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1. Introduction* Let Mr' be a σ-algebra of subsets of X, and T a
set. Let Ω = Xτ, and let ^ be the tf-algebra of subsets of Ω generated
by the finite cylinder sets, i.e., sets of the form A — {ω e Ω\ω(t^) e Alf ,
ω(tn) e An}9 A19 ,Ane M:'\ Let Po be a probability measure on rsp. Thus
the coordinate variables xt(ω) = ω(t), te T, are the Kolmogorov version
[5] of the stochastic process with joint distributions Fh, •• , ί l(A1, •••,
An) = P0{A}. For various purposes, it is appropriate to enlarge this σ-
algebra and extend the measure. In the present paper two methods of
doing this will be mentioned, and one of the methods will be studied.

[A] Suppose X is a compact Hausdorff space and J<f the Borel
sets. Then Ω is a compact Hausdorff space in the product topology.
A straightforward application of the Stone-Weierstrass theorem and the
Riesz-Markov theorem shows that there is a unique regular measure
on the Borel subsets <3£ of Ω which agrees with Po on ^ , provided
the finite-dimensional marginal measures are all regular. We call this
measure P. This idea is due to S. Kakutani [3], and was discussed in
detail by E. Nelson [8].

[B] By a condition is meant a set-valued function k from T to
£?. For any condition k, we define

Γ(k) = {ω I ω(t) e k(t) for all t e T} , and

Γ(S, k) = {ω\ ω(t) e k(t) for all t e S} ,

S being a subset of T. It is possible to extend Po to a class of sets
of the form Γ(k), as follows.

The following lemma is a straightforward generalization of the
separability lemma in [1], p. 56.

LEMMA 1.1. For any condition k 3 a countable set S c T such
that P0{Γ(S, k) - Γ({t}, k)} = 0 for all t e T.

The proof is a simple exhaustion argument. Such a countable subset
S will be called determining for k.

Let <βt~ be a family of sets with the properties
( i )
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(ii) any countable subfamily of J%Γ with the finite intersection
property (F.I.P.) has nonnull intersection. Such a family will be called
countably compact. If (ii) holds without the countability restriction,
then 3ίΓ is called compact. If a condition k has values in 3f9 it will
be called a .^-condition.

The set of positive integers will be written I. Unions and inter-
sections whose index set is I will be written simply \Jj9 etc. rather
than Uie/> e ^ c The following result can then be proven. It is stated
in [7].

LEMMA 1.2. Let Sn be a determining set for the 3ίΓ-condition kn9

nel. Let Δ = \Jn{Γ(Sn, kn) — Γ(kn)}. Then Δ has inner PQ — measure 0.

is now defined to be those subsets Γ of Ω such that a Γ' in c^
with (Γ - Γ1) U (Γ1 - Γ) subset of a set of the form of Δ in the above
lemma. These sets Γ form a tf-algebra, and the assignment to Γ of
the same measure as the P0-measure of Γ1 determines unambiguously a
measure Pt on <g^, which is an extension of Po. This construction,
based on ideas of Doob and Khintchine [4] is done by A. Mayer in [6],
[7]

REMARK 1.1. Notice that <g^ contains all sets of the form Γ(k),
for any J^-condition k, assigning to such a set the measure P0{Γ(S, k)}9

S being any determining set for k.

REMARK 1.2. If X is compact Hausdorff, 3f the Borel sets,
the compact sets, and Po satisfies the regularity condition of [A], then
<^f c &, and P \ &?% — P#. This is a consequence of the following
(under the hypotheses of the last sentence):

LEMMA 1.3. If S is determining for the condition k, and k(t) is
compact for all t, then P{Γ(k)} = P{Γ(S, k)}.

Proof. By Theorem 2.2 of [S] there is some countable subset Sx

of T such that P{Γ(Slf k)} - P{Γ(k)}. Now, Γ(S19 k) z> Γ(S U S19 k) z> Γ(k)9

so P{l\S U S19 k)} = P{Γ(k)}. But

r ( s , k) = r(S u s19 k) n n.es{r(Sl9 k) - r({β}, k)}.

Thus P{Γ(S, k)} = P{Γ(S U Sx, k)}.
We will deal mainly with the situation where T is a topological

space, and with a certain tf-subalgebra ^ s f of ^:V> where ^ s f is
defined like ίfsf, except that the only conditions k used for 3r*£ will
be those of the form
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k(t) = K for t e U

X for tφ U,

U being an open set in T, and ίΓe JΓ". For such a k, we write Γ(&)
as Δ{U,K). The restriction of P?r to &^t will be called Qx.

If j ^ " " consists of closed sets in a metric space, T is locally com-
pact, and τ is a regular measure on T, then (&%-, Q%) has the con-
venient property that whenever the map t-> xt (where xt(ω) = ω(t))
is measurable in probability, i.e. is continuous in probability outside of
some τ-null set, then the map (ω, t) -> ω(t) can be made measurable
the μ x τ-completion of s>f x ,9~ϊ where J7~ is the Borel sets of T and
(jy, μ) some extension of (&,zeQst). (See [7], Theorem 2.) This
says, in a sense, that £&& is " not too large." On the other hand, it
is " not too small," in the sense that it contains many natural subsets
which are not in c/f\ this will be shown.

In § 2 are given some examples and general remarks concerning
compact and countably compact families.

In [8], with X and T compact metrizable spaces, various natural
subsets of Ω and Ω x T were shown to be in ^ , ^ or product σ-
algebras derived from them (the bar over a σ-algebra signifies comple-
tion with respect to the measure being considered on it). In § 3 and 4
we show (in a somewhat more general context) that these subsets are
in ^5f, £^%-, or the corresponding product tf-algebrans, where 3iί is
a countably compact family of closed subsets of X which contains a
complete system of neighborhoods for each point of X (or, briefly, gen-
erates the topology of X).

2. Some topological considerations.

LEMMA 2.1. Let X be a 1-st countable Hausdorff space. Then
any countable compact family S^ί of subsets of X which generates the
topology of X consists of closed sets only.

Proof. Suppose Ke^Γ, and xφK. Choose a countable family
{Kn\nel} of neighborhoods of x in J%Γ, with f\nKn = {x}. If xeK,
then K Π Kτ Π Π Kn is never empty. Thus, K Π Γ\nKn is nonempty,
so xe K.

REMARK 2.1. If we assume that X actually has a countable base
for its open sets, then clearly any intersection of sets of 3ίΓ can be
reduced to a countable intersection. In particular, it follows that 3f
is actually a compact family, not just countably compact.

LEMMA 2.2. (Alexander). Let ^Γ be a compact family of subsets
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of a set X. Let 3ίΓ be the family of arbitrary intersections of finite

unions of sets of then Jsf is closed under arbitrary intersections

and finite unions, and is again a compact family.

Proof. See [9], p. 139.

COROLLARY 2.1. The most general compact family of sets on a
set X arises by choosing a subfamily of the closed sets, for some com-
pact topology on X.

Proof. Given a compact family SίΓ on a set X, use 3iΓ as the
family of closed sets for X; this gives a compact space.

REMARK 2.2. The property of countable compactness does not per-
sist from 3ίΓ to J ^ . For example, let A be all ordinals up to and
including the first uncountable ordinal aQ. Let B be the rational numbers
{0 1, i, 1/3, •}. Let X = A x B - {(α0, 0)}. Let j *Γ consist of all
sets of the form Kan = {(α1, x)\ax > a, x < 1/n}, where a is a countable
ordinal and nel. Then no countable intersection of sets KΛtn is empty,
so ,3ίr is countably compact. But let Ln = n»<«o#*.» = {(<*o, oo)\x < 1/n}.
Then the Lw have the F.I.P., but Γ\nLn = 0.

In § 3 we shall be considering countably compact families Sf on
separable metrizable spaces X, ^%~ generating the topology of X. Some
examples follow.

( a ) X a Banach space which is separable and a dual, Ĵ Γ" the set
of all closed spheres. This is mentioned in [6],

In this connection, however, notice that the separable Banach space
C of all continuous functions on, say, the closed interval [—1,1], is not
a dual and, in fact, the family of all closed spheres in this Banach
space is not a countably compact family. To see this, let

l i f - l g λ r g O

I

n

o if -1 ^ λ ^ l ,
n

and let ./ ί(λ) = — /»(— λ). Let Kn be the closed sphere of radius 2
about fn — 2, and K'n the closed sphere of radius 2 about fn + 2 . Then

Since f ^ /2 ^ and f[ ^ / ; ^ • , we have Kx Π K[ D iΓ2 n 1Ώ D - ••
Thus, the spheres {Kn, Kl\n = 1,2, •••} have the F.I.P., but there is
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no continuous function in their intersection. The author does not know,
however, whether some J%^ does not exist for C.

(b) An example where the metric space is not complete : let X
be the nondyadic numbers in the unit interval. ,5Γ will be defined as
follows. Let Sn be the set of dyadics of the form k/2n, k = 0, •••, 2*.
Then X = [0, 1] — \Jn Sn. Let Sin be the intersection with X of inter-
vals [a, b], where a = (k + 1/8)1/2% b = (k + 7/8)1/2% k = 0,1, , 2n - 1.
Let .5T = U» ^

To see that St~ generates the topology of X, we must show that any
x e X is an interior point of some interval in _% ,̂ for arbitrarily large n.
But a nondyadic number x is characterized by the property that a zero
followed by a one occurs arbitrarily far out in its dyadic expansion.
Thus, for arbitrarily large n, we can get k\2n + l/2"+2 < x < k\2n + 1/2W+1,
so that x is interior to an interval of J^£.

To see that 3ΐ~ is countably compact, suppose we have a sequence
Klf K2f with the F.I.P. Assume repetitions have been eliminated.
Then no two can come from the same J ^ , since two members of 3ΐl
are either identical or disjoint. Consider now the closed intervals Kn

in [0,11. These have the F.I.P., and are closed in [0,1]. Thus their
intersection is nonempty. Further, let Kne Jsί<n. Then Kn Π Sin = φ,
so (Π* Kn) Π (Um Sim) = ψ. Since im does not repeat itself, and since
S i C & c . . . , we have LL Sim = U. Sn. Thus, (ΠnKn)ΠXφφ. But
this is the same as f\nKn.

(c) A metric space for which no countably compact family can
generate the topology: let X be the dyadic numbers in [0,1], Suppose,
in fact, we had such a family J^Γ Let xlf x2, be an enumeration of
X. Then one could choose a sequence JK> of neighborhoods of xj9K* e J%?
and with the length of Kf less than \\n + j . Let Up be the interior of
Kf. Then xd e U-\ Consider now the set ΓL UJ Uf. This is a Gδ in
the reals, and contains all the dyadics. Then it must contain some non-
dyadics, since the dyadics are not a Gfi. On the other hand, if £ is a
nondyadic in f]n\Jj U}\ then ξ is in some ΓL Upn. Thus {Kpjnel}
has the F.I.P. But f\nΈfn = {£}, since the lengths of the Kpn go to
zero as n-+ ™. Thus f\n K?n = fl» («λ Π -3Γ) = ^.

The question remains open whether, for example, every complete
separable metric space has a countably compact family which generates
its topology.

3 Measurability of various classes of functions. Throughout this
section, let X be a separable metric space ^ the Borel sets. Let
3ίΓ be a collection of sets in ,$f such that
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( a ) j ^ is a countably compact family,
(b) J2Γ* generates the topology of X.

Let T be a compact metric space, and consider £&&, Qsr, as defined in
§ 1. For brevity, we write simply 3>, Q. We remark that the results
of this section extend immediately to the case where T is locally com-
pact metrizable, and separable, since the classes of functions discussed
are defined by their local properties in T.

Let J ^ be a countable subset of 3ίΓ which still contains a complete
system of neighborhoods at each point. Also, let Ksn be an enumeration
of the sets of J^~ of diameter ^ ε. Let Λ(ε, S) = Γ)ses{ω\ E some open
neighborhood U of s and some n such that ω sends U into Ks>n). Finally,
let Φ(ε, S) = {<*>! 3 some open Uz)S and n such that ω sends U into

LEMMA 3.1. Λ(ε, S) and Φ(e, S) are in & for any closed set S
and any ε > 0.

Proof. Let ^ be a countable base for the open sets of T. Let
^ί, ^ί, be an enumeration of the finite coverings of S by sets in
fK Then Λ(β, S) = U U Λ e ^ W ^ε,J, and

e, S) = U.U 4Πσe^ ^ #.. J .

THEOREM 3.1. Γfcβ set of all functions which are continuous at
all points of the closed set S c T is in £gr.

Proof. This set is precisely ΓLΛ(l/m, S).

THEOREM 3.2. For any regular measure v on T, the set of v-
almost everywhere continuous functions is in ζ&.

Proof. Let Vn,m, n,me I, be an enumeration of those finite unions
of sets <2/ such that v{Vn>m) < l\n. A function ω is ^-almost everywhere
continuous if and only if for arbitrary small ε > 0 there is a closed set
S whose complement has arbitrarily small measure, such that ω e Z(ε, S).
But ωeΛ(ε, S)=$ωe/(ε, Ό) for some open set U ~D S. New, S1 is a
union of sets in W. Since S1 Ό U1, and U1- is compact, U1 is covered
by a finite union of sets of <%s which does not intersect S, and thus
has v-measure no greater than that of S. Hence, the set of v-almost
everywhere continuous functions is contained in ΓbΓLLL^l/./, Vn<m).
The converse inclusion is obvious.

THEOREM 3.3. The set of functions whose points of discontinuity
form a first category set, is in £&,
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Proof. L e t O,(ω) = {s | f o r e v e r y o p e n Uss 3 r,teU w i t h
d(ω(r), oj(ί)) > e}. Oε(α>) is a closed set, and increases as ε decreases.
Thus, the set \JΈQOζ(ω) is of first category if and only if each Oz{ώ) is
nowhere dense. Let D be a countable densa subsat of T, and let Dn<m

be an enumeration of the finite 1/m-dense subsets of D(i.e. every point
of T is within 1/m of some point of Dntm, for every n, m). Then fol-
lowing Nelson in Theorem 3.3 of [8], Oε(α>) is nowhere dense if and only
if, for every me I, 02{ω) c some D^m. Thus, ω has a first category set
of discontinuities if and only if

THEOREM 3.4. Let T be a compact interval. Then the set of all
ω with discontinuities of the first kind only, is in 3ί.

Proof. If ω has only discontinuities of the first kind, then for any
ε > 0 one can choose, for each te T, an open interval Rt such that
there are some fixed integers n+ and n~ for which ω(s) e KZy%+ for all
s in (Rt - {t})+ n T and ω(s) e Ks,n_ for all s in (Rt - {t})_ n T. (Note:

(Rt — t){±) denotes the f J*PP^r j of the two intervals into which Rt — {t}

splits.)
Let St be a rational open interval with te StaStc: Rt, and, for

given δ > 0, let Ut be another rational interval, of length < δ, with
teUt\J St. Then ω e Φ(e, (St - Ut)+ n Γ), and ω e Φ(ε, (St - Ut) n T).
Since T can be covered by finitely many of the Su we finally get the
following : let Sζ, £{,\ be an enumeration of the finite coverings
of T by rational open intervals. For any rational open interval S, let
^4(S) be the set of all open rational subintervals of S having length
< 1/fc. Then if ω has only discontinuities of the first kind, we have

ωe n.U n*nβ6ywUι,6^«,mum, (S-U)+r)T)nΦ(iin, (S- uyn Γ)}.
And conversely, if ω has a discontinuity of the second kind at t09 then
there is some integer n such that no matter what open rational inter-
val S one chooses about t0, OJ will oscillate by more that 1/n either in
(S - U)+ n T or (S - U)- n T, provided U is a sufficiently short inter-
val. Thus, the inclusion is an equality.

THEOREM 3.5. The set Θ of pairs (ω, t) in Ω x T such that ω is
discontinuous at t, is in & x &τ{ζFτ being the Borel sets in T). The
function (ω, £)-> a){t)tf x &τ\Θλ-measurable, and a fortiori & x <^-
measurable.

(Note : for a σ-algebra a on a set Z, and a set Zo c Z, we denote
by sf I ZQ the σ-algebra {An Z0\Ae j^}. In case ZQeJzf, we get
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Proof of Theorem 3.5. <?/ is again a countable basis for the open
sets of T. Then we have ΘL - Γ L l U ^ l U W Klin.m) x U]. As for
measurability of the function (ω, t) -> α>(£): let To be a countable dense
subset of T. Let ^ be a finite covering of T by sets of diameter
< 1/fc. Let {̂ ,F I Fe 5̂ "} be a partititon of unity for 5£ Let / be a
continuous function on X Let fk{o)}t)~^ve^kgkiV{t) sup s e r onr /Ws)).
Then fk is ^ x -^-measurable, and, for fixed ω, /fc(ί, ω) is continuous
in £. Furthermore, at all points (ω, t) in θ1, we have Λ(α>, t)-±f(ω(t)).
Thus, f((o(t)) is ^ x , ^ I ©^-measurable for each continuous /. Now :
for any closed set if in X there is a continuous function fκ which is 1
only on that set. Then {(ω, ί) | ω(t) G Z } Π ^ = {(α>, t) | Λ(α>(ί)) = 1} Π β 1,
which is in f̂ x &&T\BL. This completes the proof.

The generalization of Theorem 4.1 of [8] now goes through exactly
as done there, by applying Fubini's theorem. Namely, if v is a regular
measure on Γ, then {ω \ ω continuous at ί} has Q-measure 1 for v-almost
every 14=Φ {ί | ω continuous at t} has ^-measure 1 for Q-almost every
14=φ Θ has Q x ^-measure 0. Similarly, Theorem 4.2 of [8] generalizes
to the present context: if {ω | ω continuous at t} has Q-measure 0 for
each t e Γ, then {ω \ the discontinuities of ω form a cat I set in T}
has Q-measure 1. The proof is gotten in the same way, but substitut-
ing / of Theorem 3.5 above for Nelson's/+. The details will be omitted.
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