GEOMETRIC STRUCTURE OF ABSOLUTE BASIS
SYSTEMS IN A LINEAR TOPOLOGICAL SPACE

R. E. FULLERTON

1. Introduction. Let X be a convex linear topological space over
the reals. Since most of our results are trivial for finite dimensional
spaces, we assume that X is not finite dimensional and that it is complete.
An absolute biorthogonal basis system in X consists of an indexed set
of elements {x,}C X,ae A together with a similarly indexed set of
linear functionals {¢,} C X™*, @ € A such that

(@) du(@e) =0 if £ B, ¢u(2s) = 15

(b) each x e X is uniquely expressible in the form z = >, ¢.(x)2,
where ¢.(x) = 0 for all but a countable family of indices @ € A and the
sum is independent of the order of summation. We shall investigate
the geometric structure of absolute biorthogonal basis systems and shall
show that the existence of such a system is equivalent to the existence
of a certain type of cone in the space X. This work extends further
the investigations initiated in the author’s note [3].

In particular this theorem closely parallels certain recently announced
results of Choquet [1, 2] on the existence and uniqueness of represen-
tations of elements of a cone in X by means of resultant integrals with
respect to Radon measures with supports in the set of extreme points
of a base for the cone. In the last section we discuss the theorems of
Choquet and indicate the parallelism between his theorems and the
theorem discussed above.

2. Basic definitions and notations. We shall define here certain
geometric concepts associated with a linear space which we shall need in the
discussion to follow. If X is any real linear space and if 2,ye X, x + ¥,
the segment joining x and y is the set of points {ax + (1 — a)y},
0<a=1 The ray from x through ¥ is the set {ay + (1 — a)x}, a = 0.
A cone C in X with vertex x is a set such that yeC, y # x implies
that the ray from x through ¥ lies in C. A point x e X is an extreme
point of a set A C X if xe A and if for any segment {au + (1 — a)v}
with € = au + (1 — a))v, 0 < a, <1, either w or v is not in A. If a
ray r is a subset of a convex set 4, » is an extreme ray of A if any
segment s={au + 1 —ayw}, 0<a =<1 with x=au + (1 —ayv e,
0 < a, < 1 has a subsegment contained in » or either w or v is not in 4. A
cone C is a C-cone or minihedral cone if C is a convex cone with its vertex
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as an extreme point and such that for every pair z,y € X there exists
ze X such that (x + C) N (y + C) = 2 + C. Several elementary proper-
ties of C-cones should be noted. First, it is evident that any C-cone
generates the space X in the sense that any element of X is a difference
of two elements of C. This is true since if x e X, there exists a z¢ X
with C N (¢ + C) = z + C and for every v e C there exists a u € C with
x4+u=z+vandx = (2 + v) — u where z +veC, ueC. Secondly, C
defines a lattice order on X in which we define x =y if * — ye C and
it is easily verified that if x,y € X, the supremum x V ¥ is the element
ze X for which (x + C) N (y + C) =z + C. Conversely, it is easily seen
that the cone of positive elements in a linear lattice is a C-cone.

The fundamental cube of Hilbert also occurs extensively in the
following discussions. This set can be defined in several equivalent ways.
In general, a cube is the topological product of a set of closed unit
intervals Pgl;, B e B where the points are all functions f: B— I and a
neighborhood N, of f, is determined by any finite set 8,, 8, - -, 8, of
indices and open intervals Js, of fi(8), ©=1,2, -+, n with fe N, if
f(B)eds, for i =1,2, ---,n. The Hilbert cube I™ can be defined as
the topological product of a countably infinite set of unit intervals. The
Hilbert cube I®™ can also be equivalently defined as the subset of the
Hilbert space [* for which the 4th coordinate lies in the closed interval
[0,1/2]. It is easily proved that the correspondence @ : I¥ — [¥ defined
by associating with fe I™ the sequence (f(1), f(2)/2,f(3)/8, ---) in IXo
is a homeomorphism onto I®™ which also preserves the linear structure
of the cube as a subset of the linear space of real functions over the
integers. It is also well known that the Hilbert cube is compact.

A closed half space H C X is a set determined by a linear function
of fe X* such that H = {x ¢ X|f(x) = 0}. We define a hyperplane L to
be a set of the form L = {x € X|f(x) = 0}.

3. Absolute basis cones. We shall define the type of cone used to
characterize an absolute basis system and develop several of its properties.

DEFINITION. Let <2 = {r,}, a € A be a set of rays in X satisfying
the following conditions

(1) Uoesesr. generates a linear space dense in X.

(2) For each a € A the closed linear subspace L, generated by the
{rg}, 8 # « is a hyperplane.

(3) For each a¢cA,r, N L, =206.

(4) If for each e A, H, is the closed half space bounded by L,
which contains 7, and if K = Nec«Ha. then for every z e K,
K N (x — K) is compact and metrizable.

Then the set K defined in (4) is called an absolute basis cone (a.b.c.).

THEOREM 1. Let K be an absolute basis cone. Then K is a C-cone
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with extreme rays {r.}, xe A. Also K s the closed convex hull of the
set Uuea”s

Proof. The proof will follow as a result of four lemmas. K is
evidently a convex cone. For each ae A4, let [, be the line containing
r, and let {x,} be a bounded set of nonzero elements x, ¢ r,, a € A.

LEMMA L. Npgro, L = Lo, for every a,c A.

Proof. Assume that M = (s, Ls contains points not on la,» Since
R = U.e.r. generates a linear subspace dense in X, M is included in a
closed linear manifold generated by a subfamily {rs}, Se 4 < A. Let L,
denote the closed linear subspace determined by the {75}, Be 4. Denote
by M the family of all subsets 4 € A such that M c L,. M can be
partially ordered by defining 4, < 4, if L, C L,. This is a proper
partial order since it is evidently transitive and condition (3) insures
that the correspondence between 4 and L, is one-to-one. Let &2 be a
maximal simply ordered subset of 9. Then the intersection 4, of all
elements 4e.27is non empty and is a maximal element of M. Also
M c L, aad no smaller family of rays in {r,} will generate a closed
linear subspace containing M. However, if 7, € L,, a, # «, then
T, (1 L = 0 and since M C L,, 7, N M=0. Hence M C L, N Laun
contrary to the maximality of 4,. This yields a contradiction and shows
that Npraylis, = la-

COROLLARY. [Nuweslw = 9.

LEMMA 2. Let K' be the closure of the convex set determined by
the family {r,}, a € A where {r,} satisfies the conditions of the definition.
Then K = K'.

Proof. Obviously K’ < K. Assume that there exists a point x, ¢ K\K".
This implies that x, is not the limit point of any net {y,} € X, ve I,
of elements of the form y, = 37, a}, ®,, with a}, >0, 1=1,2, .-+, m,,
since all such elements are in K’. For any x € X it is possible to define
a unique set of real coordinates a.(x) indexed by A as follows. Let
a.(x) = supialx e ax, + H,}. Then |ay,x)] < o and zeK evidently
implies a.(x) = 0 for all wc A. Now let I” denote the family of all
finite subsets of A ordered by inclusion. [ is a directed set. For v e[,
let ¥y, = Saey @u(®)2,. Then {y,} is a net with its elements all in K'.
Also y,e KN (x, — K) for each v e/l'. By the compactness of
K N (x — K), the net {y,} contains a convergent subnet {y,} converging
to an element y,e K N (x, — K). By using the Hahn Banach theorem,
it can be seen that convergence of a net of elements in X implies
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coordinatewise convergence. Hence lim o(Yy,) = a.(y,) for each a e A.
However a,(y,) is either a,(x;,) or 0 by the definition of ¥,. Since {vs}
is cofinal with /7, eventually aw(yys) = a,(x,) for each a ¢ A. Thus
a.(y,) = a.(x,) for each e A. However, this implies that y, = x, since

%o — Yo € Naecusl « = 0. Thus if x,e K it is the limit of a net of elements
in K’ and since K’ is closed, K = K'.

Note. It would be sufficient for this lemma to assume that
K' N (x — K) is compact instead of condition (4). Whether it is sufficient
to replace (4) by the metrizability and compactness of K' N (x — K') is
not known to the author at present.

LEMMA 3. Let 4C A, I' C A be two complementary sets of indices,
te. A=4UT, 4N 1T =¢. Let L, L be respectively the closed linear
subspace generated by {rs}, ded; {r)), vel respectively. Then
L,nL,=24.

Proof. Assume that ye L, N L,. Evidently L, C L, for each veI”
and L, C Ls for each de 4. Since ye L, N Ly C Naeslaw =0, y = 0.

LeMMA 4. If xz,ye X and 4, I" are complementary subsets of A
then (x + L,) N (y + L;) contains exactly one point.

Proof. By a translation if necessary, we may assume that y = 6.
We show first that X = L, + L,. Since for any xe X, there exist
2y, ¢, € K with © = ¢, — 2,, it is sufficient to show that for x e K, x = u + v,
welL, velL, Let {a,(x)} be the coordinates of x as described in Lemma
2 and let {y,} be the net defined in Lemma 2 of finite linear combinations
of {x,} with coefficients a,(x) which converges to x.

A
If y)\ = }_J a’ai(m)xa‘, ’
11
n\
let Un = D Qg T,
11

Nx
Vy = 2 Co%a,
=1

where a,, = a,,(2) if a, €4 and a,, = 0 otherwise and let c,, = a,,(v) if
a&; €l and 0 otherwise. Then the nets {u,}, {v,} lie in K N (x — K) and
hence have convergent subnets. However, as in Lemma 2, these con-
vergent subnets converge coordinatewise and hence if lim,u,, = u,
lim, v,, = v, then w, has as its coordinates a,(x) if ae4and 0if ae/’;
v, has as its coordinates a.(x) if o« el" and 0 if e 4. However, it is
easily seen that each coordinate of the sum of two elements is the sum
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of the coordinates and hence © = u, + v,., Thus X = L, + L,. Moreover,
Lemma 38 shows that this decomposition is unique. ’

To finish the proof, consider L, N (x + L,) for any xe X. Since
x=u-+v for ueL,,veL,,© —u = v and since x —uecx + L,,veL,,
velL, N (x+ L,)+# ¢. By the uniqueness of w and v, L, N (x + L,) =
and the intersection consists of exactly one point.

Proof of the theorem. It is sufficient to show that for any ze X,
there exists z¢€ X such that K N (x + K) =2 + K. We construct 2z as
follows. For each a e A, let a,(x) be the a coordinate of z. If a.{x) <0
let we 4and if a,(x) >0, let ae?’. Evidently 4UI"=A4, 4U ' = ¢.
Define L, L, as above. Let z =L, N {(x + L,). It must be shown that
Kn(x+ K)=2+ K. By construction a.,{z) = 0 for all « ¢ A. Hence
ze K. Also, since © + K is the set of all elements ye X for which
afy) = a{x), ac A, zeax + K. Hence z+ K< KN (x + K).

To show the reverse inclusion, assume that ye K N (x + K) but
yéz+ K. Since ye KN (x + K), ye H, and yex - H, for all a e A.
Since yéz+ K, yéz+ H, for some «,c¢ A. This implies that
au(y) < agf2). If ayel’yz+ H, =%+ H, and y¢ux + H,. Hence
yéx + K. If ayed, yéz + H, = H,, and y¢ K. Thus in either case
yé€ K N (x + K) contrary to assumption. Hence KN {x + K)=2+ K
and K is a C-cone.

To prove that each 7, is an extreme ray, if for w,c¢A, r, were
not an extreme ray, then (\s.. ;s includes a two dimensional subspace,
contrary to Lemma 1.

THEOREM 2. If K is an absolute basis cone in X, then for every
xe K, the set P, =K N (x — K) 1s linearly homzomorphic to a finite
dimenstonal cube or to the fundamental cube of Hilbert.

Proof. For each ae A, let I, be the real interval 0 =t = a,(x)
where a.{(x) is the « coordinate of x as defined in Theorem 1, Lemma 2.
Let A, C A be the set of indices in A for which a.(x) = 0. Then every
y € P, has coordinates {a.,(y)}, «c A, where 0 = a,(¥) < a.(v), acA,.
Thus there exists a one-to-one correspondence between P, and a subset
of the cartesian product &°,I;, « € A,. The correspondence is one-to-Se
since if ¥, # ¥, but a,(y) = a.(y,) for ¢ e A,, then ¥, — ¥, € Nacslw = 0,
contrary to assumption. Denote the correspondence by @ : P, - &, I¢,
weAd,.

To show that @ is a homeomorphism it need only be shown that @
is continuous since P, is compact by hypothesis. Let {y,}, e 4 be a
net of elements of P, converging to #,€ P,. Let {a.(y.)}, {a.(¥)}, @€ A,,
be respectively the coordinates of y,, y, for each N e 4. If {@(y,)} does
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not converge to {@(y,)} in 2,I:, this implies that for some a,c A,
{aa,(¥))} does not’ converge to a.(y). By definition of the coordinates,
this implies that there exists a translate u + L, of the closed hyperplane
L,, which separates ¥, from a subnet {y,,} of {y\}. Hence there exists
a neighborhood U of ¥, which lies completely on one side of u + L,
and hence contains none of the points {y,}. However, this contradicts
the convergence of {y,} to ¥, Thus @ is continuous and hence, a
homeomorphism.

It must next be shown that @ maps P, onto &2,I;. Let {a,} be
any element of <7,I:. This implies that 0 < a, < a.(x), ac A,. Let
o= (o, &, +++, «,) denote a finite set of indices in 4,. Define {a3} ¢ &, 1%
as follows. af, = a., a;€0 and a; =0, a ¢ 9. Then for every o, the
element af corresponds to an element y, e P,, 9, = 104, (2)%,,. The
set {o} of all such finite subsets forms a directed set under inclusion and
hence the set {y,}, 0 €{o} is a net of elements in P, with @(z,) — {a%}
for each ¢. However, the compactness of P, implies that {y,} contains
a subnet converging to an element y,c P,. By the construction of the
net {y,} this implies that a.(y,) = a, for every ¢ € A,. Hence ?(y,) = {a,}.
Thus @ maps P, onto &#,I5. Hence P, and <7,I% are homeomorphic.
If we now define b,(¥) = a.(y)/a.(x) for acA, then the mapping
?'(y) = {b.(y)} is a homeomorphism of P, onto the cube <’,I, where
I, =10,1] for each e A,. It is easily seen that @' preserves the
linear structure of P, and hence that @' is a linear homeomorphism of
P, onto <2,1,.

To complete the proof, it need only be shown that A, is a finite or
countable set of indices in A. This follows from the metrizability of
P.. Since P, is metrizable, &#,I,, ac A, is also. However, if A4, is
uncountable, it is well known that <7.I, does not satisfy the first
countability axiom and is hence not metrizable. This completes the
proof of the theorem.

THEOREM 3. A mecessary and sufficient condition that X possess
an absolute biorthogonal basis system 1is that X contain an absolute
basis cone.

Proof. We first prove the necessity. Assume that X has an absolute
basis system {x,, ¢.}, « € A. For each ac A, let r, be the ray {kz,},
k =0. Let K be the closure of the convex set determined by the {r,}.
We prove that K is an a.b.c.

Evidently K is a cone and since the {x,} are points of a basis system,
Uees”. generates a linear space dense in K. Hence Condition (1) is
satisfied.

To prove (2), note that for every ae A, L, is the null space of a
continuous linear functional ¢, and is hence a closed hyperplane. Con-



GEOMETRIC STRUCTURE OF ABSOLUTE BASIS SYSTEMS 143

dition (3) follows since ¢.(x,) =1, ¢.(xs) = 0, 8 # « and hence r, N L, = 6.
To prove that Condition (4) holds, we shall show that for each x € K,
the set P, = K N (x — K) is homeomorphic to a cube of finite or
countable dimension and hence compact and metrizable. Let ¢ K.
Then x = 3\7.64,(%)%s, Or © = 3i1,¢,,(2)2,, Where ¢, (¥) > 0 for all ¢ in
the sum. Assume that x has a countably infinite expansion, since the
proof for the finite case follows from the same type of arguments. For
brevity we shall write « = >2.a,x;. To each ye P, let y = > 2.b.x;.
The sequence {b;} is uniquely determined and it is easily seen that
0<b,<a;,+1=1,2,---. Let @: P, — I™ he defined by

@(y):(h,ﬁz,&,...>_

a; O

To show that @ is one-to-one and onto, we must show that every
element of I™ is the image of exactly one element of P, If
&, &,y ore)elP, let b, =af, ©=1,2,8,--- and consider the sum

2.b;x;. If this sum converges, it represents an element of P, which
maps onto the given element of I™ under @.

Let P" be the parallelotope with one vertex at 6 and with edges
adjacent to ¢ ending at {ax.}, 1 =mn,n -+ 1, ..., m. By elementary
methods, it can be shown that P™" is the convex set determined by all
points of the form {>)_.a; ,&i,} where the sets {i;, %, - -+, %} run over all
finite subsets of the numbers (n,n + 1, ---, m). However, by the
unconditional convergence of >.=.a,x;,, for any neighborhood U of @
there exists an integer n, such that >%_,a, 8i € U for all sets (1, %5, ==+, %)
where ©; > ny, 1 =1,2, «-+, k. Since U is convex, P™" U for m, n > ng.
Hence, since 0 < b; < a, for each ¢, we have P7" < P™" for every m,n.
In particular, Py c U if Ppr"c U. Thus the sequence {>\".bx;}
converges to 6 if m,n— . Hence @ is a one-to-one transformation
of P, onto I,

Evidently @ preserves the linear structure of P,. Since I™ ig
metrizable and compact, to show that @ is a homeomorphism we need
only prove that @' is continuous. Let v € I™ have coordinates (&, &;, +++),
0=<¢ =1. Then 07'(v) =y = 2. 6a@; = Dizbx,. Let U be a neigh-
borhood of 6 in X N P,. By the preceding paragraph, there exists an
integer m, such that if m > n,, > ,.cx; e +U for all choice of {¢;} with
0 = ¢; = a,. Evidently the mapping >,'%c,x; is continuous from the finite
parallelotope I, x I, x «++ x I,; I, =[0,1], j=1,2, -+, m,, into X.
Hence there exists a 6 > 0 such that (3i%cx;, — 3.i%bx;) € $U for all
finite sequences (¢, ¢, *++, ¢,,) for which [b, —¢;|< 8, 1 =1,2, +++, ny.
Thus we have

nr ng oo oo
Cx, —Y = <Z cx; — ) bixi> + > ew — > b, eU
=1 =1 ] 1=n

’b='lLL,v 17

M

1

3
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for all sequences ¢; such that |¢;, —b;|<¢, 1 =1,2,+++, 0, If Visa
neighborhood in I® for which |& — (bi/a;)| < ¢la, @ =max a,; for
1=1,2, .-+, ny and unrestricted in the other coordinates, then @(V)c U
and @7 is continuous. Hence @ is a homeomorphism and P, is compact
and metrizable. This shows that K is an absolute basis cone.
Conversely, assume that X contains an absolute basis cone K. By
Theorem 1. K is a C-cone and hence the linear space generated by K
is X. Hence every element x ¢ X is uniquely expressible as the difference
of two elements of K, i.e., if we consider K as defining a lattice order
on X, then x=( Vv 0 —[—(x A 6)]. Hence to show that the set
{x,} which defines K constitutes a set of absolute basis elements, it
is sufficient to prove that every element of K can be uniquely
represented as a countable linear combination of elements of this set.
Let xeKand P,=K N (x — K). Let {a.(x)} be the coordinates of =«
as defined in Theorem 1 and consider the formal sum >\.c, @u(%)x, Where
as in Theorem 2, A, C A is the set of elements of A for which a.(x) > 0.
By Theorem 2, P, is linearly homeomorphic to a finite cube or to the
Hilbert cube I, Let I® De represented as the set {y =
1y 8oyor0)el?|0=¢,=1/t,7=1,2,+--}. Then, by the correspondence
set up in Theorem 2, A, is finite or countably infinite and if z =
10, (2)Zs;, U, (X)X, corresponds to the point y; = (0,0, ---,0,1/,0, ---)
where 1/7 occurs in the ith place. Thus > .e, @.(%)x, corresponds to the
sum >y, =(1,%,%, +--,1/4, ---) € l* under the linear homeomorphism.
Since the series 3.7y, converges in [’, the series > ,c,,@.(2)x, converges
in X by the definition of the {a,(x)}, convergence implies convergence
to . For A, a finite set the modifications needed in the above argument
are obvious. The expansion is evidently unique and hence the set {z.}
is a set of elements of an absolute biorthogonal basis system in X.

COROLLARY. A mecessary and sufficient condition that a locally
convex linear topological space X should possess an absolute biorthogonal
basts system s that there exist a lattice ordering on X which 1s
compatible with the topological and linear structure of X and for
which the following additional conditions are satisfied.

(1) There exists a family {x,}, a e A of elements in X which are
positive, uhich generate a linear space dense in X and such that for every
acA, the set {ye X|0 <y < x,} 1is the line segment joining 6 and x,.

(2) For every ac A, the closed linear subspace L, generated by
the {xg}, B #+ « is a hyperplane mot containing .

(8) Ewery ordered interval I(xz,y) ={zeX|x <z =<y} is compact
and metrizable.

Proof. This is simply Theorem 3 restated in terms of an order
relation.
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It is to be noted that in many of the common function spaces and
sequence spaces, the partial order defined by an absolute basis cone does
not necessarily coincide with the natural order defined in terms of
function values. For example, in the space ¢ of convergent real sequences,
the standard basis system has for its set of basis vectors, the set
% =@1,1,1,--+),2,=@1,0,0, ---),2,=(0,1,0,0, --+), ---. The element
X, — >2.a.@; is positive in the natural order if for each 4, 0 < a; < 1.
However, this element is not positive in the partial order defined by
the basis cone since this implies that all coefficients of the basis vectors
must be nonnegative. In the space ¢ it can be seen that the basis cone
can never coincide with the natural positive cone for any basis since
the natural positive cone has a nonvoid interior while a basis cone, being
determined as the closure of the convex set determined by a family of
extreme rays, always has a void interior for X not of finite dimension.
By a theorem of Kelley and Vaught [5], it can be seen by similar
reasoning that in a real Banach algebra, a basis cone can never coincide
with the cone of elements which are squares.

4. Relation to the theorems of Choquet. Choquet [1,2] has an-
nounced several theorems concerning the representation of points of a
cone K in a locally convex space X in terms of resultant integrals. If
K is a cone in X, a base B for K is the intersection of K with
hyperplane M translated so that it does not contain the origin but which
intersects every ray of K. Let K be a C-cone and assume that K has
a base B which is compact and metrizable. Let E be the set of extreme
points of B. Then Choquet’s theorems state that there exists a one-to-one
correspondence between points of K and Radon measures ¢ whose support
is contained in K such that each x ¢ K is uniquely representable in the

form « = S ydp where y is the function f(y) = y,y € E.
E

Theorem 3 can be rephrased to yield a similar theorem. This
reads as follows.

THEOREM 3'. Let K be an absolute basis come. Let RC K be a
set of elements {x,},ac A, x,er,,acA,x, + 0 for all «. Then there
exists a one-to-one correspondence between points of K and finite
countably additive atomic measures v on R whose support is a countable
subset of R such that for each x e R, the correspondence between x and

Y 18 given by x = gﬂy dv.

It can be seen that if R is countable, the conclusion of the theorem
would read that the stated correspondence would be between R and all
Radon measures on R and would be essentially the same as the conclusion
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of the Choquet theorem.

This theorem would seem to imply that if K is a C-cone satisfying
Conditions (1), (2), (3) of the conditions for an absolute basis cone and
in addition having a compact metrizable base, then Choquet’s theorem
would imply that each P, is compact and metrizable and hence that
the conclusion of Theorem 3" would hold. However, the conditions for
an absolute basis cone do not imply Choquet’s conditions. In the Banach
space ' of real summable sequences, the elements {x,} = {(0,0, ---,
0,1,0, --+)} with 1 in the 4th place form a basis and hence the conditions
of Theorem 3’ hold. However, the cone K of positive elements has no
compact base since the existence of a compact base would imply that
the hyperplane containing the basis elements would intersect K in a
compact set which is obviously not the case since the sequence {x;}
contains no convergent subsequence. Thus Choquet’s hypotheses do not
hold in this case. In fact, it can be seen that Choquet’s hypothesis
of a compact metrizable base can never be satisfied by an absolute basis
cone. Assume that L is a translate of a closed hyperplane which
intersects every ray of K and such that K N L is compact and metrizable.
Let 2, =7, N L,ac A. Then {z,} is a bounded set of elements and it
is possible to form a net from these elements which must contain a
convergent subnet by the compactness of K N L. Assume that lim)\xwk =
z,€ L. Hence x,+ 0. However this implies that z,€ L, for every
a € A since if @ # «, for any A then w,, € L, for every \ and if a = ay,
for some A, the mnet {w.}, M #\, also converges to x, and {x,,} € L,
for » #x,. Thus 2,€ Nweslw = 0 contrary to assumption. Hence an
absolute basis cone cannot satisfy the Choquet conditions.

5. Remarks on other types of bases. If {x,} is a Hamel base, the
convex hull C of the set of rays r, = {x = \x, |\ = 0} generates all of
X. It is easily seen that C is a C-cone since it is the positive cone
for a lattice ordering on X defined by ¥y = ¢ if ¥ = Do@u®s, T = Dubus
where the a,, b, are nonzero for only finite sets of «¢ € A and if a, = b,
acA. By similar reasoning as in Theorem 3, it can be seen that
necessary and sufficient conditions that C be the positive cone determined
by a Hamel base with the order as defined above are
(a) C is the convex hull of a set of rays {r,},a€ A where the
linear space generated by the {r,} is X.

(b) If 4, are two disjoint finite subsets of A and if L, L, are
the linear subspaces generated by {r.},d¢e 4, {r,},ve ", then
L,N L.=8¢.

(¢) For any xz€C, the set P, = C N (x — C) is finite dimensional.

A theorem of Karlin [4] shows that not all separable Banach spaces
possess countable absolute bases and hence, there exist separable Banach
spaces X which contain no absolute basis cones with countably many
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extreme rays. In fact, Karlin’s example of such a space is the space
C(a,b) of real valued continuous functions on a bounded closed interval.

An open question which seems to be considerably more difficult
than the one treated in Theorem 3 is the characterization of nonabsolute
biorthogonal bases in terms of cones or of order relations. If X has a
nonabsolute basis {z,, ¢.} each x is uniquely representable as * = > ,¢.(%)%,
but the sum is no longer necessarily independent of the order of
summation. It is seen as in the proof of Theorem 3, that if {x,} are
elements in a nonabsolute basis and if {r,} are the rays determined by
the {z,} and 6, then the set {r,} satisfies Conditions (1), (2), (3) and the
set K = N,e, H, as defined there is a cone. However (4) is evidently
not satisfied for K since if it were {x,} would be elements of an absolute
basis. In fact, it appears unlikely than K is a C-cone, since in the
proof of Theorem 1, extensive use was made of property (4). It would
be of interest to know a condition replacing (4) which would characterize
K as a basis cone in this case.
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