
GEOMETRIC STRUCTURE OF ABSOLUTE BASIS

SYSTEMS IN A LINEAR TOPOLOGICAL SPACE

R. E. FULLERTON

1. Introduction. Let X be a convex linear topological space over
the reals. Since most of our results are trivial for finite dimensional
spaces, we assume that Xis not finite dimensional and that it is complete.
An absolute bίorthogonal basis system in X consists of an indexed set
of elements {xα} c X, a e A together with a similarly indexed set of
linear functional {φa}aX*,ae A such that

(a) φ^Xβ) = 0 if a φ β, ψω(xΛ) = 1;
(b) each x e X is uniquely expressible in the form x = Σ<* ΦΛχ) x«,

where φa(x) — 0 for all but a countable family of indices a e A and the
sum is independent of the order of summation. We shall investigate
the geometric structure of absolute biorthogonal basis systems and shall
show that the existence of such a system is equivalent to the existence
of a certain type of cone in the space X. This work extends further
the investigations initiated in the author's note [3].

In particular this theorem closely parallels certain recently announced
results of Choquet [I, 2] on the existence and uniqueness of represen-
tations of elements of a cone in X by means of resultant integrals with
respect to Radon measures with supports in the set of extreme points
of a base for the cone. In the last section we discuss the theorems of
Choquet and indicate the parallelism between his theorems and the
theorem discussed above.

2 Basic definitions and notations* We shall define here certain
geometric concepts associated with a linear space which we shall need in the
discussion to follow. If X is any real linear space and if x,y e X, x Φ y,
the segment joining x and y is the set of points {ax + (1 — a)y}f

0 ^ a fg 1. The ray from x through y is the set {ay + (1 — a)x], a ^ 0.
A cone C in X with vertex x is a set such that y e C, y Φ x implies
that the ray from x through y lies in C. A point x e X is an extreme
point of a set A c X if x e A and if for any segment {an + (1 — a)v)
with x = aQu + (1 — ao)v, 0 < a0 < 1, either u or v is not in A. If a
ray r is a subset of a convex set A, r is an extreme ray of A if any
segment s = {an + (1 — a)v}, 0 ^ a ^ 1 with x = aou + (1 — ao)v e r,
0 < α0 < 1 has a subsegment contained in r or either u or v is not in A. A
cone C is a C-cone or minihedral cone if C is a convex cone with its vertex
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as an extreme point and such that for every pair x, y e X there exists
z e X such that (x + C) Π (y + C) = z + C. Several elementary proper-
ties of C-cones should be noted. First, it is evident that any C-cone
generates the space X in the sense that any element of X is a difference
of two elements of C This is true since if x e X, there exists a z e X
with CΓ)(oo + C) — z + C and for every v eC there exists a ue C with
x + u = z + v and x — (z + v) — u where z + v e C, u e C. Secondly, C
defines a lattice order on X in which we define x ^ y if x — y eC and
it is easily verified that if x,y e X, the supremum x V y is the element
2 € X for which (cc + C) Π (2/ + C) = 2 + C. Conversely, it is easily seen
that the cone of positive elements in a linear lattice is a C-cone.

The fundamental cube of Hubert also occurs extensively in the
following discussions. This set can be defined in several equivalent ways.
In general, a cube is the topological product of a set of closed unit
intervals PβIβ, β e B where the points are all functions / : B~> I and a
neighborhood JV/o of f0 is determined by any finite set β19 β2, , βn of
indices and open intervals Jβ. of fo(βi), i = 1, 2, , n with fe NfQ if
f(βi)eJβ. for i = 1, 2, -- ,w. Vhe Hubert cube J*° can be defined as
the topological product of a countably infinite set of unit intervals. The
Hubert cube 7?° can also be equivalently defined as the subset of the
Hubert space I2 for which the ith coordinate lies in the closed interval
[0,1/i]. It is easily proved that the correspondence Φ : 7Ko—> If0 defined
by associating with / e I*° the sequence (/(l),/(2)/2,/(3)/3, •) in /?°
is a homeomorphism onto /K o which also preserves the linear structure
of the cube as a subset of the linear space of real functions over the
integers. It is also well known that the Hubert cube is compact.

A closed half space H c X is a set determined by a linear function
of f e X* such that H = {x e X\f{x) ^ 0}. We define a hyperplane L to
be a set of the form L = {x e X\f(x) = 0}.

3. Absolute basis cones. We shall define the type of cone used to
characterize an absolute basis system and develop several of its properties.

DEFINITION. Let & — {r j, a e A be a set of rays in X satisfying
the following conditions

(1) \J<*eAτ<χ generates a linear space dense in X.
(2) For each a e A the closed linear subspace LΛ generated by the

{rβ}, β Φ a is a hyperplane.
(3) For each a e A, ra Π Lω = θ.
(4) If for each a e A, Hω is the closed half space bounded by LΛ

which contains r α and if K = ΓLe,Λ> then for every x e K,
K Π (x — K) is compact and metrizable.

Then the set K defined in (4) is called an absolute basis cone (a.b.c).

THEOREM 1. Let K be an absolute basis cone. Then K is a C-cone
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with extreme rays {ra}, a e A. Also K is the closed convex hull of the

set U « e Λ

Proof. The proof will follow as a result of four lemmas. K is
evidently a convex cone. For each a e A, let la be the line containing
ra and let {xΛ} be a bounded set of nonzero elements xω er^, a e A.

LEMMA 1. Γ\β*»0Lβ = l«Q for every aQeA.

Proof. Assume that M = Πβ*«0 Lβ contains points not on laQ. Since
R = \JcceArcc generates a linear subspace dense in X, M is included in a
closed linear manifold generated by a subfamily {rβ}, β e Δ c A. Let LΔ

denote the closed linear subspace determined by the {rβ}, Be Δ. Denote
by 9Jί the family of all subsets Δ c A such that M c LΔ. 2ft can be
partially ordered by defining Δx < Δ2 if Lj2 c LAχ. This is a proper
partial order since it is evidently transitive and condition (3) insures
that the correspondence between Δ and LΔ is one-to-one. Let S^ be a
maximal simply ordered subset of 2JΪ. Then the intersection ΔQ of all
elements Δ e ί/^ is non empty and is a maximal element of 2Ji. Also
M c Ljo and no smaller family of rays in {ra} will generate a closed
linear subspace containing M. However, if rcύi e LΔ^ aλ ψ aQ then
rΛγ Π Laγ — θ and since M c LΛl, rΛ l Π M = ^. Hence M a LJQ (~) Lal

contrary to the maximality of Δ{). This yields a contradiction and shows
that fV«0£β0 = ϊ«.

COROLLARY. Γ l ^ e Λ = θ.

LEMMA 2. Lei Kr be the closure of the convex set determined by
the family {r^}, a £ A where {rΛ} satisfies the conditions of the definition.
Then K = Kf.

Proof. Obviously K' c K. Assume that there exists a point x0 e K\K\
This implies that x0 is not the limit point of any net {yy} a X, γ e Γ ,
of elements of the form yy = filial. xa. with a\ > 0, i — 1, 2, , ny,
since all such elements are in K''. For any x e X it is possible to define
a unique set of real coordinates aa{x) indexed by A as follows. Let
aa(x) = sup {a \ x e axω + Ha}. Then | aa(x) | < oo and x e K evidently
implies aa(x) ^ 0 for all a e A. Now let Γ denote the family of all
finite subsets of A ordered by inclusion. Γ is a directed set. For γ e Γ ,
let yy = Σ«67 ^^(^o)^^ Then {yy} is a net with its elements all in Kr.
Also yyeKΠ (x0 — K) for each 7 e Γ\ By the compactness of
K Π (x — K), the net {y7} contains a convergent subnet {̂ /7J converging
to an element yoe K Π (x0 — ̂ ) By using the Hahn Banach theorem,
it can be seen that convergence of a net of elements in X implies
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coordinatewise convergence. Hence lim aa(yΎδ) = aa(y0) for each a e A.
However aa(yΊ) is either aa(x0) or 0 by the definition of yy. Since {7a}
is cofinal with Γ, eventually aa(yΎδ) — aω{%^ for each a e A. Thus
aa(y0) — aa(x0) for each a e A, However, this implies that y0 = x0 since
ô — Vo e ΓicceA^cc = 0. Thus if x0 e K it is the limit of a net of elements

in K' and since K' is closed, K — Kr.

Note. It would be sufficient for this lemma to assume that
K' Π (x — K) is compact instead of condition (4). Whether it is sufficient
to replace (4) by the metrizability and compactness of K' Π (x — Kr) is
not known to the author at present.

LEMMA 3. Let Δ c A, Γ c Abe two complementary sets of indices,
i.e. A = Δ \J Γ, Δ {\ Γ — φ. Let LA, Lv be respectively the closed linear
subspace generated by {rs}, 8 e Δ; {rγ}, j e Γ respectively. Then
Lj Π LΓ = Θ.

Proof. Assume that y e LA Π LΊ. Evidently LΔ c LΊ for each j e Γ
and LΓ c Ls for each 8 e Δ. Since y e LA Π LΓ c Π α e ^ α — ̂ ^ y — θ.

LEMMA 4. If x, y e X and Δ, Γ are complementary subsets of A
then (x + Lj) f) (y + LΓ) contains exactly one point.

Proof. By a translation if necessary, we may assume that y = θ.
We show first that X — LΓ + LΔ. Since for any x e X, there exist
x19 x2e K with x — xλ~- x2, it is sufficient to show that for x e K, x — u + v,
u e LAi v e LΓ. Let {aa(x)} be the coordinates of x as described in Lemma
2 and let {yλ} be the net defined in Lemma 2 of finite linear combinations
of {Xcc} with coefficients aa(x) which converges to x.

If

let

2/λ

uκ

V

NT1

2-Λ
i-Λ

n\

= Σ
τ- !

— V— 2-Λ
Ί 1

where aΛi = aa.(x) if α . e J and αΛ. = 0 otherwise and let ca. — aa.(x) if
ΰCi e Γ and 0 otherwise. Then the nets {πλ}, {vλ} lie in K Γ\ (x — K) and
hence have convergent subnets. However, as in Lemma 2, these con-
vergent subnets converge coordinatewise and hence if l i m ^ ^ — u0,
limμ vλμ = ô then u0 has as its coordinates ajx) if a e Δ and 0 if a e Γ;
v0 has as its coordinates aa(x) if a e Γ and 0 if a e Δ. However, it is
easily seen that each coordinate of the sum of two elements is the sum
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of the coordinates and hence x — u0 + v0. Thus X — LΔ + Lr. Moreover,
Lemma 3 shows that this decomposition is unique.

To finish the proof, consider Lr Π (x + LJ) for any x e X. Since
x — u + v for u e LΓJ v e Lj, x — u — v and since x — u e x + LΔ, v e LΓy

v e LΓ Π (x + LJ) Φ φ. By the uniqueness of u and v, LΓ n (x + LJ) — v
and the intersection consists of exactly one point.

Proof of the theorem. It is sufficient to show that for any x e X,
there exists z e X such that K Π (x + K) = z + K. We construct z as
follows. For each a e A, let aa{x) be the a coordinate of x. If aa(x) ^ 0
let a e J and if aa(x) > 0, let a e Γ. Evidently z / U Γ = A, z ί U Γ = ^.
Define L^, L7̂  as above. Let 2 — L7̂  n {x + LJ). It must be shown that
K Γι (x + K) = z + K. By construction aa(z) ^ 0 for all a e A. Hence
z e K. Also, since x + K is the set of all elements y e X for which
a>Ay) = aΛx)y oce A, zex + K. Hence zJ

ΓKc:KΓ\(x + K).

To show the reverse inclusion, assume that y e K Π (ίc + ίΓ) but
yφz + K. Since y e K Π (x + ίΓ), y e Ha and # e α? - J3"Λ for all α e A.
Since yφzΛ-K, yφz + Ha for some α:0 e A. This implies that
αΛo(2/) < αΛ ϋ0). If α o e Γ , z + ίZα>0 = α; + ίίQJo and y$x + HaQ. Hence
yφx-\-K. \ί a^e Δ, y$z + HωQ = iϊα ϋ and 1/ 0 if. Thus in either case
yφK{Λ (x + if) contrary to assumption. Hence i f n ( # + if) = 2 + if
and if is a C-cone.

To prove that each ra is an extreme ray, if for aQ e A, raQ were
not an extreme ray, then f)β^ωQLβ includes a two dimensional subspace,
contrary to Lemma 1.

THEOREM 2. If K is an absolute basis cone in X, then for every
x e K, the set Px = K Π (x — K) is linearly homeomorphic to a finite
dimensional cube or to the fundamental cube of Hilbert.

Proof. For each a e A, let / ; be the real interval 0 ^ t ^ aa(x)
where ajx) is the a coordinate of x as defined in Theorem 1, Lemma 2.
Let Ax c A be the set of indices in A for which ajx) Φ 0. Then every
y e Px has coordinates {aa(y)}, & e Ax where 0 ^ ajy) ^ ajx)> oceAx.
Thus there exists a one-to-one correspondence between P^ and a subset
of the cartesian product &aI«, & e A,.. The correspondence is one-to- ge
since if yι φ y2 but aa(yi) = cLa(y2) for a e Ax, then yλ-y2e p[ΛeALΛ = ^,
contrary to assumption. Denote the correspondence by Φ : Pz-+ &aIl,
a e Ax.

To show that Φ is a homeomorphism it need only be shown that Φ
is continuous since Px is compact by hypothesis. Let {yλ}, λ e /J be a
net of elements of Px converging to y0 e Px. Let {aa(y>)}, {α«(2/o)}» « e Λx,
be respectively the coordinates of yκ,y0 for each λeyi. If {Φ(yλ)} does



142 R. E. FULLERTON

not converge to {Φ(y0)} in ^ α / « , this implies that for some a0 e Ax,
{a<*0(y\)} does not'converge to aΛQ{yQ). By definition of the coordinates,
this implies that there exists a translate u + LQ5Q of the closed hyperplane
LΛQ which separates y0 from a subnet {yλv} of {yλ}. Hence there exists
a neighborhood U of yQ which lies completely on one side of u + LaQ

and hence contains none of the points {yλj. However, this contradicts
the convergence of {yλ} to y0. Thus Φ is continuous and hence, a
homeomorphism.

It must next be shown that Φ maps Px onto &aI%. Let {aa} be
any element of ^aI

%

a. This implies that 0 ^ aa ^ αα(x), a e Ax. Let
σ = (#!, α2, , αΛ) denote a finite set of indices in Ax. Define {α£} e ^ * / £
as follows. α£. = αΛ i, α { € ( ; and α£ = 0, α 0 σ. Then for every σ, the
element α£ corresponds to an element yσe Px, yσ — S ^ α * ^ ) ^ - The
set {σ} of all such finite subsets forms a directed set under inclusion and
hence the set {yσ}, σ e {σ} is a net of elements in Px with Φ(zσ) — {α£}
for each σ. However, the compactness of Px implies that {yσ} contains
a subnet converging to an element yoe Px. By the construction of the
net {yσ} this implies that aa(y0) = aΛ for every a e Ax. Hence Φ(y0) = {a^}.
Thus Φ maps P x onto ^ Λ / S . Hence Px and ^ Λ / ^ are homeomorphic.
If we now define ba(y) = aΛ{y)laΛ{x) for a e Ax, then the mapping
Φ'(y) = {̂ α(̂ /)l is ^ homeomorphism of Px onto the cube S?aIΛ where
Ia = [0,1] for each α e i r It is easily seen that Φf preserves the
linear structure of Px and hence that Φ' is a linear homeomorphism of
Px onto &*Ja.

To complete the proof, it need only be shown that Ax is a finite or
countable set of indices in A. This follows from the metrizability of
Px. Since Px is metrizable, ^aIa, <x e Ax is also. However, if Ax is
uncountable, it is well known that &aJ« does not satisfy the first
countability axiom and is hence not metrizable. This completes the
proof of the theorem.

THEOREM 3. A necessary and sufficient condition that X possess
an absolute biorthogonal basis system is that X contain an absolute
basis cone.

Proof. We first prove the necessity. Assume that X has an absolute
basis system {xa, φa}, a e A, For each a eA, let rΛ be the ray {kxj,
k ^ 0. Let K be the closure of the convex set determined by the {r^}.
We prove that K is an a.b.c.

Evidently if is a cone and since the {xa} are points of a basis system,
\J«eAr<* generates a linear space dense in K. Hence Condition (1) is
satisfied.

To prove (2), note that for every α e i , LΛ is the null space of a
continuous linear functional φ* and is hence a closed hyperplane. Con-
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dition (3) follows since φa(xa) = 1, φa(Xβ) = 0, β Φ a and hence ra Π La = θ.
To prove that Condition (4) holds, we shall show that for each x e K,

the set Px — K Π (x — K) is homeomorphic to a cube of finite or
countable dimension and hence compact and metrizable. Let x e K.
Then x = ΣΓ=i^«t(»)^«ί or x = Σii=iφ»t(

χ^ι w h e r e Φ*$P) > 0 for all i in
the sum. Assume that x has a countably infinite expansion, since the
proof for the finite case follows from the same type of arguments. For
brevity we shall write x — Σ Γ ^ α ^ . To each y e Px let y = ΣΓ=iί>Λ
The sequence {6J is uniquely determined and it is easily seen that
0 g bi ^ α i f i = 1, 2, . Let 0 : P. -> J*° be defined by

α2 α3

To show that Φ is one-to-one and onto, we must show that every
element of J*° is the image of exactly one element of P x . If
(ζu ζ<2, •) e I*°, let bi = a£i, i = 1, 2, 3, and consider the sum
ΣΓ=iMi If this sum converges, it represents an element of Px which
maps onto the given element of /K o under Φ.

Let P7ΐ>n be the parallelotope with one vertex at θ and with edges
adjacent to θ ending at {α^J, i = n,n + 1, • ,m. By elementary
methods, it can be shown that P™/n is the convex set determined by all
points of the form {Σi^A^^} where the sets {i19 ί2, •• ,ik} run over all
finite subsets of the numbers (n,n + l, ",m). However, by the
unconditional convergence of Σt^A^ΰ f° r a n y neighborhood U of θ
there exists an integer nπ such that VJ=1α j ^ G U for all sets (ί19 i29 , ik)
where i5 > nU9 i = 1, 2, , k. Since Z7 is convex, P™ n c U ίor τn,n> nσ.
Hence, since 0 ^ bt g α̂  for each i, we have P * Λ c Pf Λ for every m, w.
In particular, P™ n c [7 if P™-u c 17. Thus the sequence {Σ?-nM»}
converges to θ if m, π->oo. Hence (P is a one-to-one transformation
of P., onto I**0.

Evidently <P preserves the linear structure of Px. Since I N o is
metrizable and compact, to show that Φ is a homeomorphism we need
only prove that Φ~ι is continuous. Let v e /K o have coordinates (ξ19 ζ29 •)>
0 ^ fi ^ 1. Then (p-1^) = y = ΣΓ-i?Λ^ = ΣΓ=iδ^. Let C/be a neigh-
borhood of θ in X Π Pa,. By the preceding paragraph, there exists an
integer nσ such that if m > ^ , ΣΓ-m î̂ ^ e iZ7 for all choice of {c%) with
0 ^ c{ ^ di. Evidently the mapping ΣΓ-i<?Λ is continuous from the finite
parallelotope Ix x I2 x x Inu; Iά = [0,1], i = 1, 2, , ^ , into X.
Hence there exists a δ > 0 such that (ΣΓ-i^Λ — ΣΓ-iδ^ΐ) e iU for all
finite sequences (c19 c29 , cWί7) for which | b% — c j < δ, i = 1, 2, , nσ.
Thus we have

Σ />™ ,,, — / V 1 /» /v V T ϊ / v l - i - V /»/v — V h nr c TT
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for all sequences c{ such that \c{ — b{\ < ε, i = 1, 2, , nσ. If V is a
neighborhood in J*° for which \ξi — (6Ja{) | < ε/α, α = max a{ for
i = 1, 2, , Wtf- and unrestricted in the other coordinates, then 0 - 1 ( F ) c U
and 0"1 is continuous. Hence Φ is a homeomorphism and P x is compact
and metrizable. This shows that K is an absolute basis cone.

Conversely, assume that X contains an absolute basis cone K. By
Theorem 1. K is a C-cone and hence the linear space generated by K
is X. Hence every element x e X is uniquely expressible as the difference
of two elements of K, i.e., if we consider K as defining a lattice order
on X, then x = (x V θ) — [ — (x A θ)]. Hence to show that the set
{xω} which defines K constitutes a set of absolute basis elements, it
is sufficient to prove that every element of K can be uniquely
represented as a countable linear combination of elements of this set.
Let x € K and Px = K Π (x — K). Let {αα(x)} be the coordinates of x
as defined in Theorem 1 and consider the formal sum Σ ^ i ^ ) ^ * where
as in Theorem 2, Ax (Z A is the set of elements of A for which aa(x) > 0.
By Theorem 2, Px is linearly homeomorphic to a finite cube or to the
Hubert cube JK o . Let /*° be represented as the set {y —
(ζι, ζ*t •) e ί210 ^ fv ^ 1/ΐ, i = 1, 2, •}. Then, by the correspondence
set up in Theorem 2, Aβ is finite or countably infinite and if x —
Σ Γ - I ^ O J O ^ , ««,(»)»«, corresponds to the point yi — (0, 0, , 0,1/i, 0, •)
where 1/i occurs in the ith place. Thus Σ ^ i . M ^ ) ^ corresponds to the
sum ΣΓ=i2/; = (1> i, i , , 1/i, •) e ί2 under the linear homeomorphism.
Since the series ΣZLiVi converges in i2, the series ΣaeAχaΛχ)χ« converges
in X by the definition of the {aω(x)}y convergence implies convergence
to x. For Ax a finite set the modifications needed in the above argument
are obvious. The expansion is evidently unique and hence the set {xa}
is a set of elements of an absolute biorthogonal basis system in X

COROLLARY. A necessary and sufficient condition that a locally
convex linear topological space X should possess an absolute biorthogonal
basis system is that there exist a lattice ordering on X which is
compatible with the topological and linear structure of X and for
which the following additional conditions are satisfied.

(1) There exists a family {xa}, a e A of elements in X which are
positive, uhich generate a linear space dense in X and such that for every
a e A, the set {y e X\θ g y ^ xΆ) is the line segment joining θ and xa.

(2) For every a e A, the closed linear subspace LΛ generated by
the {Xβ}, β Φ a is a hyper plane not containing xa.

(3) Every ordered interval I(x,y) = {ze X\x g z ^ y) is compact
and metrizable.

Proof. This is simply Theorem 3 restated in terms of an order
relation.
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It is to be noted that in many of the common function spaces and
sequence spaces, the partial order defined by an absolute basis cone does
not necessarily coincide with the natural order defined in terms of
function values. For example, in the space c of convergent real sequences,
the standard basis system has for its set of basis vectors, the set
x0 = (1, 1, 1, • •), xλ = (1, 0, 0, .), x2 = (0,1, 0, 0, •), The element
ô — Σ Γ - I ^ Λ i s positive in the natural order if for each i, 0 ^ αέ ^ 1.

However, this element is not positive in the partial order defined by
the basis cone since this implies that all coefficients of the basis vectors
must be nonnegative. In the space c it can be seen that the basis cone
can never coincide with the natural positive cone for any basis since
the natural positive cone has a nonvoid interior while a basis cone, being
determined as the closure of the convex set determined by a family of
extreme rays, always has a void interior for X not of finite dimension.
By a theorem of Kelley and Vaught [5], it can be seen by similar
reasoning that in a real Banach algebra, a basis cone can never coincide
with the cone of elements which are squares.

4 Relation to the theorems of Choquet* Choquet [1,2] has an-
nounced several theorems concerning the representation of points of a
cone if in a locally convex space X in terms of resultant integrals. If
K is a cone in X, a base B for K is the intersection of K with
hyperplane M translated so that it does not contain the origin but which
intersects every ray of K. Let K be a C-cone and assume that K has
a base B which is compact and metrizable. Let E be the set of extreme
points of B. Then Choquet's theorems state that there exists a one-to-one
correspondence between points of K and Radon measures μ whose support
is contained in E such that each x e K is uniquely representable in the

form x = I ydμ where y is the function f(y) = y,yeE.

Theorem 3 can be rephrased to yield a similar theorem. This
reads as follows.

THEOREM 3'. Let K be an absolute basis cone. Let R c K be a
set of elements {xx}, a e A, x« e ra, a e A, xΛ Φ θ for all a. Then there
exists a one-to-one correspondence between points of K and finite
countably additive atomic measures v on R whose support is a countable
subset of R such that for each x e R, the correspondence between x and

v is given by x — \Rydv.

It can be seen that if R is countable, the conclusion of the theorem
would read that the stated correspondence would be between R and all
Radon measures on R and would be essentially the same as the conclusion
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of the Choquet theorem.
This theorem would seem to imply that if if is a C-cone satisfying

Conditions (1), (2), (3) of the conditions for an absolute basis cone and
in addition having a compact metrizable base, then Choquet's theorem
would imply that each Px is compact and metrizable and hence that
the conclusion of Theorem 3' would hold. However, the conditions for
an absolute basis cone do not imply Choquet's conditions. In the Banach
space I1 of real summable sequences, the elements {#*} = {(0, 0, ,
0,1,0, •)} with 1 in the ΐth place form a basis and hence the conditions
of Theorem 3' hold. However, the cone K of positive elements has no
compact base since the existence of a compact base would imply that
the hyperplane containing the basis elements would intersect K in a
compact set which is obviously not the case since the sequence {$;}
contains no convergent subsequence. Thus Choquet's hypotheses do not
hold in this case. In fact, it can be seen that Choquet's hypothesis
of a compact metrizable base can never be satisfied by an absolute basis
cone. Assume that L is a translate of a closed hyperplane which
intersects every ray of K and such that K n L is compact and metrizable.
Let xa = ra Π L, ae A. Then {xa} is a bounded set of elements and it
is possible to form a net from these elements which must contain a
convergent subnet by the compactness of K Π L. Assume that limλxαλ =
x0 e L. Hence x0 Φ θ. However this implies that x0 e Lα for every
a e A since if a Φ aλ for any λ then xaλ e Lα for every λ and if a = α λ o

for some λ0, the net {xa?), λ Φ λ0 also converges to x0 and {xaχ\ e LΛ

for λ Φ λ0. Thus x0 e ΓUeΛ> = θ contrary to assumption. Hence an
absolute basis cone cannot satisfy the Choquet conditions.

5. Remarks on other types of bases. If {xa} is a Hamel base, the
convex hull C of the set of rays r α — {x = \xa | λ ^ 0} generates all of
X. It is easily seen that C is a C-cone since it is the positive cone
for a lattice ordering on X defined by y ^ x if y = ΣαA»#«> χ = Σ«&«#«
where the aa, ba are nonzero for only finite sets of a e A and if a^ ^ba,
ae A. By similar reasoning as in Theorem 3, it can be seen that
necessary and sufficient conditions that C be the positive cone determined
by a Hamel base with the order as defined above are

(a) C is the convex hull of a set of rays {rj, ae A where the
linear space generated by the {ra} is X.

(b) If Δ, Γ are two disjoint finite subsets of A and if Lj, LΓ are
the linear subspaces generated by {roj, δ e Δ, {rγ}, T G Γ , then
Lj n LΓ = Θ.

(c) For any xeC, the set Px = C Π (x — C) is finite dimensional.
A theorem of Karlin [4] shows that not all separable Banach spaces

possess countable absolute bases and hence, there exist separable Banach
spaces X which contain no absolute basis cones with countably many
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extreme rays. In fact, Karlin's example of such a space is the space
C(a,b) of real valued continuous functions on a bounded closed interval.

An open question which seems to be considerably more difficult
than the one treated in Theorem 3 is the characterization of nonabsolute
biorthogonal bases in terms of cones or of order relations. If X has a
nonabsolute basis {xai φ^} each x is uniquely representable as x = ΣvφJp)®*
but the sum is no longer necessarily independent of the order of
summation. It is seen as in the proof of Theorem 3, that if {xa} are
elements in a nonabsolute basis and if { r j are the rays determined by
the {Xa} and θ, then the set {ra} satisfies Conditions (1), (2), (3) and the
set K — ΓϊcceAH* as defined there is a cone. However (4) is evidently
not satisfied for K since if it were {xa} would be elements of an absolute
basis. In fact, it appears unlikely than K is a C-cone, since in the
proof of Theorem 1, extensive use was made of property (4). It would
be of interest to know a condition replacing (4) which would characterize
K as a basis cone in this case.
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