A SPECIAL CLASS OF MATRICES

K. RoGERS AND E. G. STRAUS

1. Introduction. Let D be an integral domain, K its quotient
field, D™ the set of all n-by-1 matrices over D, and A an n-by-n matrix
over a field containing K. We say that A has property P, if and only
if, for all nonzero w in D", the vector Au has at least one component
in D* = D — {0}. The setting in which this property arose is detailed
in [1], where we investigated the case where D was either Z, the rational
integers, or the ring of integers of an algebraic number field of class-
number one. Now, if P is a permutation matrix, 7T is lower triangular
with only ones in the diagonal, and N is nonsingular and over D, then
A = PTN has property P,. It was shown in [1] that for D = Z there
are matrices not of the form PTN which have property P,; but, at least
in the case of the ring of integers of an algebraic number field of class-
number one, we found the necessary but far from sufficient condition,
that det 4 be in D*. Our present purpose is to extend this to all alge-
braic number fields and also to prove necessary and sufficient conditions
for property P, in certain cases.

THEOREM I. Let D be a domain whose quotient field K is algebraic
over its prime field. Let A be an n-by-n matriz, where n < #(K).!
Then:

(i) If K s of prime characteristic, then A has property P, if
and only if A= PTN, where P, T and N are as above:

(ii) If D is Dedekind and K is a finite algebraic extemsion of
the rationals, then for A to have P, we must have det Ae D*,

THEOREM II. If D= D|Jt], where t is transcendental over D, if
£#(D,)) >n, and if A has Py, then the rows of A can be so ordered that
the matrices A, of the first r rows of A have all r-by-r minors in D
and not all zero, for r=1,2, .- n, In particular, the first row 1is
over D, and det Ae D*,

If in addition we have only principal ideals, then we can reduce all
but one element of the first row to zero and prove by induction:

COROLLARY. If D= F[t], where §(F') >n, so K is a simple transcen-
dental extension, then A has P, if and only if A= PTN, where P, T
and N are as above,
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We can improve Theorem II to an if and only if statement, as long
as D/Jt] is a Gaussian domain.

TueoreM 1II. If D= F[t,t,---,t,], where the t; are algebraically
independent over the field F, and #(F) > n, then o matrix A has P,
if and only if A= PLV, where P is a permutation matriz, L is a
diagonal matrix over D*, while V is nonsingular and such that for
r=1,2+«-,m, the first r rows of V have their r-by-r minors in D
and without common divisor.

2. We try to reduce down to the case that A is over K.

LEMMA. 1. Let B be an r-by-n matrix over a field containing K,
where #(K) =n = r, and assume that there is a subspace V of K™ of
dimension r such that, for all nonzero w in V, Bu has a component
in K*. Then B= PTB,, where P is a permutation matrie, T is tri-
angular with only ones on the diagonal, and B, is r-by-n and such
that, for all w in V, the product Bu has all its components in K and
s 0 only when u =0,

‘ Proof. Let L, note the subspace of V consisting of those u in
V such that the ith component of Bu is in K. Then the relation between
B and V implies that V=’ L,, the union over those 7 such that for
% in L, the component (Bu); is not always zero. We first show that
some L; = V. Assume that to be false: hence V is the union of at most
r proper subspaces, say V=H, U +-+ U H,,m < r = n,m minimal. By
choosing %, v so that we H,, ve H,U --- UH,, u¢ H,--- UH,, v¢ H,
we ensure that the plane Ku + Kv equals the union of at most m lines
through the origin. This is clearly impossible if the field K is infinite.
If #(K)=q, then we should require that ¢* < n(¢g — 1) + 1, that is, ¢ +
1 <m < n, whereas we assumed that ¢ =n. Hence some row of B has
all its inner products with V in K and not all zero. Permute the rows
so that the first row, R!, has this property. Then the lemma is proved
for » =1, and we are ready for induction on 7; the matrix C of the
last » — 1 rows of B has the correct inner product property relative to
W=V n(KR)*, a space of dimension » — 1. Hence, C = TC,, where
T, is triangular of order » — 1 with only ones on the diagonal, while
the rows S, ---,S! of C, are such that all Su are in K whenever ue W.
Since we have not yet chosen the first column of our final 7, we can
still modify the S; by multiples of R: for all a; in any field containing
K, the row S!— a;R! has the same inner product on W as Si. Let S,
be a vector in V but not in W, so that R and S, are not perpendicular.
We can then choose a; so that (Sia,;Ri)S, — 0, so that the rows R;=
Si — a;R: have all inner products in K with a basis for V over K, hence
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the same with all vectors in V. The result now follows, with 7' obtained
from T, by putting the row (1,0, - - -,0) on top and the column (1,a,, -+, a,)’
to the left, while B, has rows R, -.., R.. Finally, if some nonzero « in
V were perpendicular to all the R, it would be perpendicular to all the
rows of B and thus violate the hypothesis.

COROLLARY 1. If #(K)=mn, and tf A has property P, then A =
PTA,, where T is lower triangular with only ones on the diagonal,
while A, is nonsingular over K. As usual, P is a permutation matrix.

Proof. This is the case »r =n, so V= K" and the deduction is im-
mediate.

COROLLARY 2. If #(K) =mn, then A has P, implies det Aec K*.

3. Proof of Theorem 1. We note first that, if A has P, and Ris
any sub-domain of D, then A has property P relative to the intersection
of D with the ring obtained from R by adjoining the elements of A.
Hence we can take D to be a sub-domain of a finite extension of the
prime fleld. In case K is purely algebraic, this intersection is a finite
algebraic extension of the prime field. However, this procedure may
spoil the Dedekind property, so we only use this for part (¢). There,
we are now down to the case where D is a sub-domain of a finite field
and therefore is itself a finite field. This part of Theorem I follows
now from Corollary 1 above, with D = K. For part (i1) we proceed as
follows. In the preceding section we saw that if A has P, then det Ae K*,
and now we shall show that det A e D* in the case that D is a Dedekind
ring and K is an algebraic number field. The usual case is when D is
the ring of integers of K, of course. First, we shall replace A by a
matrix over K. Permute the rows so that A = TA,, as in Corollary 1.
Now, if 1,&, -+, &y is a basis for the K-module obtained by adjoining
to K all the elements of 7, then A = (T, + &T, + +++ + £,Ty)A,, where
the T, are over K, are strictly lower triangular for 4 =>2, and 7T, is
lower triangular with only ones on the diagonal. The matrix T.A, is
over K, has the same determinant as A, and it has P,. For, by the
independence of 1,&, -.-,&, over K, (Au);e K if and only if (Au); =
(T\Au); € K, for ue K*, So we are down to the case that A is over K.
If det A is not in D, some prime ideal P must occur to a negative power
in the factorisation of the ideal (det A). Since every element of D can
be expressed as wu/v, where e P, 7¢ L2, u and v are in D but not
in 95, while v is a rational integer, the ring Dy = {a/b|a,be D, b¢ B}
is a discrete valuation ring in which every element is a unit times a
power of m the only ideals being D D (7) D (7% D ete. Since it is easily
shown that A has property P relative to Dsg, we are now down to the
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case that D is a discrete valuation ring with prime element 7, and det 4
is a unit times a negative power of #=. By multiplying a row of A by
an appropriate element of D*, we can ensure that det A =7z"!, if we
wish., Things now proceed as in Lemma 3 of [1]. Multiply the ith row
of A by ©%, where the d; are such that the ensuing matrix is over D.
Since D is a principal ideal ring, we can triangularize this new matrix
B. 1t has the property that for all nonzero # in D", some component
(Bu); is a nonzero multiple of 7%; also, det B = n*%~!, These properties
are shown to be contradictory. If the residue class field D/ has degree
f over ZI'B N Z = Z|pZ, it has p’ elements. Then, the mumber of residue
classes mod %£¢ is p*. By absorbing unit factors, we can assume that
the diagonal elements of B are n%,¢ =1, --., %, so that Ja, < 3d,. We
let a;, 6, run over complete residue systems mod 7% and mod %, re-
spectively: then the number of vectors a is (p”)** and the number of
0 is (p’)**%. Hence there are more ¢ than «. As in [1], one now shows
that for given 0 there is one and only one « such that the equation
Bu = «a + 0 is solvable with # in D". Then, we find distinct 6, ¢’ and
some « such that Bu =0 + « and Bu' = ¢’ + «, where # and %' are in
D, Hence, B(u — %) =0 — ¢’, and each component of é — ¢’ is either
zero or indivisible by 7%. This contradicts the P-property for B and
establishes at last that we must have had det Ae D*.

4., The case D= Dt]. We saw in Lemma I, Corollary 2, that if
A has P, then we can permute the rows and reduce A to the form TA,,
where T is lower triangular with only ones on the diagonal, while A4,
is nonsingular and over K. We now note that T'A, = TEFEA,, where F
is any elementary matrix with E?= I, hence we can add K-multiples
of columns of T to other columns, doing the corresponding row-operation
on A,. Hence, we may assume that the sub-diagonal elements of T are
either zero or outside K.

LEmmA II. If A has P,, where D= Djt], #(D)>n and t s
transcendental over D,, then some row of A must have all its elements
wm D.

Proof. We have A = TA,, as above. Some rows of T, such as the
first, have only one nonzero component, and it is 1. By permutation
of the columns of T (and hence of the rows of A,) and also the rows
of T, we can put things in the form:

I 0
ts+1,1 --+1 0

Lo 1
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Thus, the first s rows of A, are also rows of A, and the last n — s rows
of T involve elements outside K. We shall show that if none of the
first s rows in over D, then we can find a vector w e D" such that the
first s components of Au are in K but not in D, while the last n —s
components are not even in K. In general, if we want an element u of
K" to be such that the last » — s components of Au are not in K, we
want b = Au to be in K™ but such that none of ¢, + <+« ¢, ;0,1 + b,
is in K, for s <% =<mn. Since the coefficients ¢;, ---,%;,_, are not all
zero and the nonzero ones are outside K, these conditions amount to
making b avoid n — s subspaces of K*. Thus, u = A;*0 must avoid at
most n — 1 hyperplanes of K". So we are finished as soon as we have
found % in D" such that the first s components of A,u are outside D,
and with « avoiding a given set of hyperplanes. There are two cases,
according as the matrix A4, of the first s rows of 4 has a common denomi-
nator out of D, or not.
(1) Case when

an(®) .. ()

| 4 d
o aa® L au(®)
d ’ od

where de D, a;(t)e Dt], for1<1=<s,1=<3j=mn,and d is not a divisor
of all the coefficients of a;, +--,a;,, for each ¢ from 1 to s. We choose
ut = (t, t", +++,t"»), where 1 N,, --+, N, are in ascending order and so
far apart that the terms in 3;a,;(¢£)t"’ do not combine, since their terms
are of vastly different degrees. Hence, d does not divide all the coef-
ficients of 3;a,;;t¥’, as required.

(ii) Case when

an(®) ...
a(®) <n

asft) |

a(t)

where for no value of % does d(t) divide all of a,(t), +--, a;.,(f). The
approach in (i) needs modification, since d(f) might be just a power of .
We begin by showing that if >\7, a.,(t)(t — a)¥¢ is divisible by d(t), then,
for N,, ---, N, sufficiently spaced, each a,(t)(t — a)¥: is divisible by d(t).
Since we could change to the new transcendental ¢ — « over D,, we need
only treat the case @ = 0. Let d = max degree among d(t), a,(t), ---. If

AENQD) + + -+ + ¢.b) = z @), ey,
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where N,_, +d < N;, 1 =2, +-+,n, and q,(t) involves only terms of degree
greater then N,_, but not greater than N, + d, then:
The terms on the right side of (*) of degree not greater than N, + d

= a,(t)t™

= terms on left side of (*) of degree less than N,

= d(t)q.(?).
Thus d(t) | a,(t)t"1, and so on. Hence, if for some ¢ we have >\, a,(t)(t —
a)”v divisible by d(t), then d(t)|a, ()t — a)*, 1 = v < n. By cancelling
the factors ¢t — o which may occur in d(t), we deduce that the comple-
mentary factor in d(¢) must divide some row of the a;. So, if we can
pick more « than there are rows, we’d need some row divisible by so
much that d(¢) would have to divide each a,,(f). We assumed that #(D,)>n
for exactly this reason. So, for some a € D, and for all N,, .-+, N, suf-
ficiently large and far apart, all of 37, a,(t)(t — a)”v are indivisible by
d(t). As to avoiding hyperplanes of K": these have the form hux, +
ees + h,x, =0, where h;e D|t]. Since for N, ---, N, far enough apart,
the terms of the 2,(¢)t¥: don’t overlap, we cannot have 3 A(¢)t¥ = 0.
As usual, the change t—t¢ — « is no problem, so Lemma II is proved.

For our purpose, somewhat more than the above is needed. A mild

generalisation of Lemma II is now proved.

LEMMA III. Let B be an r-by-n matrix over a field containing
Dy(t), and assume that there is an r-dimensional subspace V of K~,
where K = D\(t), such that for all nonzero w in DJt]* N V some com-
ponent of Bu ts wn D|t] and is nonzero. Then, some row of B is such
that its imner product with Di[t]" NV is always in D]t] and is mot
always zero.

Proof. Since every nonzero element of V goes into D*, where D =
Dj[t], on being multiplied by a suitable element of D, we know that
Lemma I applies to B and V. Hence, as in the remarks immediately
before Lemma II, we know that by permuting the rows of B we can
put it in the form B = TB,, where T is r-by-r, is triangular with only
ones on the diagonal and every sub-diagonal entry is either 0 or outside
K, while B, is such that for all nonzero w in V, the product Bu is
nonzero and in K". As in Lemma II, we can order the rows of T so
that the ones in K come first:

trl ’ 1

where the last » — s (posssibly 0) rows of T involves elements outside K.
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The first s(= 1) rows of B, coincide with those of B, and we now show
that one of these has the desired property. If not, then for the 4th row
R, 1 <1=<s, wecan find a nonzero %; in D* N V, such that Ru, is not
in D. Consider now the matrix B,U, where U is n-by-s, consisting of
the columns wu,, +++,u,; B,U is r-by-s, is over K, and the first s rows
each contain an element outside D. Hence, as before, we can choose
N, ---, N, so far apart that B,U((t — @)™, -+, (t — @)”s)* has its first
s components outside D and such that the last » — s components of
TB, U((t — a)™, +++, (t — a)¥s), are not even in K. But the vector u =
St — )y, e DNV, and we’'ve just shown that Bu has no com-
ponent in D. This contradiction shows that one of the first s rows of B
has its inner product with D*» N V always in D. It cannot be perpen-
dicular to V, as there are nonzero elements of V perpendicular to all the
other rows of B, by dimensicns, and we excluded having all rows of B
perpendicular to some nonzero element of V.

COROLLARY. If A has property P,, where D = D|[t] and #(D,) > n,
as before, then the rows of A can be so arranged that R: is over D,
and for k=1,---,n—1, for all w in D™ and perpendicular to the first
k rows of A, we have R!.,-u iwn D, not always zero.

Proof. By Lemma II we may assume the first row is over D. As-
sume that the first k& rows have been arranged as desired, for some k =1;
we can then proceed to the choice of R},, by applying Lemma III to the
matrix of the last n — k& rows of A4, with V the subspace of K" orthogo-
nal to the first & rows of A.

This necessary condition for P,, in the simple transcendental case,
has the virtue of being patently sufficient. It also makes evident the
Corollary to Theorem II: when D = F[t], so that all ideals are principal,
matrices with P, are essentially just nonsingular matrices over D, apart
from permuting the rows and pre-multiplying by the usual triangular
T. However, it is not easy to see how this criterion for general D[]
would be checked, nor does it seem an obvious deduction that det A e D*.

Theorem II will now be deduced. Since we already know that det
A # 0, the 7»-by-r minors of the first » rows of A cannot all be zero.
Hence, we need only show that if the rows have been arranged as in
the corollary above, then all the 7-by-r minors of the first » rows are in
D, for 1 £ r <n. By looking at an r-by-r sub-matrix of the first » rows
of A, we see that its orthogonality properties should imply that its de-
terminant is in D, and so it will suffice to prove:

LemmA IV. Let B be r-by-r over some field containing K, such
that the first row is over D and, for k=1,--- v —1, all u perpen-
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dicular to the first k rows of B and in D" have an inner product with
the k + 1st row in D. Then det Be D.

Proof. The case r =1 is trivial, so induction can begin. By the
case r — 1, all the minors of the last row are in D. Since these numbers
give a vector in D" perpendicular to the first » — 1 rows and having
inner product det B with the last row, we are done. The proof of Theo-
rem II is now complete.

It is not a sufficient condition on A for P,, to have all these r-by-r
minors in D and not all zero, for 1 < r < n, as the example

x —x
a=(y )
0 x~?
soon shows. In preparation for the proof of the last theorem, we shall
show that the extra condition, that the 7-by-r minors be in D and with-

out common divisor, is sufficient in the cases when D = Di[t] is a unique
factorisation ring, for example when D = F[t, t,, «--, t.].

LEMMA V. Let D be a unique factorisation domain with quotient
field K, and let A be an r-by-n matriz of rank r such that, for 1 <
k < r, the k-by-k minors of the first k rows of A are all in D and
without common divisor. Then the first row 1s, of course, over D and,
for 1=k <r, and for all w in D™ and perpendicular to the first k
rows of A, the inner product Ri.,.-w s in D,

Proof. Since we use induction on 7, it is necessary only to deal
with the case of u perpendicular to the first » — 1 rows of A. Consider
the equations

Ayyy =000y Ay [Uy 0
@y y Qpy _ 0
D
In—r WUyt
Uy Uy

To show pe D, we multiply both sides by (C,, --- C,), these being the
co-factors of the rth column of the n-by-n matrix: hence

Ay ¢ Ay
" ' u’r = Crp—l_ Cr+1ur+1 + A + Cnu'n .

a’ri e ar'r

But C, equals the minor formed with the first » — 1 rows and columns,
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while C,,, -+, C, are also equal to cofactors from the first » — 1 rows.
Thus, C,pe D. Since changing the order of the columns of A does not
alter the truth of the hypotheses, we know that for all the minors C at
the (r — 1)st stage, Cpe D. But these minors are without common
divisor. Hence pe D, as required.

COROLLARY. Ewvery matrix of the form PLV, as in Theorem III,
has property P,.

Proof. Since P serves only tc permute the rows, we may ignore it.
Then we observe that since L is triangular with elements of D* on the
diagonal, the orthogonality property for V of Lemma III, Corollary, is
not changed by going to LV. Thus, it is enough to use Lemma V with
r=n.

Proof of Theorem III. We have just proved the “sufficienty” part
of the theorem. So now assume A has P,. By Lemma III we can order
the rows of A so that for all v € D™ and perpendicular to the first & rows,
Ri,, -ue D and is not always zero. By using only those w with n — k
entries u;, +++, 4;, , equal to zero, we see that the matrix obtained by
erasing columns ¢;, +++, %,_, and the last n — k rows of A has the ortho-
gonality property. By Lemma IV we deduce that the first & rows of A4
have all k-by-k minors in D. We now put A in the form LV by taking
common factors as follows. We examine the first row of A: it is over
D, so we take out the common factors. Proceed inductively: assume that
factors have been take out so that the co-factors for the first &k rows are
without common divisor, for 1 < k < », and the new matrix still has the
orthogonality property. If the minors of the » rows are not relatively
prime, divide the »th row by the common factor. Lemma V shows that
the orthogonaltiy property is not lost by this process, so we can continue.
This completes the proof of Theorem III.
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