
THE GENERALIZED WHITEHEAD PRODUCT

MARTIN ARKOWITZ

Introduction. In this paper we investigate an operation which is
a generalization of the Whitehead product for homotopy groups. Let
π(R, S) denote the collection of homotopy classes of base point preserv-
ing maps of R into S, let ΣR denote the reduced suspension of R, and
let R ^ S be the identification space R x S/R V S (see § 1 for complete
definitions). Then this generalized Whitehead product (written GWP)
assigns to each a e π(ΣA, X) and β e π(ΣB, X) an element [a, β] e
π(Σ(A & B), X), where A and B are polyhedra and X is a topological
space. In the case when A and B are spheres [a, β] is essentially the
Whitehead product. In this paper we generalize known results on
spheres and Whitehead products to polyhedra and GWPs.

The paper is divided into six parts. After the preliminaries of § 1
we present two definitions of the GWP in § 2. The first definition,
which was given by Hilton in [8 pp. 130-131], is closely related to a
commutator of group elements. The second definition is essentially a
generalization of the ordinary Whitehead product. It first appeared,
stated in the language of carrier theory, in a paper by D. E. Cohen
[3]. We prove in Theorem 2.4 that these two definitions coincide. This
generalizes a result of Samelson [11 p. 750].

In § 3 we establish some properties of the GWP such as anti-com-
mutativity and bi-additivity. With the exception of Proposition 3.1 the
results of this section have been obtained by Cohen [3]. However, the
proofs that we give are based on the first definition and facts about
commutators. Moreover, we believe that our proofs are quite elementary.

In the next section we show that ΣA x ΣB has the same homotopy
type as the space obtained by attaching a cone by means of the GWP
map. We then deduce a few simple consequences of this. In § 5 we
consider the different ways that the GWP may be trivial. We study
the following situations: ( i ) [α, β] — 0 (ii) the GWP map is null-
homotopic (iii) X is a space in which all GWPs vanish. With regard
to (iii) we see that such spaces are not necessarily iJ-spaces.

The final section is devoted to a product which is dual (in the sense
of Eckmann and Hilton) to the GWP. Two definitions of the dual prod-
uct are given and they are shown to be equivalent. We also indicate
some properties of the dual product.
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1. Preliminaries* In this section we recall some facts about homo-
topy theory. The general reference is [8] (see also [4]). Throughout
this paper we consider topological spaces with base points. The base
point is always denoted by * but will often not be explicitly mentioned.
By a polyhedron we shall mean the underlying space of a locally-finite,
connected CW-complex [13] with some vertex as base point. All maps
and homotopies are to preserve base points. If R and S are spaces
(with base points) then π(R, S) denotes the collection of homotopy clas-
ses of maps of R into S. If /, g : R -• S are maps then / ~ # signifies
that / and g are homotopic. The homotopy class of / : R-> S is written
{/} e π{R, S). We denote by 0:R-+S the constant map which is de-
fined by 0(12) = * e S.

If / denotes the closed interval [0,1], then cone on a space R, TR,
is the space obtained from R x I by " factoring out" the equivalence
relation (r, 1) ~ (r', 1) for all r, r' e R. The base point of TR is (*, 0).
(Note that a point in an identification (quotient) space is designated by
its pre-image under the identification map.) Clearly R is embedded in
TR by the map r -> (r, 0). We also consider CR, the reduced cone on
R, This is the space obtained from R x I by pinching 12 x 1 U * x I
to * briefly, CR — R x IIR x 1 U * x /. A third important identifica-
tion space is ΣR, the reduced suspension of 12. This space is defined
by ΣR = 12 x 1/12 x 0 U 12 x 1 U * x I or, equivalents, by ΣR = C12/12.
Notice that T, C, and Σ can be applied to maps. For example, if / :
R-+S is any map, then Σf:ΣR-+S is defined by Σf(r,t) = (f(r),t).
Thus we have a transformation Σ* : π(R, S)->π(ΣR, ΣS). We also define
ΩS, the loop space of S, as the collection of maps l:I-+S with the
compact-open topology such that 1(0) = * = 1(1). Of course we may
iterate suspensions and loop spaces and define, for any integer n > 1,
Σ*R = Σ(Σn~xR) and ΩnS = Ω(Ωn~1S). We also set i;o12 = 12 and Ω°S = S.

In [8 p. 4] it is proved that π(ΣR, S) has group structure. The
product (or sum) of two maps /, g : ΣR - > S is a map f g: ΣR -> S
defined by

(/ g)(r, t) = /(r, 2ί) for 0 ^ t ^ i -

= g(r, 2ί - 1) for — £ t ^ 1 ,

where r e R and t e I. The inverse of a map / : ΣR ~> S is a map f'1
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(or - f):ΣR-+S defined by f-\r, t) = f{r, 1 - ί). This product and
inverse provide π(ΣR, S) with group structure.

PROPOSITION 1.1. For all spaces R and S, the group π(ΣR, S) is
abelian if

( i) R is a suspension
or

(ii) S is an ίf-space.
See [8 pp. 5-6] or [7 p. 377].
It is also not difficult to show that π(R, ΩS) is a group, for all R

and S (see [8 p. 2]). Furthermore, there is a transformation which
assigns to a map / : ΣR-+ S, a map κ(f) : R-> ΩS defined by ιc(f)(r){t) =
f(r, t).

PROPOSITION 1.2. The transformation K* : π(ΣR, S)-+π(R, ΩS) de-
fined by £*{/} = {*(/)} is a natural isomorphism.

Next if h : S-> S' then for every space i? there is an induced trans-
formation K : π(R, S) -» π(R, S') defined by h*{f} = {&/}. If i2 is a
suspension then Λ* is a homomorphism. Dually, if k : R' -> R then for
every space S there is an induced transformation fc* : π(R, S)-*π(R', S)
defined by k*{g} = {gk}. If S is a loop space then fc* is a homomorphism.
Observe also that for k:R->Rr and any space S, (Σk)* : π{ΣR\ S) ->
π(ΣR, S) is a homomorphism.

For any two spaces R and S we define R V S to be the subset
Rx*{J*xSoίRxS. We then define R >& S as the quotient space
iϋ x S/JS V S. We also define the join R * S of R and S to be the
space obtained from R x S x I by factoring out the relations (r, s, 0) ~
(r, s', 0) for all s, s' e S and (r, s, 1) - (r', s, 1) for all r, r' e R. The
base point of R * S is (*, *, 1/2).

Let iϋ be a subpolyhedron of S (i.e., the complex of R is a sub-
complex of the complex of S) and let F be the space S/R. Let i : R-+ S
be the inclusion map and let g : S -> JP7 be the projection.

THEOREM 1.3. For any space X there is an exact sequence,
(Σna)* (Σni)*

• π(Σn+1R, X) -> π(Σ*F, X) -^> π(Σ*S, X) =^ π(ΣnR, X), where
n ^ 0.λ

A proof appears in [8 § 4] (see also [4]).

2. The definitions of the GWP and their equivalence. We now
turn to the two definitions of the generalized Whitehead product (GWP).
We are given a e π(ΣA, X) represented by / : ΣA -> X and β e π(ΣB, X)

1 When n = 0 exactness is in the sense of sets with distinguished elements and their
transformations.
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represented by g: ΣB -> X where A and B are polyhedra and X is any
space. Letting pA and p £ be the projections of A x B onto A and B respec-
tively, we define / ' = foΣpΛ : Σ(A x £)-> Xand 0' = poifo,: £(A x £)->X
and then we define the commutator

kf = (/'-1 0'-1) (/' flf'): Σ(Ax B)-+X,

where the products and inverses come from the suspension structure of
Σ{A x B) (see § 1). Clearly k' \ Σ(A V B) ~ 0 since k\ \ Σ(A x *) ~ 0
and Jfc'l J(* x J5) ~ 0. By the homotopy extension property for the
polyhedral pair Σ(A x B), Σ(A V B) [6 p. 97] there is a map fc :
Σ(A x B)-+X such that k ~ fc' and & | 2*(A V δ ) = 0. Thus fc induces
k : 2XA «< £) = 2XA x £)/J(A V B)-+X with the property fc = kΣq,
where q:AxB-±A>$<B is the projection. We show that the homo-
topy class of k does not depend on the choice of the map k.

LEMMA 2.1. Given maps r, s : Σ(A x B) -> X with r \ Σ(A V B) = 0
and s I I'ίA V B) = 0, where A and B are polyhedra r and s induce
r, s : ̂ (A >$< 2?) ~> X ^ίίfe r = rΣq and s = sJtf. Ifr~s then r ~ s.

Proof. If i : A V B —> A x B is the injection then it is easily seen
that there is a map p : Σ(A x B) ~> J(A V 5) such that p Σj ^ 1. (We.
may set p = (I'pO (I'Pz), where p b p 2 : A x B-+ Ay B are defined by

A (α, b) - (α, *) and pa(α, 6) = (*, ft).) Thus Jp J 2 i = J(p Ji) - Σl = 1
and so (2?j)*(£p)* = 1. This shows that, for any space X, {Σ2j)*:
π(Σ\A x B), X) -> 7r(i;2(A V S), X) is onto. By applying Theorem 1.3
to the inclusion j : A\/ B-> A x B we obtain an exact sequence

x B), X) — π(P(A V B), X) >

π(Σ(A φ β), X) K π(£(A x E), X)

We infer from the fact that (Pi)* is onto, that (Σq)* is one-to-one.
Since (Σq)*{r} = (2Fg)*{s}, r ^ s. This proves the lemma.

Thus the class of k is independent of the choice of map k and hence
independent of the choice of representative f oί a and g of /3.

DEFINITION 2.2. The GWP of α = {/} e ττ(2Ά, X) and β = {g}e
π(ΣB, X) is defined to be [a, β] = {£} e ^ ( A «< B), X).

We consider next the second definition of the GWP. Here we
represent a e π(ΣA, X) and β e π(ΣB, X) by maps / : TA, A -> X, * and
g : TB, B-+ X, * respectively, where T denotes the cone (§ 1) and A and B
are polyhedra. In TA x TB consider the subspace Q = TAxB(jAxTB
and define h : Q ~> X by

H{a,t),b) =/(<M)
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h(a, (6, u)) = g(b, u)

where ae A, be B and t,ue I. Now there is a map v from the join
A * B to Q defined by

v(a, 6, ί) = (α, (6,1 - 2ί)) 0 ^ ί ^ —

= ((α, 2ί - 1), 6) i - ^ t ^ l .
Δ

The map v is a homeomorphism, for the maps λ x : A x ΓS —• A * J?
and λ 2: ΓA x £-> A * 5 defined by λx(α, (6, u)) = (α, 6, (1 - %)/2) and
λ2((α, u), 6) = (α, 6, (1 + t&)/2) determine a map Q-> A * β which is, the
inverse of v (cf. [3 Theorem 2.4]). Consider next the subspace of A * B
consisting of all points (α, *,i) and all points (*,&,%). This is a contractible
space consisting of two cones with a cone generator in common. When it
is factored out we clearly obtain the space Σ(A >$< B). Since A and B are
polyhedra the projection μf: A * J B - V I ^ A >§< j?) is a homotopy equivalence
[13; p. 238], Let μ :Σ(A >$< B)-> A * B denote the homotopy inverse of
μ\ Thus the map h : Q -> X gives rise to a map hvμ : ^(A $< B) -> X.
It is easily seen that the homotopy class of hvμ does not depend on the
representatives / and g of a and β. Thus we have the second definition.

DEFINITION 2.3. The GWP of a e π(2Ά, X) and /5 e π(ΣB, X) is

[α, /3]' = {hvμ} e π(Σ(A ^ B), X). Except for minor modifications, this is
the absolute version of a definition given by D. E. Cohen [3].2

We remark that Definitions 2.2. and 2.3 can be extended to include
the case A and B are not polyhedra. To do this for 2.2 we consider the
mapping cylinder M of the inclusion map Av B->A x B. The GWP is
then given by a map k : Σ(M/A V B) -> X. For Definition 2.3 we simply
regard the GWP to be represented by hv : A * J5->X We shall, how-
ever, only consider the case when A and B are polyhedra.

Next we show that Definitions 2.2 and 2.3 are identical.

THEOREM 2.4. For all a e π(ΣAf X) and β e π(ΣB, X),

[α, β] = [a, β]r .

Proof. We have the diagram

A * B
0/ I t \hv

/ I I \
Σ(A x JB) \μ' \μ X

\Σq I I k/
\ I I

Σ(A φ B)
2 That is, Cohen's definition is stated for the more general carrier theory of Spanier

and Whitehead. We have given the absolute case in 2.3 in order to simplify the notation
and to emphasize the duality with the products of § 6.
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where θ is the projection obtained by squeezing all points of the form
(α, δ, 0), (a, b, 1), or (*, *, t) in A * B to the base point. All other maps
are as before. We must show

hvμ ~ϊc: π(A & B) -» X .

Since μ'μ — 1 and Σqθ = μ' it suffices to prove that

hv ^ JcΣqθ :A * β -> X .

But feg = k~k', where Λ' = (/'-1 g''1) (/' gr), and so it suffices to
prove that the maps r — hv and s = krθ of A * 1? to X are homotopic.
To this end we first define a deformation of A * I? by stretching
Ax B x [1/4, 3/4] in i * ΰ to all of A * B. Thus we define
^rw:A * #->A * .Bby

ψtt(α, 6, ί) = (α, 6, (1 - u)t) 0 ^ t ^ i -
4

= (α, 6, tit - I + t) | ^ ί ^ |

= (α, 6, (1 - w)ί + w) — ^ ί ^ 1 .
4

Now α/r0 = 1, the identity map, and so r ~ rx where rx = rψλ: A * B—> X.
Explicitly,

0 ^ ί ^ -ί
4

= ff(6, 2 - 4 t )

= /(α, 4 ί - 2 )

— < ί < 1 .
4 ~ ~

Next we define a homotopy φu : A * B-* X with ?50 = rx and ^ = s. Let

ί5M(α, b, t) =f(a, (1 - At)u) 0 ^ ί ^ -ί
4

=flf(6, 2 - 4ί) T = * = Y

=/(α, 4ί - 2) ! = * = ! "

=£f(&, (4ί - 3)%) — ^ ί ^ 1 .
4
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Thus r ~ s as asserted and so [α, β] = [a, /3]\
This theorem is a generalization of a result due to Samelson [11

p. 750].

3 Properties of the GWP In this section we derive some proper-
ties of the GWP from Definition 2.2. In all cases Lemma 2.1 and facts
about commutators will enter into the .proofs. We shall denote the
commutator (x^y^Xxy) of two group elements (or maps on suspensions)
x and y by (x, y). We shall, however, usually denote the group opera-
tion in π(ΣR, S) additively, for all spaces R and S. The notation of
§ 2 will be used throughout.

PROPOSITION 3.1. If X is an ίZ-space3 then [a, β] = 0 for all
a e π(ΣA, X) and β e π{ΣB, X).

Proof. For then the group π(Σ(A x B)> X) is abelian by Proposi-
tion 1.1 and so the commutator map kf — (/', g') of Definition 2.2 is
nullhomotopic. Thus by Lemma 2.1 k ~ 0, i.e., [a, β] = 0.

PROPOSITION 3.2. If Σ* : π(Σ(A >& B), X) -> π{Σ\A & B), ΣX) is the

suspension homomorphism (§1), then Σ*[a, β] = 0 for all aeπ(ΣA, X)
and βeπ(ΣB,X).

Proof.* The group π(Σ2(A x B), ΣX) is abelian by Proposition
1.1 and so Σk' ~ (Σf, Σgf) is nullhomotopic. Thus ΣkΣ2q ~ 0, where
q:AxB->A>&B is the projection. By applying the transformation K
(see Proposition 1.2) we obtain /c(Σk)oΣq ~ 0 : Σ(A x B) -> ΩΣX. From
Lemma 2.1 we infer that tc(Σk) cr: 0 and so Σk ~ 0, i.e., Σ*[a, β] = 0.

PROPOSITION 3.3. (Anti-commutativity) For all aeπ(ΣA, X) and
βeπ(ΣB,X),

\β,ά\ = -(Σσ)*[a,β]

where σ:B>^A->A^B is induced by the map B x A-> A x B which
sends (6, a) to (α, b).

This proof is an easy consequence of Lemma 2.1 and the commuta-
tor rule (x, y)~λ — (y, x) and is thus left to the reader.

Next we prove that the GWP is additive in each variable. The
proof makes use of the following theorem of G. W. Whitehead (see [12
Theorem 2.10] or [2; §6] for a proof).

3 An il-space is a space with a continuous multiplication for which the base point is
a two-sided homotopy unit.

4 Cf. Cohen's proof, [ 3 ; pp. 238-240].
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THEOREM (Whitehead). If P is a polyhedron which has Luster nik-
Schnirelmann category ^ n (briefly, cat PS nf and S is any space,
then all n-fold commutators in the group π(P, ΩS) reduce to the iden-
tity. (Recall that an n-fold commutator is defined inductively as fol-
lows. A 1-fold commutator is just an element. An n-fold commutator
is the commutator of an nx-fold commutator with an n2-fold commuta-
tor, where nx + n2 — n.)

Now we prove

PROPOSITION 3.4. (Bi-additivity) If A and B are suspensions then
( i) [a + a, β] = [a, β] + [a, β]
(ii) [a,β + β] = [a,β] + [a,β]

for all a, a e π(ΣA, X) and β,βe π(ΣB, X).

Proof. We only prove (i) since (i) and Proposition 3.3 imply (ii).
By a theorem of Bassi [5 Theorem 9]

cat (A x B) S cat A + cat B - 1 .

Since A and B are suspensions, each is of category S 2. Thus
cat (A x B) S S6 and so by Whitehead's theorem all 3-fold commutators
in π(A x B, ΩX) reduce to the identity. By applying the isomorphism
π(Σ(A x B), X) f* π(A x B, ΩX) of Proposition 1.2 we see that this is
true of the group π(Σ(A x B), X). However, if π is any group in
which all 3-fold commutators are trivial then (αδ, c) = (a, c)(b, c) for all
a,b, ceπ (by [14; p.60] or direct verification). Thus the previous equal-
ity holdsfor the group π(Σ(A x B), X). Now (/ + / ) ' = (/ + f)ΣpΛ =
fΣpΛ + fΣpA = / ' + /', where / represents a e π(ΣA, X), and so
((/ + /) ' , g') = (/' + /', <?'). But we have just seen that (/' + /', g') -
(/', Qf) + (/', g')- It then follows, without difficulty, that [a + a, β] =
[a,β] + [a,β].

We remark that it is possible to prove an appropriate Jacobi ident-
ity for GWPs of elements a e π(ΣA, X), β e π(ΣB, X) and 7 e π(ΣC, X),
when A, B and C are suspensions. The proof, like the preceding one,
is a generalization of G. W. Whitehead's argument in [12]. It is based
on Whitehead's theorem above and the following algebraic fact: if π
is a group in which all 4-fold commutators are trivial then (α, (b, c))
(b, (c, a))(c, (a, b)) = 1, for all a,b,ceπ [14 pp. 63-64]. A proof of the
Jacobi identity from Definition 2.3 appears in [3 5.8].

4* The product of two suspensions* In this section we derive
a formula which relates the homotopy type of the product of two

5 The standard reference on category is [5].
6 The fact that cat (AxB)^3 when A and B are suspensions is proved in Corollary 4.5.
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reduced suspensions to the GWP map. We adopt the following notation.
For any space R, RS is the quotient space of R x I by the relations
(r, 0) ~ (rf, 0) and (r, 1) ~ (r', 1) for all r, r ' e # . The base point is (*, 0).
There are obvious maps tB : TR —> SR and sR : Si? ~> ΣR. We recall
from Definition 2.3 that Q=TAxB{jAx TB c TA x ΏS and that
v : A * JS ~> Q is the canonical homeomorphism. We let h : Q —• 2A V £ £
be the map of Definition 2.3 determined by the inclusion maps ix:
2Ά-> 2Ά V 2Ή and i2:ΣB-+ΣAW ΣB, i.e., Λ((α, ί), b) = ((α, £), *) and
Λ(α, (6, ^)) = (*, (b, u)). Throughout this section and the next we assume
that either the polyhedron A or the polyhedron B is compact. It is
possible, by complicating the argument, to get rid of this assumption.
However it enters only in the proof of the following

LEMMA 4.1. There is a map F: C(A * B), A * B-+ ΣAx ΣB,
ΣA V ΣB such that F induces isomorphisms of homology groups and
F\A * B = hv:A * B-+ΣAV ΣB.

Proof. Note that the map v can be extended to a map N: T(A * B),
A * £-> TA x TB, Q by setting

N((a, 6, t), u) = (α, u), (δ, 1 - 2ί(l - w)) 0 ^ t ^ —

= (α, 1 - 2(1 - ί)(l - %)), (6, w) i - g t ^ 1 .

This definition is due to D. E. Cohen who showed [3 Theorem 2.4] that
N is a homeomorphism when A or B is compact. Next we observe that
tA x tB: TAx TB, Q-^SAx SB, SA V SB is an identification map since
A or B is compact [3 Lemma 1.6]. This implies tAx tB\ {TA x TB) — Q
is a homeomorphism onto (SA x SB) — (SA V SB). Hence tA x tB

induces isomorphisms of (relative) homology groups. Now the map
sA x sB : SA x SB, SAW SB->ΣAx ΣB, ΣA V ΣB induces homology
homorphisms since sA and sB are homotopy equivalences [10 Hilfs. 5].
Thus the composition of the maps

T(A *

SA x SB, SA V SBS^¥ΣA x ΣB, ΣA V ΣB

induces isomorphisms of homology groups. Furthermore this composite
restricted to A * B is the map (sA V sB)o(tA x tB)\Qov — hv. Finally

we observe that N\(*, *, — j , uj = ((*, u)), (*, u))7 for all uel. Thus if

V: T(A * B), A * B~>C(A * £ ) , A * B is the identification map, there
exists a map F: C(A * B), A*B-±ΣAx ΣB, ΣA V ΣB such that

7 Recall that (*, *, 1/2) is the base point of A * B.
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= (sΛ x 8B)(tA x tB)N. F is the desired map.
If f:R-+S is any map then S U / Ci? or Cf denotes the quotient

space of S V CR by the relation (*, (r, 0)) ~ (/r, *). This is called the
space obtained from S by attaching a cone on R by means of /. The
symbol " ~ " shall signify same homotopy type.

THEOREM 4.2.

Proof. The map
inclusion j : ΣAv ΣB

- (ΣA v

: C(A * B)-+ΣAx ΣB of Lemma 4.1 and the
ΣAx ΣB give rise to a map

= (ΣA V * B)-»ΣAx ΣB.

Let £Γ: C(A * J5)->CΛV denote the composition of injection and projec-
tion, C(A * B) -• (2Ά V ^J5) V C(A * £) -> CΛV. Then there is a diagram

A * B

where the unmarked arrows denote inclusion maps. All squares and
triangles are commutative. We claim that G induces isomorphisms of
homology groups. By the exactness of the homology sequence of a
pair it suffices to prove that G: Chv, ΣAv ΣB-±ΣAx ΣB, ΣA V ΣB
induces homology isomorphisms. However, the composition of this map
with H: C(A * B), A * B-+ Chv, ΣA V ΣB is the map F. Hence by
Lemma 4.1 it suffices to prove that H induces homology isomorphisms.
But clearly there is a commutative diagram.

C(A * B), A * B

Q

C(A * B)
A * B

H
CΛV, ΣA V ΣB

Qf

i C(A * B) _ C f tv

B ΣAV ΣB'

where Q and Qr are the projections. Since A and B are polyhedra,.
Q and Qf induce homology isomorphisms. Thus iϊ, and consequently,
G: Chv~->ΣA x ΣB induce homology isomorphisms. We complete the
proof by remarking that, since A and B are polyhedra (i.e., connected,

8 This formula appears on p. 200 of [8].
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locally-finite CW-complexes), ΣA x ΣB and Cnv are simply connected (the
latter, e.g., by van Kampen's Theorem, [9 p. 666]). Thus a theorem
of J. H. C. Whitehead [6; p. 113] guarantees that G: Chv-+ΣAx ΣB
is a homotopy equivalence.

We note for future use that G\ΣA\/ ΣB = j : ΣA\J ΣB->ΣAx ΣB.
Now denote by k: Σ(A >$< B) -> ΣA V ΣB the map of Definition 2.2

which represents the GWP of the class of ix: ΣA c ΣA V ΣB and
i>: ΣB c ΣA V ΣB. We call k the GWP map. An immediate conse-
quence of Theorem 2.4, is

COROLLARY 4.3. ΣA x ΣB ~ (2Ά v 2Ή) U ^Ci CA & B) = C^ .

COROLLARY 4.4. jίc ~0: Σ(A >&B)->ΣAx ΣB.

By the first diagram of the preceding proof, i&i; factors through
C(A * B) and hence is nullhomotopic. Thus jk ~ 0.

COROLLARY 4.5. cat(2Ά x ΣB) S 3.
Since attaching a cone increases category by at most one and cat

(ΣA V ΣB) ^ 2, the corollary follows. It is of course, a very special
case of Bassi's Theorem (see the proof of Proposition 3.4).

COROLLARY 4.6. // p: ΣA x ΣB-+ ΣAfy ΣB is the projection,
then, for any space X, the following sequence is exact,

π{ΣA «< ΣB, X) — π(ΣA x ΣB, X) —

π(ΣA V ΣB, X) ~ U π(Σ(A & B), X) .

By Theorem 1.3 and Corollary 4.4 it suffices to show that for any
map I: ΣA V ΣB -> X with Ik ~ 0, there is a map m: ΣA x ΣB -> X
such that mj ^ I. But Ik ~ 0 evidently implies that I is extendible to
a map i: C^ -> X. The composition of I with the homotopy equivalence
ΣA x ΣB -> C& is the desired map m.

This corollary suggests a close relationship between the maps j and
K In the next section we shall see that this is so (Proposition 5.2).

5 The vanishing of the GWP and iϊ-spaces In this section we
investigate various ways in which the GWP may be trivial and obtain
equivalent conditions for each of them. We begin by considering a condi-
tion for the vanishing of the GWP of a e π(ΣA, X) and β e π(ΣB, X).

PROPOSITION 5.1. [a, β] = 0 if and only if there is a map
m: ΣA x ΣB-+X such that {m | ΣA} = a and {m | ΣB} = β.

Proof. Let the maps / and g represent a and β and let



18 MARTIN ARKOWITZ

I: ΣA V ΣB-* X be the map determined by / and g. Then it is evident
that Ik represents [ay β]. This observation, together with Corollary 4.6
establishes Proposition 5.1.

Next we consider conditions under which the GWP map is trivial.

PROPOSITION 5.2. k ~ 0 : Σ(A >$< B) -* ΣA V ΣB if and only if
j : ΣA V ΣB ~> ΣA x ΣB is a homotopy equivalence.

Proof. If k ~ 0 then by Corollary 4.3 and the remark preceding it,
there is a homotopy equivalence K: (ΣA V ΣB) V ^2(A ^ ΰ ) - > ί i x ί J ?
such that K\ΣAVΣB~ j . Thus if i: ΣA\/ΣB-> {ΣA V ΣB) V P(A >$< 5)
is the inclusion, q: {ΣA V ΣB) V P(A >$< B) -> 2Ά V ^ £ the projection
and K' the homotopy inverse of K we have qK'j ~ qK'Ki ~ qi = 1.
Hence j" has a left homotopy inverse. It follows that the induced map
on homotopy groups j \ : πr(ΣA V ΣB)-* πr(ΣA x ΣB), is a monomorphism
for all r. But it is a standard result that i^ is an epimorphism [6
p. 43]. Thus j * is an isomorphism and hence j is a homotopy equiva-
lence [6 p. 107].

Conversely let j ' be a homotopy inverse to j . Then since ifc c=r 0
by Corollary 4.4, k ~ j'jϊc ~ 0. We remark that the exact homology
sequence of the pair ΣA x ΣB, ΣA V ΣB shows that j is an equivalence
precisely when Hn{ΣA x ΣJB, ΣAV ΣB) = 0 for all w. By means of
the Kiinneth formula this condition may be stated purely in terms of
the homology groups of A and B. It is equivalent to asserting that
ΣA >§< ΣB is contractible.

Next we investigate spaces in which all GWPs vanish, i.e., spaces
X such that [α, β] = 0 for all a, β and all A, B. • By Proposition 3.1
we know that if-spaces are among such spaces but we shall see that
the converse is false. First we prove

LEMMA 5.3. If a, βe π(ΣAf X) (i.e, A — B) and d: A -> A& A is
the composition A->AxA-*A>&A of diagonal map and projection
then {Σd)*[a, β] = (a, β), the commutator of a and β.

The proof is a ready consequence of Definition 2.2.

PROPOSITION 5.4. All GWPs vanish in X if and only if π(ΣPy X)
( ^ π(P, ΩX)) is abelian for all polyhedra P.

Proof. If π(ΣP, X) is abelian for all P then π(Σ(A x B), X) is
abelian. Using the notation of Definition 2.2. we see that this implies
that the commutator of / ; and g\ k' ~ 0 : Σ(A x B) -> X. Thus
[a, β] = 0. The preceding lemma establishes the opposite implication.

In [2] Berstein and Ganea introduce a numerical invariant of homo-
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ΐopy type, nil ΩX, for any space X In particular, nil ΩX ^ 1 is the
assertion that the commutator map ΩX x ΩX—+ΩX is nullhomotopic.
It is easy to verify that nil ΩX ^ 1 implies π(P, ΩX) is abelian for all
spaces P. Hence Proposition 5.4 shows that nil ΩX fg 1 implies that all
GWPs in X vanish. However, on pp. 112-113 of [2] Berstein and Ganea
have constructed a space X with nil ΩX ^ 1 which is not an ίf-space.
This shows the existence of spaces in which all GWPs vanish but which
are not iί-spaces. However, such spaces cannot be suspensions.

PROPOSITION 5.5. Let c denote the class of the identity map of ΣA.
If the GWP [t, c] = 0, then ΣA is an ίf-space. (This proposition is well-
known when A is a sphere.)

Proof. Let jτ and j2 denote respectively the inclusion of ΣA into
the first and second factors of ΣA x ΣA. By definition ΣA is an ίί-space
if there exists a map m: ΣA x ΣA—>ΣA such that mj\ ~ 1 and mj2 ~ 1.
By Proposition 5.1 this occurs when [c, c\ — 0.

6. The dual product* In this section we use the Eckmann-Hilton
theory ([4] and [8]) to study a product which is dual to the GWP. Here,
as in §2, we present two definitions of the dual product. In prepara-
tion for this we introduce some notation and recall some facts.

We noted in §1 that π(R, ΩS) has group structure for any spaces
R and S. Explicitly, if /, g : R-> ΩS then define

(f g)(r)(t) =/(r)(2ί) 0 ^ t ^ λ

= f l f ( r ) ( 2 t - 1 ) j ^ ί S l
Li

and f~ι(r)(t) — /(r)(l — t), where r e R and t e I. This product and
inverse induce group structure in π(R,ΩS). Also if h:R-+S is any
map, Ωh : ΩR-^ΩS is defined by (Ωh)(l)=hol. If R and S are subspaces
of a space X, then E(X; R, S) shall denote the space of paths in X
which begin in R and end in S(i.e., maps /, 0, 1 —»X, R, S) with the
compact open topology.

We say p: E—>B is a fibre map, if for every space X and every
homotopy ft: X-+B and every map g0: X-^E such that pg0 — /0,
there exists a homotopy gt: X—* E of g0 such that pgt — ft. The space

F = p~\*) c E is called the fibre and F~^E^B is called a fibre
sequence. Now we show how, for any spaces A and B, the inclusion
j : Av B-± A x B gives rise to a fibre map. Let P{A, B) — E(A x B;
.Ay B, A x B) and A\B — E(A x B; A V B, *) and consider the diagram
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B)-2->A x B
It /

\po I Uf I u i/

\ 1 I /

where po(i) = Z(0), p2(i) = ί(l), u'(i) = ϊ(0), i is the inclusion and u(x)(t) = a?
for a e i V j B and all t e / . The following facts are well-known (e.g.,.
[8; pp. 16-20]) and not difficult to establish :

( i ) A]}B > P(A, B) —̂ -> A x B is a fibre sequence
(ii) u'i = Po and p ^ = j"
(iii) w'w = 1 and uvf ~ 1 .
We now turn to the first definition of the dual product which

is a pairing from π(X, ΩA) and π(X, ΩB) to π(X, Ω(A \?B)). Let {/} =
a € π(X, ΩA) and {g} — βe π(X, ΩB) where A, B and X are any topological
spaces.9 Letting iA; A—»AvB and iB: B—>A\/B be the inclusion maps,
we define / ' = (ΩiA)f: X-+ Ω(A V B) and g' = (βΐΛ)flr: X-> Ω(A V JB) and
then we define the commutator

fc' - (/'-i . ^-1) . (/' . g>): x — β(A V S) .

Since Ω(A x B) is homeomorphic to ΩA x ΩB it follows that (Ωj)kf ^ 0:
X—> Ω(A x B), where j : A\/ B—> A x B is the injection. Using the
notation of the preceding diagram, we obtain a commutative diagram

Ω(Av I

/
Ωjk'

Ωn/

ΩP(A,

/ 1

1
1

1

Ω(A x

B)

Ωpi

B).

Since the loop functor Ω applied to a fibre sequence yields a fibre
sequence, Ωpx is a fibre map with fibre Ω(A\>B). Since Ωjkf ~ 0, there
is a map k: X-* ΩP(A, B) such that k ~ Ωuk' and βpx fc = 0, the con-
stant map. Thus k induces a map ίc: X~> ί2(A[?-B) such that Ωik — k,
where i: A\>Bc:P(A, B). The following lemma shows that the class of
k is independent of choice of representative / and g of a and β.

LEMMA 6.1. Given maps r,s: X—*ΩP{A,B) such that Ωpιτ — Q
and Ωpxs = 0; then r and s induce maps r, s: X-+ Ω(A\?B) such that
Ωίr = r and Ωis=s. Ifr~s then r ~ s.

In this section A and B are not necessarily polyhedra.
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The proof is dual to the proof of Lemma 2.1 with the fibre map
φλ: P(A, B) -* A x B here playing the role of the polyhedral inclusion
A V -Be A x B of 2.1. The exact sequence which is associated to any
fibre sequence ([8; (4.5)] or [4; p. 2557]) takes the place of the exact
sequence in 2.1. We omit details.

DEFINITION 6.2. The dual product of a G π(X, ΩA) and β e π(X, ΩB)
is [a, β] = {k}e π(X, Ω{A\)B)).

Next we prepare to give the second definition. For any spaceiϋ, let
ER = E(R; Ry *) and let qB: ER-^R be defined by qR{l) = 1(0). Now
for any spaces A and B let Q be the subspace of (EA v B ) x ( A v EB)
consisting of pairs (%, y), xe EA V B and yeAy EB, such that
{QA V l)(x) = (1 V QB)(V) ίn A V B. We call the obvious projections
χλ: Q -> A V i£S and χ2: Q -» £A V 5. We also define the cojoίn of A
and 5, A * B, as i?(A. V 5; A, B). Let Pi and p2 be the projections of
EA V £? onto £Ά and B respectively and let qλ and q2 be the projec-
tions of A V EB onto A and £Ί? respectively. Then there is a map
i>: Q -> A * B given by

i(»)(l - 2ί)) 0 ^ ί ^ 4
1 ) , p 2 χ 2 ( x ) ) i ^ t ^ l

where xeQ and t e I.
We are now able to give the second definition of the dual product.

Since ΩAczEA and#ίλBc # # we represent aeπ(X, ΩA) by/: X-+EA
and βeπ(X, ΩB) by g: X-+EB. The maps / and g determine maps
X-> EA V B and X-+ A\f EB respectively. These last two maps de-
termine a map h: X -+ Q. Composing h with the map ύ of the preced-
ing paragraph yields a map vh\ X-* A * B> It is clear that the class
of vh is independent of the representative / o f α and g of β.

DEFINITION 6.3. The (second) dual product of α e π(X, ΩA) and
β G π(X, ΩB) is [a, β]f = {vh} e π(X, A * B).

We make a few remarks regarding duality. We first observe that
Definition 6.2 is an approximate, not a precise, dual of Definition 2.2.
This is due to the fact that in Definition 2.2 we restricted our attention
to the case when A and B were polyhedra so that the pair A x B, A V B
would have the homotopy extension property. As we noted in the
remark following Definition 2.3, by using the mapping cylinder M of the
inclusion map Av B~+ A x B, a GWP in π(Σ(M/A V B), X) is obtained
for any spaces A and B. This GWP is precisely dual to Definition 6.2.10

Eegarding Definition 6.3, we note first of all that the cojoin and the

10 However, there are advantages to considering Σ(A^B) instead of Σ(M/AvB). More-
ver, the restriction to polyhedra is necessary at various places in §§ 3-5.



22 MARTIN ARKOWITZ

join are dual. Secondly, although Q is not dual to the space Q of
Definition 2.3, it is possible to give a definition of Q (in terms of u.i.
squares [8; §6]) which is dual to Q. The map v : Q -> A * B is of course
dual to v: A * B~>Q. Thus if the second definition of the GWP is
taken to be the class {hv} e π(A * B, X) (see the remark following
Definition 2.3), then it would be the precise dual of 6.3.

Next we see that the two dual products are equivalent. Let
p0: A\)B~+ A V B be defined by po(l) = 1(0) and let r: Ω(A V £)-» A * B
be the inclusion map. We set λ — rΩp0: Ω(A\>B) -> A * i?.11 Then, for
each space X, λ induces a map λ* : π(Xf Ω(A\)B)) -> π(X, A * 1?).

THEOREM 6.4. For all a e π(X, ΩA) and β e π(X, ΩB) ,

λ Jα, β] = [a, β]' .

The proof is essentially dual to the proof of Theorem 2.4 and hence
is omitted.

Many results and proofs of the preceding sections can be dualized.
However, many cannot since the dual products are not precise duals of
the GWPs. It is left for the reader to determine which results of
§§3-5 can be dualized and to supply the proofs. We shall close with
an interesting question about the relationship between the dual product
and the cup product.

Let A and B be Eilenberg-MacLane complexes of type (Glf p + 1}
and (G2f 9 + 1) respectively. Let X be a polyhedron and let Hn(X; G)
denote the nth cohomology group of X with coefficients in G. Then it is
well-known that there are natural identifications (i.e., group isomophisms),
π(X, ΩA) = Hp(X; Gt) and π(X, ΩB) = H*(X; G2). Let C be an Eilenberg-
MacLane complex of type (Gλ (g)G2, p + q) and let " U " denote cup prod-
uct. Then we conjecture that there is an element 76 π(Ω(A]gB), C) such
that 7o[α, β] = τ*[α, β] = a U β, for all a e π(X, ΩA) = HP(X; Gλ) and
β e π(X, ΩB) = Hq(X; G2). A proof of this conjecture would enable one
to obtain information about cup products from facts about the dual
product and commutators.
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