an analytic function.
In this section we recall some of the facts about harmonic and analytic
functions on S.

6.1. A bordered Riemann surface S is a connected surface carrying
an oriented conformal structure which is everywhere locally isomorphic
to a relatively open subset of the closed upper half plane, these isomor-
phisms being given by the local coordinate functions (see for instance
[3]). Let S denote the interior of S, and Γ, the border; S is a Riemann
surface in the ordinary sense. We assume always that S is compact
and Γ is not empty; then Γ is a real analytic manifold with a natural
orientation, consisting of a finite number of disjoint Jordan curves.
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6.2. For any real continuous function f on Γ there is a unique
harmonic function f in S which extends / continuously over S (see alsα
6.7). For each point pe S there is a real and everywhere positive analytic
differential ωp on Γ such that, for all / as above,

(6.3)

Choose p0 6 S; this point will be fixed throughout the paper. The dif-
ferential ωPQ defines a measure μ on Γ (called the harmonic measure
for p0). Expressing ωp in terms of ωPQ, (6.3) becomes

(6.4) f(p)=\/(q)Hp,q)dμ(q).

For each pe S, k(p, q) is an everywhere positive real analytic function
on Γ. Furthermore, k is continuous in S x Γ, and for each fixed q, is
harmonic in S.

6.5. Measure theoretic statements will always refer to the measure
μ. We form as usual the spaces L1 and L°° of integrable and of bounded
complex valued measurable functions respectively, and use || ||j and || ||
for the corresponding norms. Let Lι

Re and Lz denote the spaces of
real functions in L1 and L°° respectively. To reduce the notation we
shall not distinguish between measurable functions and their equivalence
classes modulo null sets. With the pointwise operations of addition and
multiplication, the Banach space L°° becomes a Banach algebra.

As in § 2, L°° is the conjugate space of L\ under the definition

f K=\ fKdμ. Again, the closed unit ball B in L°° is weak* compact,

as is Bβe = B (Ί Lχe in Lβe. Since L1 is separable, the weak* topology

of B is metrizable ([1], p. 426), so that questions of convergence in B

can be handled with sequences and the Bolzano-Weierstrass theorem ap-

plies.

6.6. The space L\ defined through the choice of pQ, is not intrinsi-
cally related to S. This defect may be remedied as follows. Let C be
the space of continuous functions on Γ. An analytic differential ω on
Γ determines a linear functional φω on C by the formula

The norm is given by || φω\\ = ϊ | ω|. Let M be the closure, in the

conjugate C* of C, of the set of all φω. Clearly, M is intrinsically

related to S. It is easy to identify U with M, since any differential

form on Γ may be written as a multiple of ωPQ (see 6.2). The choice of
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p0 enables us to interpret elements of M as functions on Γ; this is
valuable because of the corresponding identification of M* with L°° and
because the analytic properties of k may be used. Since the null sets
on Γ do not depend on the choice of p0, the space L°° is intrinsic a
priori; it is easy to check that its identification with M* is independent
of the choice of p0.

6.7 For each complex function feL°°, its harmonic extension /
through S may be defined by (6.4); it is bounded by | | / | | , and has the
boundary value functions / a.e. on Γ.

6.8. LEMMA. Let f and the sequence {fn} be in L°°. Iffn—*f
weak*, then / „ - > / pointwise. If the fn are uniformly bounded and
fn - * / pointwise, then fn -> f weak*.

The first statement follows from (6.4). Conversely, suppose the fn

are uniformly bounded, fn—*f in S, but fn —>f weak* is false. Since
XB in the weak* topology is metrizable and compact for any real λ, we
may find a subsequence {/m.} converging weak* to g, where | | / — g\\ >
0. Then fm. -> g in S, hence g = / in S, and hence g = f a.e. on Γ, a
contradiction.

6.9. As in the case of the unit circle, H is the space of boundary
values of bounded analytic functions in S. Again, for any fe L°°, fe H
if and only if / is analytic in S, or (setting / = fλ + if2 with f and f%

real) f2 is a conjugate of fλ. As before, H is a subalgebra of L°°.

6.10. LEMMA. H is weak* closed in L°°.

Proof. By [2], p. 39, it is sufficient to show that H Π B is weak*
closed. As noted in 6.5, convergence in B is sequential. Suppose that
{hn} is a sequence in H Π B which converges to feL°° weak*. By
Lemma 6.8, hn-+f in S. Since the hn are uniformly bounded, / i s
analytic, by a general convergence theorem; hence feH, as required.

6.11. Let fe L°°. We form the harmonic extension /, its differential
df, and the conjugate harmonic differential (df)*. Suppose / had a con-
jugate function / * . Then if v is a Jordan arc from pQ to px in S, with
normal vector n, we would have

substituting in (6.4) and changing the order of integration gives
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(6.12) f*(pύ-f*(Po) - \/{Q)ΦM)dμ{q) if / * exists,

where

(6.13) ΦM ds ,
dn

the integral being defined with the help of the local conformal structure
of S.

6.14. In the general case, / * exists if and only if \ fΦsdμ = 0

for each closed curve δ in S, or equivalently, for each closed curve of
a homology basis. Let 8lf * , δ p be such a basis. Here p is the first
Betti mumber of S or S, and

where χ is the Euler characteristic of S, g is its genus, and m is the
number of components of Γ.

Now / * exists if and only if the periods

(6.15) j δ (dfr = \/(q)ai(q)dμ(q) , a,(q) = Φh{q) ,

all vanish. The ai are real analytic on Γ and are therefore in L1.

6.16. Let P and PRe be the complex and real spaces respectively
spanned by the a{\ then PRe — P Π Liβ .

Let cx, , cp be given real numbers. There exists an analytic dif-
ferential ω on S which can be extended analytically over the double of
S and which has the periods ic19 •• ,ΐc p (see [3], p. 172). Since the
periods of Re ω vanish there is a harmonic function f in S with df =
Reω; now / is bounded in S, and (df)* = Imω has the periods c19 •••,
Op, It follows from (6.15) that a19 * ',ap are linearly independent over
the reals. Therefore PRe has real dimension p, and P has complex
dimension p.

6.17. Considering PaL1, let G a L°° be its annihilator space.

Then G is weak* closed and has codimension p in L°°. Hence every

linear functional on L°° which vanishes on G has the form / - > \ fa for

some α e P. Moreover Gβe = G n LRe is the annihilator of PRe in LSe,

and G =J*iu + ^GΛβ The definitions of P and G show that for any

fe L°°, / has a harmonic conjugate (not necessarily bounded) if and

only if fe G. It follows that H c G.
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7. The theorem with an extremal kernel. Given the linear function-
al φ on if, defined by means of an extremal kernel K, we show here
that any norm preserving extension over L°° is given by means of a
modified kernel, and we study the set of norm preserving extensions.
As before, the proof is based on an approximation lemma. Recall the
definition of GRe in 6.17.

7.1. LEMMA. Given the nonnegative function feGRe, there exists
a sequence {hn} of functions in H such that 0 ^ Rehn g / a.e. in Γ and
Rehn —>/ in L1.

Proof. As in §3, assume f(q) < π/4 a.e. in Γ. Since feGEe, we
may find g, gn and hn as before. Then 0 ^ Rehn S f, and that Rehn->
f in L1 follows from

|| / - Re K \l == \ (f-Re K)dμ - Re g{Vo) - Re gn{p0) -> 0 .

7.2. THEOREM. Suppose ψ is a linear functional on L°° such that

II Φ II = II Φ \\π

(7.3) Φ(f) =

for all feH, where KeL1 is real and nonnegative. Then (7.3) holds
for all feG. Moreover, there exists a function ae PRe such that K +
a is nonnegative and

(7.4) φ(f) = f(K + a)dμ for all fe L~ .

Proof. The first statement follows as in the proof of Theorem 4.1,
with Lemma 7.1 replacing Lemma 3.1.

To derive the second statement, set

then ψ(g) = 0 for all g e G, and (see 6.17) there is an α e P such that

= \ fadμ feL~ .
J

These two relations give (7.4). Since φ(l) = \\φ\\ (compare § 4), φ is real
and nonnegative (Lemma 2.1); hence K + a is real and nonnegative.

7.5. THEOREM. Let φ be a linear functional defined on H by (7.3),
where KeL1 is real and nonnegative. Then the set of norm preserving
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extensions of φ over L°° is in one to one correspondence with the set W
of functions a e PRe such that K + a is nonnegative. The set W is a
compact convex cell of real dimension at most ρy the first Betti number
of S.

Proof. By the last theorem, every norm preserving extension cor-
responds to some aeW; clearly this correspondence is one to one. It

is onto W. For suppose a e W. Then if ψe(f) = ( f(K + a)dμ, φ(> = ψ

over H, since H c G. Since 1 e G,

therefore \\φe\\ = | |^| |, and φe is a norm preserving extension of φ corres-
ponding to a.

Clearly W is a closed convex subset of PBe, and hence is of dimen-
sion ^ p. Since || K + a ^ = || K\\lf W is bounded and hence compact.

7.6. THEOREM. Suppose that ψ is a linear functional defined on
Hby

(7.7) ψ(h) - ( hKdμ ,

where Ke L1 and \\K\\i = || ψ \\H. Then there is a function ho£ H such
that every norm preserving extension ψe of ψ over L°° has the form

(7.8) ψe(f) = \ f(K + aho)dμ, where K + a^eL1 ,

for some aePRe. (See also (7.14), (7.15) and (7.12).)

Proof. We follow the proof of Theorem 5.4 (using 6.5 and 6.10),
finding the extremal function h0 for ψ such that

(7.9) IIΛoll = 1 , Ψ(h) - H i H I * , J M t f j " = \\K\dμ .

Again we conclude that for almost all qe Γ,

(7.10) ho(q)K(q) ̂  0 and either | ho(q) | = 1 or K{q) - 0 .

Given ψe, set

Φ(f) = Ϋe(hof) , feL".

Then
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φ(h) = ψe(hoh) = \ hh0Kdμ , heH,

s i n c e h o h e H. A l s o , a s i n § 5 , \\φ\\ = \\ψ\\H = \ \ φ \ \ H . T h e r e f o r e f o r
some ae PRe,

(7.11) fe(hof) = φ(f) = ^f(h0K + a)dμ , fe L~ ,

by Theorem 7.2, and

(7.12) h,K + a ^ 0 a.e., || hQK +a ||x = || φ \\ = || f | | f f .

Since Λo ί 0, fe0 = 0 at most in a set a measure 0 (see [6], vol. II,
p. 203); hence there is a measurable function g on Γ such that gh0 — 1
a.e. on Γ. Set

let χn be the characteristic function of En, and set ^ Λ ( / ) =
By Lemma 5.2, which extends to the present case,

•(7.13) HiHI* = IItell = H t J I + Wfe-fnW .

Since gfχneL~, (7.11) gives

- f f(K + ag)dμ,
J ί j w

Hence

and letting n -> oo gives

K + ageL1 , ur + aflfH^

Therefore, with the help of (7.9) and (7.11),

11̂ 11 = 11̂ 11* = f (K) = jr(^oiί +

and

limll^JI =(

Now (7.13) gives lim||i/re — ψn\\ = 0; consequently
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fe(f) = lim^,(/) = \ f(K + ag)dμ ,

From the equalities || hQ || = 1 and U o ( ^ + ocg)dμ — \\K + ag\dμ

we conclude that for almost all qe Γ, either | ho(q) | = 1 or K(q) +

°C(Q)9(Q) = 0. Comparing this with (7.10) shows that

(7.14) a.e. in Γ, either | ho(q) | = 1 or K(q) = a(q) = 0 .

Since gh0 — 1 a.e., we have ag = ah0 a.e., and the theorem is proved.
Note that Khoho = JBΓ a.e., by (7.10); hence (7.8) may be written in

the form

(7.15) ψe(f) = ( fho(hoK + α)dμ for all fe L~ .

8. Existence of extremal kernels. In order to obtain a result ana-
logous to Theorem 5.14 for bordered Riemann surfaces we must extend
the lemma of Rogosinski and Shapiro 5.13 to the more general setting.
Our first object is to prove that, if A is the space of complex valued,
real-analytic functions on Γ, then H Π A is weak* dense in H. Note
that H Π A is the space of restrictions to Γ of functions holomorphic
on S.

8.1. LEMMA. Let E be any real or complex Banach space and let
B be the closed unit ball in its conjugate space E*. Suppose G is a
weak* closed linear subspace of E* of finite codimension. Suppose
0 < λ :g 1 and that A is a linear subspace of E* such that A Π B is
weak* dense in λJ5. Then A Π G Π B is weak* dense in G Π XB.

Proof. Since G is weak* closed, G is the annihilator of a certain
closed linear manifold P c E. Since G has finite codimension in E*,
say m, P has dimension m. Elements of A are linear functional on P
by restriction, and indeed a total set of linear functionals, for if not
there would be a pe P such that p Φ 0 and a(p) = 0 for all ae A and
i f l - B would not be weak* dense in XB. Hence we can find an m-
dimensional linear subspace F c A which is total on P. Then F is a
linear complement of G in E*.

Now let g0 be any element of G D λB. We must show that g0 is
the weak* limit of some directed system in A Π G Π B. By hypothesis
there is a directed system {αα} in A Π -B such that aa-^g0 weak*.
Write αα = fΛ + #* where faeF,gωe G. Then g a G i n G . For any
p e P, aa(p) -> gQ(p) = 0; hence fjjp) -> 0. Since F is finite dimensional
and the elements of P determine a total set of linear functionals on F,
this implies that fa -+ 0 in the norm. Hence ga~^9o weak*. Now put
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ξΛ = (1 + \\fa II)"1. Then ξa -» 1 so |βflfΛ -> #0 weak*. Moreover, || ξaga || =
I* II α* - /» II ^ £«(1 + 11/* II) = 1, so £,£* G A f l G n S . This completes
the proof.

For the next lemma, let A be the space defined a t the beginning of
§ 8, and set ARe = A (Ί L%e.

8.2. LEMMA. Let geGRe (defined in 6.17). Then there exists a
sequence {hn} in H Π A such that

(8.3) \ \ R e h n \ \ S\\g\\ ,

(8.4) Rehn—>g weak* in L°° .

Proof. L^e is the real conjugate space of LRe and GRe is the annihi-
lator of the finite dimensional subspace PRG of LRe. It is well known
that ARe Π BRβ is weak* dense in BRej where BRe is the unit ball of LRe.
By Lemma 8.1, ARe Π GRe Π 5 ^ is weak* dense in GRe (Ί S^.

To prove the lemma we may clearly suppose that | | # | | = 1. As
noted in 6.5, the weak* topology of BRβ is metrizable, so there is a
sequence {fn} in ARe Π GRe Π BRβ such that fn~^g weak*. Since fn e GReJ

fn has a conjugate function, and fn = Rehn where hn is a holomorphic
function on S. On the other hand, since fn has real analytic boundary
values, hn is analytic on S. Thus hne H Π A and iϋe/^ = / n . Now (8.4)
has already been established and (8.3) follows because fn e BRe so that

I I Λ I I ^ i = llffl l.
We can immediately deduce the following fact which may be useful

in other connections.

8.5. THEOREM. Let H = {h:he H}. Then H + H is weak* dense
in G.

Proof. Let M be the weak* closure of H + H. Since H c G and
H dG while G is weak* closed, M c G. On the other hand, by the last
lemma, every g e GRe is the weak* limit of a sequence {l/2(hn + hn)} in
H + H, so g e M. Thus M z> GΛe. By linearity M =) GΛβ + iGRe = G.

8.6. LEMMA, i ί Π A is weak* dense in H. Indeed, H Π A Π JB
is sequentially weak* dense in H d B.

Proof. Given he H f) B we must find a sequence in ί ί f l A f l ΰ
which converges weak* to h. If h is constant, this is trivial, so we
suppose not. Then arctan h maps S holomorphically into the open strip
T = {λ: — π/4 < ReX < τr/4}. Now iϋe arctan /ί has a boundary value
function g e GRe; by Lemma 8.2 we can choose a sequence {hn} in if Π A
so that
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ίII Rehn || ^ π/4 , Rehn-*g weak* ,

(Im hn(pQ) = Im arctan h(pQ).

Since hn e H Π A and tan is holomorphic in T, tan ftn e H f] A Π £?.

Given peS, let v be an arc from pQ to p; now (6.12) and (8.7) give

Imhn{p) - Imhn(p0) = \ RehnΦvdμ

gφ.dμ = g*(p) -

using (8.7) again gives lmhn(p)-> Im arctan h(p). Also, by Lemma 6.8,
Re hn(p) -> Re arctan h(p); thus hn(p) -> arctan h(p). Therefore tan hn(p) ->
h(p) in S, and by Lemma 6.8, tan/^-> ft weak*, completing the proof.

We shall need the following extension of a theorem of F. and M.
Riesz.

8.8. LEMMA. Let C be the space of continuous complex-valued
functions on Γ. A Borel measure on Γ which is orthogonal to H Π C
is absolutely continuous with respect to any harmonic measure.

For a proof see Wermer [5] Lemma 3. Because of the context in
which he is working, Wermer's statement includes the hypothesis that
Γ consists of a single Jordan arc, but this hypothesis is not used in the
proof.

We are finally in a position to extend the lemma of Rogosinski and
Shapiro.

8.9. LEMMA. Suppose ψ is a linear functional defined on H by

ψ(h) = [ hJdμ for all heH,

where JeL1. Then there exists a function K in L1 such that || JRΓ||x —

\\ψ\\H and

(8.10) ψ(h) = [ hKdμ for all heH.

Proof. Following [4], we consider ψ on H Π C and take a norm
preserving extension over C. The extension can be represented by a

Borel measure v. Now | M | = H^HI*™ a n d Ψ(h) = \hdv for heHπC.

Hence \h(dv — Jdμ) = 0 for h e H Π C. By Lemma 8.8, we may write

dv — Jdμ = Mdμ where Me L1. Put K = J + Me U and we have dv =
Kdμ a n d || v | | = \\K\\X.
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The linear functional h-* \h(K — J)dμ vanishes for he H Π C.

Since J ΐ n A c i J n C i s weak* dense in H (Lemma 8.6), \h{K - J)dμ = 0

for all heH, giving 8.10. Moreover, || ψ \\H g || K\\λ = || v || = || ψ | | H n σ S

HΨΊIH This gives | | iT| |i = HTHI* and completes the proof.

9. The final theorem. Combining Lemma 8.9 with the theorems
of § 7 gives

9.1. THEOREM. Let S be a compact bordered Riemann surface
with non-empty boundary Γ and first Betti number p. Let H be the
space of boundary value functions of bounded analytic functions defined
on S. Suppose ψ is a bounded linear functional defined on H by

(9.2) f(h) = [ h(q)J{q)dμ(q) for all heH,

where μ is the harmonic measure on Γ associated with some point
poeR, and J is in Lι{μ). Then every norm preserving extension ψe

of ψ over L°° has the form

(9.3) fXf) = \rf(q)K(q)dμ(q) for all fe L~ ,

where Ke L\μ). The set of all such extensions forms a compact convex
cell of dimension at most p; the extension is unique if p = 0.

The first part of the theorem follows directly from Lemma 8.9 and
Theorem 7.6.

By 7.6 again, the set of norm preserving extensions corresponds to
the set W of those functions a e PRe such that insertion in (7.8) or in
(7.15) gives such an extension. As in the proof of Theorem 7.5, W is
a compact subset of PRe* this space has dimension p.

To prove convexity, suppose

α l f a2 e W, 0 < t < 1 , as = (1 - t)ax + ta2

,let ψi be determined by (7.15), using ait That ψz is an extension of ψ
follows at once. Moreover, by (7.12), h0K + a{ ^ 0 a.e. (i = 1, 2); hence
h0K + a3 ^ 0 a.e., and (7.15) and (7.14) give

HKK + α3) I dμ = ^(hQK + a3)dμ

t h e s i m i l a r f o r m u l a s h o l d f o r | | ψ * i | | a n d llψall S i n c e H ^ H = | | ^ 2 | | —
I I T H I * , w e h a v e \\ψ9\\ — \\f\\H, w h i c h c o m p l e t e s t h e p r o o f .
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lO Examples, We give here some particular cases where non-
uniqueness or uniqueness holds, and an example concerning the proof of
Theorem 5.4.

10.1. We give first the example promised in the introduction.

Suppose ψ is a nonzero bounded linear functional on L°° which va-
nishes on H and takes real values on Lχe. By the Hahn decomposition
theorem ψ may be represented as the difference ψ+ — ψ~ of two non-
negative linear functionals; here, ψ+ is defined for nonnegative / by

and is extended over the rest of L°° by linearity. Since ψ+ and ψ~ are
real and nonnegative, | | ^ + | | = ψ+(1) and | | ^ " | | = ψ*~(l); since 1 e H,

Furthermore, ψ+ — ψ~ over H, since ψ vanishes in H; thus -ff and f~
are distinct norm preserving extensions over L°° of the same linear
functional over H.

To complete the example we must construct ψ with the given pro-
perties. Let v be an arc of the unit circle, and let i/ be its complement.
Let /0 equal I o n v and equal —1 on iΛ Let ReH be the set of real
parts of functions in H; we shall show that f0 is at a distance 1 from
ReH. If this were not so, we could find feReH with | | / — / 0 | | = 1 —
ε, ε > 0. Now / ^ ε on v and / ^ — ε on 2/; the expression, in terms
of /, of the conjugate / * of the harmonic extension / of / over the
unit disk shows that / * is unbounded near the ends of v, so / $ ReH,
a contradiction. By the Hahn-Banach extension theorem there is a
bounded real linear functional on L%e which vanishes on ReH but not
at /0. This extends by complex linearity over L°° to give the required
functional ψ.

10.2. To illustrate the theorem for Riemann surfaces, let S be the
annulus {z: a ^ \z\ ^6}, where 0 < a < 6. Here Γ consists of two
oppositely oriented circles, and the first Betti number p of S is 1. A

function feL%e is in GRe if and only if 1 fdθ — 0; using Lebesgue

measure μ on Γ, this shows that P is spanned by the single function a
on Γ, defined by

ίl/6 if | s | = & ,
aKZ) ( - I / a if \z\=a.

Let Ko be the constant function 1, defining the linear functional ψ
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on H. Then for any real t,

Kt(z) = K0(z) + ta(z) ^ 0 on Γ if -b ^ ί ^ a ,

but this fails for other values of ί. By Theorem 7.5, the set of norm
preserving extensions of φ corresponds to this set of values of ί, and
is thus one dimensional.

On the other hand, if for instance Kλ(z) = \Rez\ on Γ, then Kx is
nonnegative but Kλ + ta takes on negative values if t is real and Φ 0;
by Theorem 7.5, the linear functional on H determined by Kλ has a
unique norm preserving extension over L°°.

10.3. More generally, let S be any compact bordered Riemann
surface with first Betti number p > 0. Suppose φ is the linear functional
defined on ff by a real kernel Ko such that Ko i> a > 0 on Γ. Then
for all α in PRe such that || a || ^ α, if0 + a is nonnegative, so that
(Theorem 7.5) the set of extensions has real dimension p.

On the other hand, we shall show that (with measure μ as in 6.2)
there is an ε > 0 such that if Q is a measurable subset of Γ with μ(Q) < ε
and K is the characteristic function of Q, then the linear functional
over H defined by K has a unique norm preserving extension over L°°.

To this end, note that every nonzero a in PRe is continuous and
takes on both positive and negative values (since 1 e H and hence

11 adμ = 0). Let au , a9 be a basis for PBe, and let D denote the

set of ^-tuples v — (vu , vp) with Σv\ — 1. For each v e D, set

Uυ = {q£ Γ : ΣvficM) < 0} , μυ = μ(Uυ) .

Clearly the function μΌ on D is lower semicontinuous; since D is com-
pact, μΏ takes on its lower bound ε > 0. Now if Q c Γ , μ(Q) < ε, then
every a Φ 0 in P takes on negative values outside of Q; hence (see
Theorem 7.5) the characteristic function K of Q has the required property.

10.4. We show that there is a kernel on the unit circle Γx whose
extremal function has a zero on Γx and hence does not have a bounded
inverse; this was promised in the proof of Theorem 5.4. Through con-
formal mapping, we can replace the unit disk by the half disk S+ =
{z : Rez ^ 0, | z \ ̂  1}, its boundary Γ replacing Γl9 (We are now in the
setting of Theorem 7.6.)

Define K on Γ by

z if \z\ = 1 , Rez > 0 ,

0 if Rez = 0 , \Imz\ rg 1 .

Set ho(z) = z in S+. If ψ is the linear functional on L°° defined by K,
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using Lebesgue measure μ on Γ,

ψ(h0) = \%Kdμ = π = \rKdμ = \\K\\X

hence h0 is the extremal function for K. But 0 e Γ and ho(O) = 0.
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