ARITHMETICAL NOTES, III. CERTAIN EQUALLY DISTRIBUTED SETS OF INTEGERS

Eckford Cohen

1. Introduction. In this note we shall generalize the following two results in the classical theory of numbers. Let n denote a positive integer with distinct prime divisors p_{1}, \cdots, p_{m},

$$
\begin{equation*}
n=p_{1}^{\theta_{1}} \cdots p_{m}^{\rho_{m}} \quad(m>0), \quad n=1(m=0), \tag{1.1}
\end{equation*}
$$

and place $\Omega(n)=e_{1}+\cdots+e_{m}, \Omega(1)=0$, so that $\Omega(n)$ is the total number of prime divisors of n. For real $x \geqq 1$, let $S^{\prime}(x)$ denote the number of square-free numbers $n \leqq x$ such that $\Omega(n)$ is even, and let $S^{\prime \prime}(x)$ denote the number of square-free $n \leqq x$ such that $\Omega(n)$ is odd. It is well-known [6, §161] that

$$
\begin{equation*}
S^{\prime}(x) \sim \frac{3 x}{\pi^{2}}, \quad S^{\prime \prime}(x) \sim \frac{3 x}{\pi^{2}} \quad \text { as } x \rightarrow \infty \tag{1.2}
\end{equation*}
$$

Correspondingly, let $T^{\prime}(x)$ denote the total number of integers $n \leqq x$ suct that $\Omega(n)$ is even and $T^{\prime \prime}(x)$ the total number of $n \leqq x$ with $\Omega(n)$ odd. Then $[6, ~ § 167]$

$$
\begin{equation*}
T^{\prime}(x) \sim \frac{x}{2}, \quad T^{\prime \prime}(x) \sim \frac{x}{2} \quad \text { as } x \rightarrow \infty . \tag{1.3}
\end{equation*}
$$

The proof of (1.2) is based upon the deep estimate [6, §155] for the Möbius function $\mu(n)$,

$$
\begin{equation*}
M(x) \equiv \sum_{n \leqq x} \mu(n)=o(x), \tag{1.4}
\end{equation*}
$$

while the proof of (1.3) is based upon the analogous estimate [6, §167] for Liouville's function $\lambda(n)$,

$$
\begin{equation*}
L(x) \equiv \sum_{n \leq x} \lambda(n)=o(x) \tag{1.5}
\end{equation*}
$$

In Theorem 3.3 we prove a generalization of (1.2) and in Theorem 3.4 the corresponding generalization of (1.3). The respective proofs are based upon an estimate (Theorem 3.1) corresponding to (1.4) for an appropriate extension of $\mu(n)$ and an estimate (Theorem 3.2) corresponding to (1.5) for the analogous extension of $\lambda(n)$. The proofs of these estimates are in the manner of Delange's proofs [3, $I(b),(c)]$ of (1.4) and (1.5), both being based upon a classical Tauberian theorem (Lemma 3.2) for the Lambert summabillty process. We also require some elementary

[^0]estimates contained in §2, and a lemma on inversion functions (Lemma 2.1).
2. Preliminary results. For an arbitrary set A of positive integers n, the characteristic function $\alpha(n)$ and inversion function $b(n)$ of A are defined by
\[

\sum_{d \backslash n} b(d)=a(n) \equiv $$
\begin{cases}1 & (n \in A) \\ 0 & (n \notin A) .\end{cases}
$$
\]

The enumerative function $A(x)$ of A is the number of $n \leqq x$ contained in A, and the generating function is the function $f(s)=\sum_{n=1}^{\infty} a(n) / n^{s}$, $s>1$.

We shall be concerned with several special sets of integers. Let Z denote the set of positive integers, $k \in Z$. Then P_{k} will represent the set of k th powers of Z, and Q_{k} the set of k-free integers of Z. The set of k-full intergers, that is, the integers (1.1) with each $e_{i} \geqq k$, will be denoted R_{k}. We shall use S_{k} to denote the integers (1.1) in which each e_{i} has the value 1 or k. Finally, the set of integers (1.1) such that $e_{i} \equiv 0$ or $1(\bmod k), i=1, \cdots, m$, will be denoted T_{k}. The characteristic functions $P_{k}, Q_{k}, R_{k}, S_{k}$, and T_{k} will be denoted respectively $p_{k}(n), q_{k}(n), r_{k}(n), s_{k}(n)$, and $t_{k}(n)$; the corresponding enumerative functions will be denoted $P_{k}(x), Q_{k}(x), R_{k}(x), S_{k}(x), T_{k}(x)$. Also let $Q=Q_{2}, Q(x)=$ $Q_{2}(x)$, and $q(n)=q_{2}(n)$. All of the sets defined are understood to include the integer 1.

Remark 2.1. It will be observed that $T_{1}=Z, S_{1}=Q_{2}, S_{2}=Q_{3}$.
In addition to the above notation, we shall use $\lambda_{k}(n)$ to denote the inversion function of P_{k} and $\mu_{k}(n)$ the inversion function of R_{k} or Q_{k} according as $k>1$ or $k=1$. By familiar properties of $\mu(n)$ and $\lambda(n)$, [4, Theorem 263 and 300], it follows that

$$
\begin{equation*}
\mu_{1}(n)=\mu(n), \quad \lambda_{2}(n)=\lambda(n) \tag{2.1}
\end{equation*}
$$

Lemma 2.1. The functions $\mu_{k}(n), \lambda_{k}(n)$ are multiplicative. If p is a prime and e a positive integer, then for $k \geqq 1$,

$$
\mu_{k}\left(p^{e}\right)=\left\{\begin{align*}
1 & \text { if } e=k \neq 1 \tag{2.2}\\
-1 & \text { if } e=1 \\
0 & \text { otherwise }
\end{align*}\right.
$$

while for $k>1$,

$$
\lambda_{k}\left(p^{e}\right)=\left\{\begin{align*}
1 & \text { if } e \equiv 0(\bmod k) \tag{2.3}\\
-1 & \text { if } e \equiv 1(\bmod k) \\
0 & \text { otherwise }
\end{align*}\right.
$$

Remark 2.2. The multiplicativity property in connection with (2.2) and (2.3) completely determine $\mu_{k}(n), k \geqq 1$, and $\lambda_{k}(n)$ for $k \geqq 2$.

Proof. By definition, if $k>1$,

$$
\sum_{d, n} \mu_{k}(d)=r_{k}(n)= \begin{cases}1 & \text { if } n \in R_{k} \tag{2.4}\\ 0 & \text { if } n \notin R_{k}\end{cases}
$$

Hence, application of the Möbius inversion formula yields

$$
\begin{equation*}
\mu_{k}(n) \sum_{d \backslash n} \mu(d) r_{k}\left(\frac{n}{d}\right), \quad k>1 . \tag{2.5}
\end{equation*}
$$

Since $\mu(n)$ and $r_{k}(n)$ are multiplicative, it follows by (2.5) that $\mu_{k}(n)$ is also multiplicative (cf. [4, Theorem 265]). Also by (2.5), $\mu_{k}\left(p^{e}\right)=$ $r_{k}\left(p^{e}\right)-r_{k}\left(p^{e-1}\right)$, from which (2.2) results in case $k>1$. The case $k=$ 1 of (2.2) is a consequence of (2.1). The proof of (2.3) is similar and can be omitted.

We recall next some known elementary estimates for $P_{k}(x), Q_{k}(x)$, and $R_{k}(x)$. Let $\zeta(s), s>1$, denote the Riemann ζ-function.

Lemma 2.2. If $k>1$, then

$$
\begin{gather*}
P_{k}(x)=\sqrt[k]{x}+O(1), \tag{2.6}\\
Q_{k}(x)=\frac{x}{\zeta(k)}+O(\sqrt[k]{x}), \tag{2.7}\\
R_{k}(x)=c_{k} \sqrt[k]{x}+O\left(\frac{1}{x^{k+1}}\right), \tag{2.8}
\end{gather*}
$$

where c_{k} is a certain nonzero constant depending upon k.
The result (2.6) is trivial, (2.7) is the classical estimate of Gegenbauer (cf. [2, §2]), and (2.8) is a well-known result of Erdös and Szekeres (cf. [1]). In particular, we have

Lemma 2.3. If $k>1$, then

$$
\begin{gather*}
P_{k}(x) \sim \sqrt[k]{x}, \quad R_{k}(x) \sim c_{k} \sqrt[k]{x} \quad \text { as } x \rightarrow \infty \tag{2.9}\\
Q_{k}(x) \sim \frac{x}{\zeta(k)}, \quad\left(Q(x) \sim \frac{6 x}{\pi^{2}}\right) \quad \text { as } x \rightarrow \infty \tag{2.10}
\end{gather*}
$$

We now deduce, for application in §3, estimates for $S_{k}(x)$ and $T_{k}(x)$ corresponding to those in Lemma 2.3 for $P_{k}(x), Q_{k}(x)$, and $R_{k}(x)$.

Lemma 2.4. If $k>1$, then

$$
\begin{equation*}
T_{k}(x) \sim \frac{6 \zeta(k) x}{\pi^{2}} \text { as } x \rightarrow \infty \tag{2.11}
\end{equation*}
$$

if $k \geqq 1$, then

$$
\begin{equation*}
S_{k}(x) \sim \frac{6 \alpha_{k} x}{\pi^{2}} \quad \text { as } x \rightarrow \infty \tag{2.12}
\end{equation*}
$$

where
(2.13) $\alpha_{k}=\left\{\begin{array}{l}\zeta(k) \prod_{p}\left(1-\frac{1}{p^{k+1}}+\frac{1}{p^{k+2}}-\cdots-\frac{1}{p^{2 k-1}}\right), \\ \frac{\zeta(2 k)}{\zeta(k)} \prod_{p}\left(1+\frac{2}{p^{k}}-\frac{1}{p^{k+1}}+\frac{1}{p^{k+2}}-\frac{1}{p^{k+3}}+\cdots+\frac{1}{p^{2 k-1}}\right), \\ 1,\end{array}\right.$
according as k is even, k is odd and $\neq 1$, or $k=1$, the products ranging over the primes p.

Remark 2.3. It will be noted that $\alpha_{2}=\zeta(2) / \zeta(3)=\pi^{2} / 6 \zeta(3)$.
Proof. The elementary estimate (2.11) was proved in [1, Corollary 2.1]. The result in (2.12), in the cases $k=1$ and $k=2$, is a consequence of (2.10) and Remarks 2.1 and 2.3. To complete the proof of (2.12) one may therefore suppose that $k>2$.

Under this restriction, we consider the generating function $f_{k}(s)$ of $s_{k}(n)$. In particular, if $s>1$, we have (cf. [4, §17.4])

$$
\begin{align*}
f_{k}(s) & \equiv \sum_{n=1}^{\infty} \frac{s_{k}(n)}{n^{s}}=\prod_{p}\left(1+\frac{1}{p^{s}}+\frac{1}{p^{k s}}\right) \\
& =\prod_{p}\left(1+\frac{1}{p^{s}}\right)\left[1+\frac{1}{p^{k s}}\left(1+\frac{1}{p^{s}}\right)^{-1}\right] . \tag{2.14}
\end{align*}
$$

Since

$$
\sum_{p} \frac{1}{p^{k s}}\left(1+\frac{1}{p^{s}}\right)^{-1} \leqq \sum_{p} \frac{1}{p^{k s}} \leqq \sum_{n=1}^{\infty} \frac{1}{n^{k s}}=\zeta(k s), \quad k s>1
$$

it follows from (2.14) that

$$
\begin{equation*}
f_{k}(s)=\left(\frac{\zeta(s)}{\zeta(2 s)}\right) g_{k}(s), \quad s>1 \tag{2.15}
\end{equation*}
$$

where

$$
\begin{equation*}
g_{k}(s) \equiv \sum_{n=1}^{\infty} \frac{a_{k}(n)}{n^{s}}=\prod_{p}\left(1+\frac{1}{p^{s k}}-\frac{1}{p^{s(k \neq 1)}}+\cdots\right), \quad s>\frac{1}{k} \tag{2.16}
\end{equation*}
$$

the product, and hence the series, in (2.16) being absolutely convergent
for $s>1 / k$. By Dirichlet multiplication [4. §17.1] one deduces from (2.15) and (2.16) that

$$
s_{k}(n)=\sum_{d \delta=n} q(d) a_{k}(\delta)
$$

because $\zeta(s) / \zeta(2 s)$ is the generating function of $q(n)$, [cf. [4, Theorem 3021). Applying (2.7) in the case $Q(x) \equiv Q_{2}(x)$, it follows that

$$
S_{k}(x) \equiv \sum_{m \leqq r} s_{k}(n)=\sum_{d \delta \leq x} q(d) a_{k}(\delta)=\sum_{n \leqq x} a_{k}(n) Q\left(\frac{x}{n}\right)
$$

and hence that

$$
S_{k}(x)=\frac{6 x}{\pi^{2}} \sum_{n \leqq x} \frac{a_{k}(n)}{n}+O\left(x^{1 / 2} \sum_{n>x} \frac{\left|a_{k}(n)\right|}{n^{1 / 2}}\right)
$$

Recalling that the series in (2.16) converges absoltutely for $s>1 / k$, one obtains, since $k>2$,

$$
s_{k}(x)=\frac{6 x}{\pi^{2}} \sum_{n=1}^{\infty} \frac{a_{k}(n)}{n}+o\left(x \sum_{n>x} \frac{a_{k}(n)}{n}\right)+o\left(x^{1 / 2}\right)
$$

so that

$$
\begin{equation*}
S_{k}(x)=\frac{6 \beta_{k} x}{\pi^{2}}+o(x), \quad \beta_{k}=g_{k}(1) \tag{2.17}
\end{equation*}
$$

It is readily verified, using (2.16) with $s=1$, that $\beta_{k}=\alpha_{k}$, which completes the proof of (2.12).
3. The principal results. We introduce some further definitions and notation. A divisor d of n will be called unitary if $d \delta=n,(d, \delta)=1$. The function $\Omega^{\prime}(n)$ is defined by $\Omega^{\prime}(n)=\Omega(g)$ where g is the maximal, unitary, square-free divisor of n. Let $S_{k}^{\prime \prime}$ and $S_{k}^{\prime \prime}$, denote, respectively, the subsets of S_{k} for which $\Omega^{\prime}(n)$ is even or odd, $n \in S_{k}$. Analogously, let T_{k}^{\prime} and $T_{k}^{\prime \prime}$ denote the respective subsets of T_{k} for which $\Omega(n)$ is even or odd, $n \in T_{k}, k$ even. In addition, we shall use $S_{k}(x), S_{k}^{\prime \prime}(x)$, $T_{k}^{\prime}(x), T_{k}^{\prime \prime}(x)$ to denote the enumerative functions of $S_{k}^{\prime}, S_{k}^{\prime \prime}, T_{k}^{\prime}, T_{k}^{\prime \prime}$, respectively.

Remark 3.1. It will be observed that $S_{1}^{\prime}(x)=S^{\prime}(x), S_{1}^{\prime \prime}\left(x\left(=S^{\prime \prime}(x)\right.\right.$, $T_{2}^{\prime}(x)=T^{\prime}(x), \quad T_{2}^{\prime \prime}(x)=T^{\prime \prime}(x)$. In addition, we have, by Lemma 2.1, $\mu_{k}(n)=(-1)^{2^{\prime}(n)} s_{k}(n)$, and in case n is even, $\lambda_{k}(n)=(-1)^{2(n)} t_{k}(n)$.

In addition to the lemmas of $\S 2$ we shall need the following three known theorems.

Lemma 3.1 (cf. [5, 259, p. 449]). For bounded coefficients a_{n}, the series,

$$
\sum_{n=1}^{\infty} a_{n}\left(\frac{x^{n}}{1-x^{n}}\right)
$$

is convergent, provided $|x|<1$.
Lemma 3.2 ([3, p, 38]). If the series

$$
\sum_{n=1}^{\infty} n a_{n}\left(\frac{x^{n}}{1-x^{n}}\right)=S,
$$

converges for $0 \leqq x<1$, and

$$
\lim _{x \rightarrow 1^{-}}(1-x) \sum_{n=1}^{\infty} n a_{n}\left(\frac{x^{n}}{1-x^{n}}\right)=S,
$$

then the series $\sum_{n=1}^{\infty} a_{n}$ converges with sum S provided $a_{n}=O(1 / n)$.
Lemma 3.3 ([7, p. 225]). Suppose that the series $\sum_{n=1}^{\infty} a_{n} x^{n}$ converges for $0 \leqq x<1$ and diverges for $x=1$. If further, $s_{n} \equiv a_{1}+\cdots+a_{n}>0$ for all n, and $s_{n} \sim C n$ (C constant) as $n \rightarrow \infty$, then

$$
\lim _{x \rightarrow 1^{-}}(1-x) \sum_{n=1}^{\infty} a_{n} x^{n}=C .
$$

Theorem 3.1. If $k \geqq 1$, then

$$
\begin{equation*}
M_{k}(x) \equiv \sum_{n \leq x} \mu_{k}(n)=o(x) . \tag{3.1}
\end{equation*}
$$

Proof. By Lemmas 2.1 and 3.1, and the definition of $\mu_{k}(n)$,

$$
\begin{aligned}
\sum_{n=1}^{\infty} \mu_{k}(n)\left(\frac{x^{n}}{1-x^{n}}\right) & =\sum_{n=1}^{\infty} \mu_{k}(n) \sum_{m=1}^{\infty} x^{n m}=\sum_{n=1}^{\infty}\left(\sum_{d \mid n} \mu_{k}(d)\right) x^{n} \\
& = \begin{cases}\sum_{n=1}^{\infty} r_{k}(h) x^{n}=\sum_{n \in R_{k}} x^{n} & \text { if } k>1, \\
x & \text { if } k=1 .\end{cases}
\end{aligned}
$$

By (2.9), the set R_{k} has density 0 ; hence Lemma 3.3 with $C=0$ can be applied to the power series so that

$$
\lim _{x \rightarrow 1^{-}}(1-x) \sum_{n=1}^{\infty} \mu_{k}(n)\left(\frac{x^{n}}{1-x^{n}}\right)=0, \quad k \geqq 1 .
$$

Since $\left|\mu_{k}(n)\right| \leqq 1$, Lemma 3.2 is applicable with $a_{n}=\mu_{k}(n) / n$, and one concludes that

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{\mu_{k}(n)}{n}=0 . \tag{3.2}
\end{equation*}
$$

Put $A_{k}(x) \equiv \sum_{n \leq x}\left(\mu_{k}(n) / n\right)$; then by partial summation,

$$
\begin{equation*}
\left.M_{k}(x)=-\sum_{n \leq x} A_{k}(n)+A_{k}(x)([x])+1\right) . \tag{3.3}
\end{equation*}
$$

Since $A_{k}(x)=o(1)$ by (3.2), the theorem results from (3.3).
Theorem 3.2. If $k \geqq 2$, then

$$
\begin{equation*}
L_{k}(x) \equiv \sum_{n \leq x} \mu_{k c}(n)=o(x) \tag{3.4}
\end{equation*}
$$

The proof is similar to that of Theorem 3.1 and is therefore omitted. Note that (3.1) reduces to (1.4) in case $k=1$ and that (3.4) to (1.5) in case $k=2$.

Theorem 3.3. If $k \geqq 1$, then

$$
\begin{equation*}
S_{k}^{\prime}(x) \sim \frac{3 \alpha_{k} x}{\pi^{2}}, \quad S_{k}^{\prime \prime}(x) \sim \frac{3 \alpha_{k} x}{\pi^{2}} \quad \text { as } \quad x \rightarrow \infty \tag{3.5}
\end{equation*}
$$

α_{k} being defined by (2.13).
Proof. By (2.12), Remark 3.1, and (3.1), one obtains

$$
\begin{aligned}
& S_{k}^{\prime}(x)+S_{k}^{\prime \prime}(x)=S_{k}(x)=\frac{6 \alpha_{k} x}{\pi^{2}}+o(x), \\
& S_{k}^{\prime}(x)-S_{k}^{\prime \prime}(x)=M_{k}(x)=o(x),
\end{aligned}
$$

and (3.5) results immediately.
Similarly, one may deduce from (2.11), Remark 3.1 and (3.4),
Theorem 3.4. If $k>1, k$ even, then

$$
\begin{equation*}
T_{k}^{\prime}(x) \sim \frac{3 \xi(k) x}{\pi^{2}}, \quad T_{k}^{\prime \prime}(x) \sim \frac{3 \xi(k) x}{\pi^{2}} \quad \text { as } \quad x \rightarrow \infty \tag{3.6}
\end{equation*}
$$

Finally, it will be observed that (3.5) becomes (1.2) in case $k=1$; while (3.6) becomes (1.3) when $k=2$.

It is possible to extend (3.6) so as to hold for all $k>1$. Let g^{*} denote the largest unitary divisor of $n \in T_{k}$, such that all prime factors of g^{*} have multiplicity $e \equiv 1(\bmod k)$. Place $\Omega^{*}(n)=\omega\left(g^{*}\right)$, where $\omega(n)$ is the number of distinct prime divisors of n, and let $T_{k}^{*}(x)$ and $T_{k}^{* *}(x)$ denote the number of $n \leqq x$ contained in T_{k} according as $\Omega^{*}(n)$ is even or odd, respectively. Then

Theorem 3.4'. If $k>1$,

$$
\begin{equation*}
T_{k}^{*}(x) \sim \frac{3 \zeta(k) x}{\pi^{2}}, \quad T_{k}^{* *}(x) \sim \frac{3 \zeta(k) x}{\pi^{2}} \quad \text { as } \quad x \rightarrow \infty \tag{3.7}
\end{equation*}
$$

Bibliography

1. Eckford Cohen, Arithmetical Notes, II. An estimate of Erdös and Szekeres, to appear in Scripta Mathematica.
2. - Some sets of integers related to the k-free integers, Acta Scientiarum Mathematicarum (Szeged), 22 (1961), 223-233.
3. Hubert Delange, Théorèmes Taubériens et applications arithmétiques, Mémoires de la Société Royale des Sciences de Liège (4), 16, No. 1 (1955).
4. G. H. Hardy and E. M. Wright, Introduction to the Theory of Numbers, 3rd edition, Oxford, 1954.
5. Konrad Knopp, Theory and Application of In finite Series. 2nd English edition, 1951.
6. Edmund Landau, Handbuch der Lehre von der Vorteilung der Primzahlen, 2 (1909.)
7. E. C. Titchmarsh, The Theory of Functions, 2nd edition, Oxford, 1939.

The University of Tennessee

[^0]: Received May 22, 1961.

