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RADEMACHER SERIES
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1. Introduction. A special case of a result of Kaczmarz and
Steinhaus [4] (Theorem 2 with a = b) shows that if {a{} (i = 1, 2, •••)
is a sequence of real numbers with Σ°Li | a{ \ — + OD and a{ -» 0, then the
Rademacher series ΣΓ=i a>iRi(%) assumes every preassigned real value c
(cardinal number of the continuum) times for x in (0,1]. One object
•of this paper is to refine this result in certain directions. We shall prove

THEOREM 1. // the sequence {a{} is in l2, but not in ll9 then
2Γ=i ciiRi(%) assumes every preassigned real value on a set of Hausdorff
dimension 1.

We shall also prove

THEOREM 2. / / {αj is a sequence of bounded variation
'•(ΣΓ=i I ai — ai~ι I < °°) which is not in lx but α^-^0, then ΣΠ=i α^R^αO
assumes each preassigned real value on a set of Hausdorff dimension
at least 1/2.

In § 6, we apply the method of proof to a problem on the distribution
of digits in decimal expansions of numbers.

In § 7 through 11, we develop a theory of dimension of level sets
for series of the type ΣSLirVβ^α?) where r is a fixed number in the
interval [1/2, 1).

2 Preliminary definitions and lemmas.

DEFINITION 1. The ith(i = 1, 2, •••) Rademacher function is defined
to be Ri(x) — 1 - 2Si(x) (0 < x ^ 1), where e^x) is the ith digit of the
(unique) nonterminating binary expansion of x.

DEFINITION 2. Let X be a subset of Euclidean w-space. Let JS(X)
be a finite or countably infinite set of open spheres {/J (ΐ = 1, 2, •••)
with finite diameters | J{ | whose union covers X and whose diameters
do not exceed e where ε > 0. The Hausdorff outer measure of order s,
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where s is a positive number, is defined as

inf Σ I ̂ T ,
S-*0 J ε(X)

where the summation is extended over the members of J2(X) and inf J g ( x )

is with respect to all admissible Jε(X). The Hausdorff dimension of X
is defined as dim X = inf s^0 {s \ ΛSX — 0}.

DEFINITION 3. Suppose x e (0,1]. Tn(x) shall be the point in Euclidean
w-space whose jth coordinate is given by Ti(x) = ΣΓ=o £in+A%) 2~{ί+1)

(3 = 1,2, . . . ,w).

LEMMA 1. If x is a binary irrational (not of the form pj2k with

p and k integers), then R{i^1)n+j(x) = R^T^x)) for ί = 1, 2, ••• and

j = 1,2, ••, n.

LEMMA 2. If A is a subset of (0,1], then n dim A — dim Tn(A).

Proof. A binary cube (or binary interval in the case of the line)*
is defined as a closed cube in ^-dimensional space whose 2n vertices are
of the form

kn

•-)•

where the δ€ (i = 1, 2, •••, n) assume independently the values 0 or 1̂
the ki are nonnegative integers less than 2m, and m is a positive integer.
The cube is denoted by Wkv k2,.... kn,m or W. For n = 1, I is written in
place of W. It can be shown that an equivalent definition of dimension
is obtained (for a subset of the unit cube [0 ^ x{ ^ 1 (i = 1, 2, , w)]
in w-space) if one replaces in Definition 2 the spheres by binary cubes
and uses the cube edge (l/2m) in place of the sphere diameter.

Let kil2m = Σ ? = i e i 2 " i , where εy is 0 or 1. With the cube WH, k%ι.... kn,m

we associate the closed interval /:

Σ e 2 - ί i J ' 1 ) n + i \ Σ Σ e} 2 - [ ( ^ 1 ) w + i ] + 2 m Λ

and write I— s(W). Let {I*1} denote the set of all binary intervals on
[0,1] of length of the form 2~*n (k = 0,1, 2, •)• s is a one-to-one mapping
between {/w} and the set of all binary cubes in w-space, and hence has
an inverse s~\ We note that l(s(W)) = (e((W))n where I denotes the
length of the interval and e denotes length of the cube edge

We show first that dim Tn(A) <̂  n dim A. It suffices to assume that
A contains no points of the form p/2k (p and k are integers), for if it
did, they could be deleted without changing the dimension of A or
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Suppose positive δ and ε are given arbitrarily. There exists a covering
of A by binary intervals J< (i = 1, 2, •) such that ΣΓ=i (l(WimΛ+8 < ε.
Here we make use of analogue of Theorem 16.1 of [8] for Hausdorff
measures defined using binary cube coverings. Replace the covering
Ii (i = 1, 2, •) by a covering of intervals from {In} by replacing each
interval of /̂  of length 2~Pi by 2pϊ~~Pi intervals of length 2~p< where pi is
the smallest integer greater than p{ which is a multiple of n. Denote
the resulting covering intervals by /? (i = 1, 2, •••)• The cubes ^(JΓ*)
will cover Tn(A) and

Since this holds for each pair of positive ε and δ, dim Tn(A) ^ n dim A.
We now show that dim A <* ljn dim Γn(A). Suppose that positive

•s and δ are given arbitrarily. There exists a covering of Tn(A) by binary
cubes Wi (i = l , 2 , •••) such that Σ^i (β(W,)) d l m ^ U H δ < ε. Let W)
(j = 1, 2, , k(i)) (k(i) ^ Sn) be the binary cubes of edge e{Wl) which
intersect the cube W\ including W{ itself. The closed binary intervals
s(W}) (j = 1, 2, , k(ί); i = 1, 2, •) cover A and

Σ Σ (l(8(W}))){ιln)mmTnU)+S) ^ 3W Σ (e(T70)d i m Γ w U H δ < 3wε .
t = l i = l ΐ = l

Thus dim A ^ (1/n) dim Γn(A). This completes the proof of Lemma 2.
We remark that Lemma 2 has an analogue for the well-known Peano

curve (see [3], pages 457-8) which maps the unit interval into an
^-dimensional cube.

LEMMA 3. // {#,} is in l2, then Σ£=i d%Ri{^) converges almost
everywhere.

This lemma is due to Rademacher. See Theorem 3 in [4].

LEMMA 4. // Σ £ * I α* I — °° an& ai -~* 0> then given any real number
a, there exists a binary irrational a?oe(O,l) such that ΣΓ=iΛiJ!iW — a-

See Theorem 2 in [4]. The proof of this lemma is similar to that
of Riemann's theorem that any conditionally convergent series of real
numbers can be rearranged to converge to any preassigned real number.

LEMMA 5. // ΣΠ=i^i and ΣΓ=i&; are convergent series of real
-numbers, then ΣΠ=i ai + &« ^ s convergent with value Σa^

This is Theorem 3, page 78, of [6].
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DEFINITION 4. A subset A of (0,1] is of type G(n, K, M) (n, K, M
nonnegative integers) if it has the following property. Suppose εf

ni+κ

(i = M, M + 1, •) is an arbitrarily given sequence of 0's and Vs..
Then there exists xeA such that sni+κ(x) = ef

ni+κ (i — M, M + 1, •)•

LEMMA 6. If A a (0,1] is of type G(n, K, M), then dim A ^ 1/n.

LEMMA 6A. // A c (0,1] is simultaneously of types G(2n + 1,1,0),
G(2n + 1,3,0), , G(2n + 1, 2n — 1,0) where n is a positive integer,,
then dim A ^ nj(2n + 1).

Lemmas 6 and 6A follow from Lemma 2.

3 Proof of Theorem 1. Let a be a real number. Let n be an

integer > 1. Let

(xlf £2, , O Σ Σ i2i(«i)α(i-i)n+i = oc\ ,

i=i *=i J

where 0 < x3- ̂  1. Let E' be the subset of E whose points have only
binary irrational coordinates. Let xf — (x[, xr

2, , x'n) be in Έf and let
x be the (unique) inverse image of x' under Tn; i.e., x' = Γw(a?). Observe
that x is a binary irrational number. We have

= ΣΣ
n oo oo w

(1) — Σ Σ a(i-l)n+j R(i-l)n + j\X) — Σ Σ α(t-l
i l i l j l

Lemmas 1 and 5 justify the third and fourth equalities, respectively.
Let β(a, {αj) be the set of all x in (0,1] such that a = ΣΓ=i a>iRi(x). I t
follows from (1) that the a? defined above is in β(a, {αj) and hence that
Tn(β) 3 E'. We now show that dim Er ^n — 1. For some integer
i ( l ^ i ^ n), we must have ΣΓ=i I α ( ί_1 ) n + J | = oo. Without loss of generality,
we take j" = n. Let Ay (i = 1, 2, , n — 1) be the subset of the interval
(0 < Xj ^ 1] where ΣΓ=i «(»-!)«+*• -Bt(^ ) converges and AJ be the subset
of Aj whose points are binary irrational. Let A* = X^^n-X A's be the
Cartesian product of the A\. Suppose x* € A* and x* = (a?*, α;2*, , #*_!).
Suppose Σ*=ϊ Σi°=i Λ*(»i) α<i-Dn+j = ^i β y Lemma 4, there exists a binary
irrational number x* such that ΣΓ=i «(»-!)•+» -B»(«ί) = α: — a l e Thus
Σ?=i ΣΓ^i α«-i,n+i Λ<(»*) = <*ι + « - «! = a. Hence (»ί, α?a*, , α?ί) e Ef.
By Lemma 3, the measure of A5 and AJ is 1. Thus dim A* = n — 1.
But since the projection of Er on the X^jsn-iXj hyperplane includes
A*, dimE'^n-1.
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Using Lemma 2, we have dim β(a, {a{}) — (Xjn) dim Tn(β(a, {α<})) ^
(1/n) dim E' Ξg (1/n) (n — 1) = 1 — (1/ri). Since this holds for every
integer n > 1, the theorem follows.

4. Proof of Theorem 2 Let % be an integer > 1. We can assume,
without loss of generality, that the a{ are positive. Since {α̂ } is not in
ll9 at least one of the 2n + 1 sequences {α(2n+1)ί_2n}, { G W I H - ^ - D } , ,
{<x>utn+i)i} (i = 1, 2, •) is not in i1# We suppose, without loss of generality,
that {cL{2n-ri)i} is not in llm We take s{ — ± 1 . Choose s(2w+i)ΐ-(2n-i) (i —
0, 2, 4, , 2n — 2; i = 1, 2, •) as an arbitrary sequence of + l 's and
— Γs except that an infinity are — 1 . Put s(2»+i)*-<2n-i-i) = —s(2n+1)ί_(2n_y).
liie series ^in^i s(2?t+1)ί_(2w_:? ) ci^n+Di-^n-o) (̂2»+DΪ—ΦΛ—i—l) ̂ (2w+i)i—(2»—i—l) con-
verges since 2 (αί: — a^j) converges absolutely and hence any subseries
X ' (at — α -j) converges absolutely. Call its value a2n-ju

Now let a be the preassigned value and let ar — a — ΣT=o2 <*2n-j-
Choose, by Lemma 4, s(2n+1H — ± 1 so that X si2n+ίH ai2n+lH = a\ With
these choices for sif ΣΓ-i s^ — a. Remembering that e^x) = (1 — Ri(x))l2,
from Lemma 6A, we have that the set on which X diR^x) — a has
dimension at least n/(2n + 1). Since n is an arbitrary integer > 1, the
theorem follows.

5 Remarks •
1. Theorem 1 could be slightly improved as follows. We could

consider the sets /3(τ,δ, {αj) of x where for preassigned numbers
7 and δ (-00 ^ 7 S δ ^ +CXD), I m . ^ Σ Γ ^ i ^ ^ ) = δ and
lim^̂ oo ΣΓ=i <LiRi(%) = 7. If α? is in i2 but not in ll9 then
dίm/3(7,δ, { α j ) - l .

2. It might be interesting to investigate the measure of β(a, {αj)
under the hypothesis of Theorem 1. It might also be interesting
to determine, if possible, the dimension function (dimension in
sense of [2]) of β(a, {αj).

3. The conclusion of Theorem 2 is not as precise as that of
Theorem 1. However, it may be the best possible conclusion.

4. The function sequence {(&*??<(#)} is a probablistically independent
function sequence. No explicit use of this property is made,
but we believe that this property is implicitly used. We hope
later to consider extensions to other probablistically independent
function sequences; also extensions to certain lacunary trigono-
metric series should be considered. We note that Rk(x) = sign
{sin 2& πx}.

6 Application. Using the method of proof of Theorem 1, we prove

THEOREM 3. Let L(x) = ϊ ί m ^ (1/n) 2?-i εi(%) a n d L(χ) =
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limn->o. (1/n) Σ?=i «<(»), where xe(0fί]. Let B == {x\Lx > Lx). Then

dim B = 1.

Proof. We shall show that dim {x | £(&) - L(x) ^ (1/fc)} ^ (fc - l)/fc,
where fc is an integer > 1. Let Bs = {#,- | L{xά) = L(Xj) = 1/2; 0 < α?,- < 1}
(1 ^ i ^ fc - 1) and # * be the Cartesian product of all the Bά. The
linear measure of Bά is 1. Now fix an (xu x2, , xk^) in E*. Let £?*'
be the subset of E* whose points have binary irrational coordinates.
Choose xk in (0,1) such that L{xk) = 1 and L(xk) — 0. For example, xk

could be the decimal (base 2)

•110 0 0 0 ••

Let ίJ be the subset of the unit cube (xlf x2, , xk) (0 ^ #,,-^ 1,1 g j g fc — 1)
such that (x^x^ iXjt-JeE* and xk as chosen above, Obvious^,
dim E = fc - 1. We have, for # € A = {# | Tn(x) e E},

= x Σ - Σ eyt+ll(a;) + ^ Σ
/C U=i W 3 = 0 n i=i

Thus,

Similarly,

2

Since J5ZD{OJ | L(x) — L(x) ^ l//k}, we have, using Lemma 2, dim J5 ̂  dim A =
1/fc dim E = (l/fc)(fc - 1) = 1 — 1/fc for every integer fc > 1. The theorem
follows.

7. Geometric series. In § 7-11, we investigate the Hausdorff di-
mension of the set

β(a, {r1}) = {x\Σ> r'RAx) = a; 0 < x ^ 1} ,
i=l
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where r is a fixed number in (1/2,1), and — ΣΓ=i^ < cc < ΣΓ=i^ The
sets β are closed, but not necessarily perfect. Since Σ£=i rlRi{x) converges
absolutely, it is sufficient to consider the sets βχ(θL,r) = {x | ΣΠ=i r%(x) —
a; 0 < x ^ 1} with 0 < a < ΣΠ=i r*- Since the dimension of a set is not
changed by adding to it a countable set, we add to βx(oL,r) those binary
rationale p/2fc (p,k are nonnegative integers) for which ^Γ=i r iε (p/2&) =
<z (0 ̂  p/2* ^ 1), where εj(p/2fc) is the ith digit of the finite binary
expansion of p/2k. For the remainder of this paper we take a e (0, ΣΓ=i r 0
We take log = log2.

8* Preliminary lemmas.

DEFINITION 5. For xe(0,ΐ\ and 2"llin"1) < r <; 2~1/n with w a fixed
integer > 1, we define Tn,r(x) as the point in w-space whose i th coordinate
is given by

(2) TL(x) = (1 ~ rn) £ ein+j(x) r** (j = 1, 2,..., n).
ΐ - 0

If a? is of the form p/2fc (p,jfc integers), TJ

nιr(x) shall be two valued;
one value is given by (2) and the other value is given by (2) with
εin+j(x) replaced by ε'in+j(x) arising from the finite binary expansion. In
addition, Tir(0) = 0 (j = 1, 2, , n).

LEMMA 7. If A is a subset of [0,1], then dim A = | log r | dim ΓΛιr(A).
The proof is similar to that of Lemma 2.

DEFINITION 6. Suppose r S 2~1/u. CJ. is the Cantor set of constant
dissection constructed as follows. Divide the closed interval [0,1] into
three intervals by the points rn, 1 — rn and remove the open middle
interval of length 1 — 2r\ Repeat this process on the remaining left
and right intervals, removing middle intervals of length (1 — 2rn)rn.
The process is continued indefinitely. The set remaining is C\. Cn

r is
the Cartesian product of C\ with itself n times.

DEFINITION 7. If 2-1/{*-1) < r ^ 2~1/π, lTtΛ is the w-space hyperplane:

LEMMA 8. Γw,r([0,l]) = Cn

r.

Proof. Suppose ze Γn r([0,l]). The coordinates of z are given by
expressions of type (1 - rn) Σ eir%i a n d hence are in Cn

r (see [9[). Thus,
^,,.([0,1]) c Cn

r. Now suppose z e Cn

r and z = (α ,̂ a?3, , a?n). There exist
εj = 0 or 1 such that x, = (1 - rTC) ΣΓ=i Φni (i = 1, 2, , w). Let α? =
Σ Γ = i Σ M ^ : 2 - ( Λ ί + j ) . At least one of the values of Tn>r(x) is z. Thus,



42 WILLIAM A. BEYER

ze Tn,r([O,l]) and hence C; c Γ..r([O,l])

LEMMA 9. Except possibly for a countable set, T

ιr,« n Cί.

Proof. Let z e lrtΰύ D Cn

s and z = (^, a?a, , &n)

Since 2 e lrtOύ, ΣJU r X = α ( ! — r *) s ί n c e * e c?> α< = (1 — ^%>
Σf=1 εj r*^-" (i = 1,2, •• ,w) with e} = 0 or 1. Possibly only a finite
number of the ε) are different from zero (see [9]). Choose x —

If all the ε's but a finite number are zero, then (a) ej = ε'Mi_1)+i(ίc).
Otherwise, we have (6) ε* = εw(i_1)+i(x). In case (6),

Σ r / r Ui __ V V P ^ V ( H ) + t _ V V pV 1 ί ( H ) + i

'i\tΛ/Jr — JLΛ Z-L c»(jf—i)+i\ tΛ'/' — ^ L J JL-X <='jr

n °° n <χ> n ^

1 'sp ΐ 1

A similar computation holds in case (a) with ε^x) replaced by ε (#). Hence
z e βx(ayr). Also for this x, one of the values of TnιT(x) is z. At most
a countable number of x can have two values for Tn>r(x). Hence, except
for a countable number, z — Tn,r(x) e Tn^β^y^r)). Therefore, except for a
countable set, ϊr>α5 Π C g TV^/SXα^r)). Similar work shows that except for
at most a countable number of values of TUyr{β)y Tntr{βλ{afr)) gΞ ϊrtfl> Π Cn

r.

LEMMA 10. dim Cn

r = 1/| log r | .

This follows from Theorem 5 of [2],

9. Case where r is a root of 2. We consider the case r = 2~1/?*
with n an integer > 1 and obtain

THEOREM 4. dim β1(a,2-lln) = 1 — 1/n.

Proof. Suppose w > 1. In this case, Cn

r is the unit cube and
άim(l2-i/ntC, Π C;) = n — 1. Using Lemmas 7 and 9, we have

dim β1(a92-lln) = | log 2~1/w | dim ΓΛ r(A) = — dim (ί9i/n a n C?)

If tt = 1, Σ βi(»)^* = Σ ε;(#)2~* assumes every value on (0,1] exactly
once.
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10. Bounds on dimension of βλ.

THEOREM 5. For 1 > r g: 1/2 and for almost every a, dim /3x(α,r) t=*
log 2r.
// 2-(1/" ^ r ^ 2-1/(%-1} /or w > 1, then dim &(«,?•) ^ 1 - 1/w /or
every a.

Proof. From Lemma 7, dim Γnr([0,l]) = 1/1 log r |. Marstrand's
theorem [7], when generalized to n dimensions, states that, for almost
every α, the hyperplane lr>a intersects the set 2Vr([0,l]) in a set of
dimension g l/ | logr | — 1. Thus, from Lemmas 7 and 9, dim (&(α,r)) =
! log r I dim Tn,rφx(a,r)) = | log r | dim (Zrιβ n Cn

r) ^ | log r | (1/| log r | - 1) =
log 2r.

We now prove the second part. We need to show that the dimension
of la>r Π Cn

r is less than or equal to the dimension of Cl~\ Roughly,
we proceed as follows. Cn

r~
ι is a perfect set constructed in Cantor fashion

from nested cubes which we call W\]~λ (j — 1, 2, •••)• These are the
cubes of edge rnmi (m3 a positive integer) which are the (n — l)-dimensional
Cartesian products of the closed non-middle intervals used in constructing
C\. We denote by Wn

ά the corresponding ^-dimensional cube whose
base is W7-'1. We show that it requires at most 2n "translates" of each
Wn

5 t o cover lr,Λ ΓΊ Cn

r.
For arbitrary positive ε and ε, there exists a subsequence of the

WΓ1 such that

w h e r e Σr i n d i c a t e s s u m m a t i o n o v e r a s u b s e q u e n c e of j = 1, 2, •••, a n d
I Wnfι\ d e n o t e s c u b e e d g e . Consider o n e of t h e c u b e s W7-"1 (j = 1, 2, -),
say WΓ1. L e t

{{k[ + δλ)rnmι, {k\ + K)rnm\ , (fcU + K-ι)rnmι)

be the 2Λ~1 vertices of Wτn-u Here the δ{ assume independently the values
0 or 1, and the k\ are certain integers.

The xn coordinates of the intersections of the lines in n-space x{ =
(k\ + δ^rnmJ (ί = 1, 2, , n — 1) with the hyperplane lr,a are given by

xn == ( ) Σ
L ΐ=i

The extreme values of these intersections are

a;,0, = ϊa(l — rn) — Σ r%rnmA/rn

and
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l - rn) - Σ *•'(&* + l)r n

We have

xl — xl = — Σ rV*Wι ^ rnmjrn^ι __ r ) g

Let #(%) be three more than the largest integer in 2/(1 — 2~1/w).
Since | TF?-1! = r*m |, to each W"'1 there corresponds a set of at

most g(n) ^-dimensional cubes of side rnmι, say W*lΛ, Wn

lι2, • ••, W*ttH such
that U Γ=i U 5("ί TF?iP covers ϊ^^ n Cn

r and

Σ Σ I wu\*lm0?~1+t = g(n) Σ I TFr1!'11"^"^8 ^ ̂ ) δ .
ί = l P = l i = l

Hence, dim ίΛ,r n C ; ^ dim C?"1 = (^ - 1)/1 log rn\.
Thus, using Lemma 7, we have

dimβ1(a,r) ^ | l o g r | dim(Zr,Λ n C ; ) ^ l - 1/n .

We shall show that there are members of the exceptional set of a
in Theorem 5. Take r = ( i / ¥ - l)/2 and a = ΣΓ=o r3 ί + 1 = r/(l - r 3).
Note that for this r,r = r2 + r3. Now let A be all those a? in (0,1] for
which either eH+1(x) = 0, ε3ί+2(ίc) = ε3i+3(^) = 1 or ezi+1(x) = 1, ε3t+2(^) =
ε3i+3(a;) = 0 independently for i = 1, 2, . Then A is of type G(3,1,0)
in the sense of Definition 4. For any xeA, Σ£=i εΐ(#) (Cl/ΊΓ — l)/2)* = α
and dim A ^ 1/3. But log a (τ/T - 1) = -31. We remark that if r =
(l/ΊΓ — l)/2 and a = ΣΓ=of4Λ+1, then it can be shown that dim/3(α,r) ^

11* Additional theorem.

THEOREM 6. Let (i/ΊΓ — l)/2 < r < 1. ΓAβw dim β^a.r) ^ 1/n
-Wr is ίfcβ ίβαsί integer n0 such that n0 > [log(2r — 1) — log(r2 -f r — 1)]/
(—logr).

Note that as r -> (i/"5" — l)/2+, w-> oo.
To prove the theorem, we need two lemmas.

LEMMA 11. If a monotone decreasing sequence {αj of positive
terms has the property that αf ^ ΣΓ=;+i ai < + °° / o r α ^ >̂ * ^ e n et er^
ct(O < α ^ Σi7=ιaί) c a n be expressed as a = Σ'^i^i, where Σr indicates
some of the terms possibly are omitted from the sum. Further, Σ* can
be required to have an infinite number of terms.

The first sentence of the lemma is stated essentially in [5, page 547],
except that there the case of Σ (ί)α{ is discussed. But one can write
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(i)ai = Σa{ + Σ(t)ai. The second sentence of the lemma should be
obvious.

LEMMA 12. If (i/lΓ — l)/2 < r < 1 and n is a positive integer such
that rn < (r2 + r — l)/(2r — 1), then Σ/%i ri [where Σ" indicates that
the terms of the form rni+1 (i — 0,1, 2, •) are omitted] has the property
that r * < Σ ' % ; + i ^ .

Proof. Σ*'%i+i rj = Σ Γ - +i r ' ~ ^ r™+1 where ΣΌ is over all v such
that nv + 1 ̂  i + 1. Let t>0 be the smallest v allowed. Then

1 - r n "" 1 - r

r

1 — r 1 — rn

Therefore Σ"Γ=ί+i rJ > r' i f rK1 ~ r) ~ rl(1 ~ r%) > 1, a n d hence if
r/(l — r11) < (2r — 1)/(1 - r) which reduces to rn < (r2 + r - l)/(2r — 1).

We now prove Theorem 6. Let

a2 = r2 + r3 + * + r71 + rίl+2 + + r2n + r2'^2 + .

Case I. Suppose 0 < a < a2. Let

oo

Then

Let o) = {Xι\f{xd < a)- Since lima.1_>o+/(a?1) = 0, α> contains an open
binary interval ft)* = (0,(1/2°)) where q is an integer. Choose xϊ e ω*
and let α* = /(#ί) . Note that α — α* < α < a2. By Lemma 12 and
then Lemma 11, there exist ε£ — 0,1 (k = 2, 3, , n, n + 2, ,
2w, 2n + 2, •) (for infinitely many kf e'k = 1) such that

ε^r2 + + ε'nr
n + ε;42r

w+2 + + e[nr
2n + = a - α* .

Choose x = ΣΓ=i et*2-% where εf^1)n+1 = s^xf) (i = 1, 2, 3, •), and ε* =
εj (i = 2, 3, , w, rc + 2, , 2ra, 2% + 2, • •)• Then ΣΓ=i e?r* - α* +
α — α* = α. Thus, it is possible to choose ef^1)n+1 (i > q) independently
(except that infinitely many are 1) so that ΣΓ=i e*rί = ̂  Hence ^ ( α , r)
includes a set 4̂ of type G(n, 1, (?) which, by Lemma 6, has dimension

II. Suppose a2 ^ a. Let
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ω = {Xl\a - a2 < f(x$ .

Since a < ax + a29 a — a2 < αx. Also lim^x-/^) = ax. Therefore, ω
contains an open binary interval ω* = ((2q — l)/2α,l). Choose xf e ωf and
let α* = f(xι). Then α — α* < α — (α — a2) = a2. The proof is then
completed as in Case I with ω* in place in α>*.

We remark that Theorem 6 can be generalized to other absolutely
convergent Rademacher series Σ?=i (liR^x); namely, those which satisfy
conditions of the form 0 < a{\Σά>i a3- < (τ/5 — 4/w — l)/2 for a fixed
integer w > 1 and {αj (i = 1, 2, •) a positive monotone sequence.

THEOREM 7. If r ^ 2~1/n, then dimβ1(a, r) ^ 1 - 1/w.

The details of the proof will not be given since it is similar to that
of Theorem 6. Since rn ^ 1/2, given a, there exists M such that ein+j —
0,1 (l^ j ^ n — 1, i> M) can be chosen independently and then
εin+j [ ( H i ^ M , H j ^ w - l ) and (j = n, i = 1, 2, •)] determined so

Added in Proof. A sequel to this paper will appear in Proc. Amer.
Math. Soc.

REFERENCES

1. H. G. Eggleston, Sets of fractional dimensions which occur in some problems of number
theory, Proc. London Math. Soc. 54 (1953), 42-93.
2. F. Hausdorff, Dimension und ausseres Mass, Mathematische Annalen, 79 (1918), 157-179.
3. E. W. Hobson, Real Variables, Third Edition, Harren Press, 1950
4. S. Kaczmarz. and H. Steinhaus, Le systeme orthorgonal de. M. Rademacher, Studia
Mathematica, 2 (1930), 231-247
5. R. Kershner, and A. Wintner, On symmetric Bernoulli convolutions, Amer. J. Math.
57 (1935), 541-549.
6. K. Knopp, Infinite Sequences and Series, translated by F. Bagemihl, Dover, 1956.
7. J. M. Marstrand, The dimension of Cartesian product sets, Proc. Cambridge Philosophical
Soc. 50 (1954), 198-202.
8. M. E. Munroe, Introduction to Measure and Integration, Addison Wesley, 1953.
9. A. Zygmund, Trigonometric Series, Cambridge, 1 (1959), 194-195.

PENNSYLVANIA STATE UNIVERSITY

LINCOLN LABORATORY, MASSACHUSETTS INSTITUTE OP TECHNOLOGY




