
A SPECIAL CLASS OF MATRICES
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1. Introduction. Let D be an integral domain, K its quotient
field, Dn the set of all n-by-1 matrices over D, and A an n-by-n matrix
over a field containing K. We say that A has property PD if and only
if, for all nonzero u in Dn, the vector An has at least one component
in D* — Ό — {0}. The setting in which this property arose is detailed
in [1], where we investigated the case where D was either Z, the rational
integers, or the ring of integers of an algebraic number field of class-
number one. Now, if P is a permutation matrix, T is lower triangular
with only ones in the diagonal, and N is nonsingular and over D, then
A = PTN has property PD. It was shown in [1] that for D — Z there
are matrices not of the form PTN which have property PD; but, at least
in the case of the ring of integers of an algebraic number field of class-
number one, we found the necessary but far from sufficient condition,
that det A be in D*. Our present purpose is to extend this to all alge-
braic number fields and also to prove necessary and sufficient conditions
for property PD in certain cases.

THEOREM I. Let D be a domain whose quotient field K is algebraic
over its prime field. Let A be an n-by-n matrix, where n gΞ $(K).X

Then:
(i ) If K is of prime characteristic, then A has property PΌ if

and only if A — PTN, where P, T and N are as above:
(ii) If D is Dedekind and K is a finite algebraic extension of

the rationals, then for A to have PD we must have detAeD*.

THEOREM II. If D — D^t], where t is transcendental over Du if
#(A) > n> and if A has PD, then the rows of A can be so ordered that
the matrices Ar of the first r rows of A have all r-by-r minors in D
and not all zero, for r = 1, 2, , n. In particular, the first row is
over D, and det A eD*.

If in addition we have only principal ideals, then we can reduce all
but one element of the first row to zero and prove by induction:

COROLLARY. If D — F[t], where #(F) > n, so K is a simple transcen-
dental extension, then A has PD if and only if A — PTN, where P, T
and N are as above.
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We can improve Theorem II to an if and only if statement, as long
as AM is a Gaussian domain.

THEOREM III. If Ό — F[tlf t2 , tk], where the t{ are algebraically
independent over the field F, and ${F) > n, then a matrix A has PD

if and only if A — PLV, where P is a permutation matrix, L is a
diagonal matrix over D*, while V is nonsingular and such that for
r = 1, 2, , n, the first r rows of V have their r-by-r minors in D
and without common divisor.

2. We try to reduce down to the case that A is over K.

LEMMA. I. Let B be an r-by-n matrix over a field containing K,
where #(iΓ) ^ n ^ r, and assume that there is a subspace V of Kn of
dimension r such that, for all nonzero u in V, Bu has a component
in K*. Then B= PTBX, where P is a permutation matrix, T is tri-
angular with only ones on the diagonal, and Bλ is r-by-n and such
that, for all u in V, the product Bxu has all its components in K and
is 0 only when u — 0.

Proof. Let L{ note the subspace of V consisting of those u in
V such that the ith component of Bu is in K. Then the relation between
B and V implies that V— \Jr L{, the union over those i such that for
u in L{ the component (Bu){ is not always zero. We first show that
some Li — V. Assume that to be false: hence Fis the union of at most
r proper subspaces, say V—Hλ\J U Hm, m ^ r ^n,m minimal. By
c h o o s i n g u, v so t h a t ueHu v e H2 U U Hm, uψ H2--> U Hm, v 0 Hl9

we ensure that the plane Ku + Kv equals the union of at most m lines
through the origin. This is clearly impossible if the field K is infinite.
If %(K) — q, then we should require that q2 ^ n(q — 1) + 1, that is, q +
1 ^ m <Ξ n, whereas we assumed that q^n. Hence some row of B has
all its inner products with V in K and not all zero. Permute the rows
so that the first row, R\, has this property. Then the lemma is proved
for r = 1, and we are ready for induction on r; the matrix C of the
last r — 1 rows of B has the correct inner product property relative to
W= V f] (KRj)1, a space of dimension r — 1. Hence, C— T1C1, where
2\ is triangular of order r — 1 with only ones on the diagonal, while
the rows SI, , Sι

r of CΊ are such that all SjU are in K whenever ue W.
Since we have not yet chosen the first column of our final T, we can
still modify the Sj by multiples of R: for all aό in any field containing
K, the row S) — ajR[ has the same inner product on W as S). Let Si
be a vector in V but not in W, so that R and Sx are not perpendicular.
We can then choose a3- so that (Sj ajR

t

1)S1 — 0, so that the rows R] =
S) — ajR[ have all inner products in K with a basis for V over K, hence
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the same with all vectors in V. The result now follows, with T obtained
from ϊ\ by putting the row (1,0, , 0) on top and the column (1, α2, , any
to the left, while B1 has rows R[, , Rι

r. Finally, if some nonzero u in
V were perpendicular to all the R, it would be perpendicular to all the
rows of B and thus violate the hypothesis.

COROLLARY 1. // %(K) ̂  n, and if A has property Pκ, then A =
PTAlf where T is lower triangular with only ones on the diagonal,
while Ax is nonsingular over K. As usual, P is a permutation matrix.

Proof. This is the case r = n, so V= Kn and the deduction is im-
mediate.

COROLLARY 2. // $(K) ^n, then A has PD implies detAeK*.

3. Proof of Theorem I. We note first that, if A has PD and R is
any sub-domain of D, then A has property P relative to the intersection
of D with the ring obtained from R by adjoining the elements of A.
Hence we can take D to be a sub-domain of a finite extension of the
prime field. In case K is purely algebraic, this intersection is a finite
algebraic extension of the prime field. However, this procedure may
spoil the Dedekind property, so we only use this for part (i). There,
we are now down to the case where D is a sub-domain of a finite field
and therefore is itself a finite field. This part of Theorem I follows
now from Corollary 1 above, with D — K. For part (ii) we proceed as
follows. In the preceding section we saw that if A has PD then det A e K*,
and now we shall show that det A e D* in the case that D is a Dedekind
ring and K is an algebraic number field. The usual case is when D is
the ring of integers of K, of course. First, we shall replace A by a
matrix over K. Permute the rows so that A = TAlf as in Corollary 1.
Now, if l,ξu *--,ξN is a basis for the iΓ-module obtained by adjoining
to K all the elements of Γ, then A = (Ti + ξ2T2 + + ξNTN)Aly where
the Ti are over K, are strictly lower triangular for i ^ 2, and Tλ is
lower triangular with only ones on the diagonal. The matrix TxAλ is
over K, has the same determinant as A, and it has PD. For, by the
independence of 1, | 2 , * ,ξN over K^iA^^K if and only if (Au)i =
{TJίiUJi e K, for u e Kn. So we are down to the case that A is over K.
If det A is not in D, some prime ideal 3̂ must occur to a negative power
in the factorisation of the ideal (det A). Since every element of D can
be expressed as πvujv, where τre^3, π$ψ, u and v are in D but not
in Sβ, while v is a rational integer, the ring Ό% — {a\k \ α, b e D, b $ ̂ β}
is a discrete valuation ring in which every element is a unit times a
power of π the only ideals being ΰ D (π) D (TΓ2) Z) etc. Since it is easily
shown that A has property P relative to J9φ, we are now down to the
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case that D is a discrete valuation ring with prime element TΓ, and det A
is a unit times a negative power of TΓ. By multiplying a row of A by
an appropriate element of D*9 we can ensure that detA = π~1, if we
wish. Things now proceed as in Lemma 3 of [1]. Multiply the ith row
of A by πa\ where the di are such that the ensuing matrix is over D.
Since D is a principal ideal ring, we can triangularize this new matrix
B. It has the property that for all nonzero u in Dn, some component
(Buji is a nonzero multiple of π**; also, detB = πΣdi~\ These properties
are shown to be contradictory. If the residue class field D/Sβ has degree
/ over Zl?$ Π Z = Z/pZ, it has pf elements. Then, the mumber of residue
classes mods£α is paf. By absorbing unit factors, we can assume that
the diagonal elements of B are πa\ i = 1, , n, so that Σa{ < Σd{. We
let ai9 δ{ run over complete residue systems modπαί and modπ3*, re-
spectively: then the number of vectors a is (pf)Σaί and the number of
δ is (pf)Σdi. Hence there are more δ than a. As in [1], one now shows
that for given δ there is one and only one a such that the equation
Bu = a + 3 is solvable with u in Dn. Then, we find distinct δ, δ' and
some a such that Bu = δ + a and Buf = δ' + α, where u and v! are in
Dn. Hence, B(u — uf) = δ — <?', and each component of δ — δf is either
zero or indivisible by πdκ This contradicts the P-property for B and
establishes at last that we must have had detAeD*.

4 The case D= Dλ[t\. We saw in Lemma I, Corollary 2, that if
A has PD then we can permute the rows and reduce A to the form TAU

where T is lower triangular with only ones on the diagonal, while Ax

is nonsingular and over K. We now note that TAX = TEEAU where E
is any elementary matrix with E2 = I; hence we can add i£-multiples
of columns of T to other columns, doing the corresponding row-operation
on Ax. Hence, we may assume that the sub-diagonal elements of T are
either zero or outside K.

LEMMA II. If A has PD, where D = A[*L #(A) > w cmd t is
transcendental over Dlf then some row of A must have all its elements
in D.

Proof. We have A — TAlf as above. Some rows of T, such as the
first, have only one nonzero component, and it is 1. By permutation
of the columns of T (and hence of the rows of Aλ) and also the rows
of T, we can put things in the form:

/Is 0\

.+1.1 1 0

1

\« i 1
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Thus, the first s rows of Aλ are also rows of A, and the last n — s rows
of T involve elements outside K. We shall show that if none of the
first s rows in over D, then we can find a vector ue Dn such that the
first s components of An are in K but not in D, while the last n — s
components are not even in K. In general, if we want an element u of
Kn to be such that the last n — s components of An are not in K, we
want b — Axu to be in Kn but such that none of t^ + *i.»-i6»-i + &i
is in K, for s < i ^ n. Since the coefficients tiu •••,*»,<_! are not all
zero and the nonzero ones are outside K, these conditions amount to
making b avoid n — s subspaces of Kn. Thus, u = A^b must avoid at
most n — 1 hyperplanes of Kn. So we are finished as soon as we have
found u in Dn such that the first s components of Aλu are outside D,
and with u avoiding a given set of hyperplanes. There are two cases,
according as the matrix As of the first s rows of A has a common denomi-
nator out of A or not.

(1) Case when

d '

d '

d

d /

where d e Dl9 aί3(t) e D\t\ for 1 g 1 ^ 8, 1 ^ j ^ n, and d is not a divisor
of all the coefficients of ail9 , α i Λ, for each i from 1 to s. We choose
ut^it,^2, " ,tNn), where 1 N2," ,Nn are in ascending order and so

ίX0ίΛΓj do not combine, since their terms
Hence, d does not divide all the coef-

far apart that the terms in Σ i
are of vastly different degrees.
ficients of Σ i α ϋ^ j > a s required,

(ii) Case when

A

/ajt)
a(t)

\ α(ί)

, s s

where for no value of i does d(t) divide all of α^ί) , , ain{t). The
approach in (i) needs modification, since d(t) might be just a power of t.
We begin by showing that if Σ?=iαΐ(^)(^ — a)Ni ί s divisible by d(t), then,
for Nu •• ,Λ/Γ

n sufficiently spaced, each a,i(t)(t — a)Ni is divisible by d{t).
Since we could change to the new transcendental t — a over D19 we need
only treat the case a = 0. Let d = max degree among d(t), a1(t)ί . If
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where N^ + d < Ni9 i — 2, , n, and qv{t) involves only terms of degree
greater then Nv-X but not greater than Nv + d, then:

The terms on the right side of (*) of degree not greater than Nλ + d

= terms on left side of (*) of degree less than N2

= d(t)Ql(t).
Thus d(t) I ax{t)tNl, and so on. Hence, if for some i we have Σv=ifl
a)N* divisible by d(t), then d(t) \ aiv(t)(t - a)N\ l^v^n. By cancelling
the factors t — a which may occur in d{t), we deduce that the comple-
mentary factor in d(t) must divide some row of the aίv. So, if we can
pick more a than there are rows, we'd need some row divisible by so
much that d(t) would have to divide eachαίv(ί). We assumed that #(A)>^
for exactly this reason. So, for some ae A and for all Nlf , Nn suf-
ficiently large and far apart, all of Σϊ=i aΛt){t — oc)N* are indivisible by
d(t). As to avoiding hyperplanes of Kn: these have the form hxxλ +
• + hnxn = 0, where ht e AM Since for Nl9 , Nn far enough apart,
the terms of the hi(t)tNi don't overlap, we cannot have Σ hί(t)tNί — 0.
As usual, the change t—>t — a is no problem, so Lemma II is proved.

For our purpose, somewhat more than the above is needed. A mild
generalisation of Lemma II is now proved.

LEMMA III. Let B be an r-by-n matrix over a field containing
Dx{t), and assume that there is an r-dimensional subspace V of Kn,
where K = Dx(t)9 such that for all nonzero u in AM71 Π V some com-
ponent of Bu is in D^t] and is nonzero. Then, some row of B is such
that its inner product with AM™ Π V is always in D\t\ and is not
always zero.

Proof. Since every nonzero element of V goes into Dn, where D =
AM> o n being multiplied by a suitable element of D, we know that
Lemma I applies to B and V. Hence, as in the remarks immediately
before Lemma II, we know that by permuting the rows of B we can
put it in the form B = TBU where T is r-by-r, is triangular with only
ones on the diagonal and every sub-diagonal entry is either 0 or outside
K, while A is such that for all nonzero u in V, the product Bxu is
nonzero and in Kr. As in Lemma II, we can order the rows of T so
that the ones in K come first:

\

where the last r — s (posssibly 0) rows of T involves elements outside K.
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The first s ( ^ 1) rows of B± coincide with those of B, and we now show
that one of these has the desired property. If not, then for the ith row
R\f 1 ^ 1 ^ s, we can find a nonzero ut in Dn f] V, such that R\u% is not
in D. Consider now the matrix BJJ, where U is w-by-s, consisting of
the columns ulf •• ,ua; BJJ is r-by-s, is over K, and the first s rows
each contain an element outside D. Hence, as before, we can choose
Nl9---,Na so far apart that B.Udt - α)N\ ••-,(£- α)Nήι has its first
s components outside D and such that the last r — s components of
TBX U((t — α)N\ , (ί — α)**)t are not even in K. But the vector u =
Σ*=i (* ~ oc)NlUi e Dn Π V, and we've just shown that Bu has no com-
ponent in D. This contradiction shows that one of the first s rows of B
has its inner product with Dn Γ) V always in D. It cannot be perpen-
dicular to V, as there are nonzero elements of V perpendicular to all the
other rows of B, by dimensions, and we excluded having all rows of B
perpendicular to some nonzero element of V.

COROLLARY. // A has property PD1 where D = D\t\ and #(A) > nf

as before, then the rows of A can be so arranged that R[ is over D,
and for k = 1, , n — 1, for all u in Dn and perpendicular to the first
k rows of Ay we have R£+1 u in D, not always zero.

Proof. By Lemma II we may assume the first row is over D. As-
sume that the first k rows have been arranged as desired, for some k ^ 1;
we can then proceed to the choice of Rl

k{1 by applying Lemma III to the
matrix of the last n — k rows of A, with F t h e subspace of Kn orthogo-
nal to the first k rows of A.

This necessary condition for PD, in the simple transcendental case,
has the virtue of being patently sufficient. It also makes evident the
Corollary to Theorem II: when D = F[t], so that all ideals are principal,
matrices with PD are essentially just nonsingular matrices over D, apart
from permuting the rows and pre-multiplying by the usual triangular
T. However, it is not easy to see how this criterion for general D\t\
would be checked, nor does it seem an obvious deduction that det A e D*.

Theorem II will now be deduced. Since we already know that det
4 ^ 0 , the r-by-r minors of the first r rows of A cannot all be zero.
Hence, we need only show that if the rows have been arranged as in
the corollary above, then all the r-by-r minors of the first r rows are in
D, for 1 ^ r <Ξ n. By looking at an r-by-r sub-matrix of the first r rows
of A, we see that its orthogonality properties should imply that its de-
terminant is in D, and so it will suffice to prove:

LEMMA IV. Let B be r-by-r over some field containing K, such
that the first row is over D and, for k = 1, , r — 1, all u perpen-
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dicular to the first k rows of B and in Dr have an inner product with
the k + 1st row in D. Then det BeD.

Proof. The case r = 1 is trivial, so induction can begin. By the
case r — 1, all the minors of the last row are in D. Since these numbers
give a vector in Dr perpendicular to the first r — 1 rows and having
inner product det B with the last row, we are done. The proof of Theo-
rem II is now complete.

It is not a sufficient condition on A for PD, to have all these r-by-r
minors in D and not all zero, for 1 S r ^ n, as the example

x2 — xy\/or — xy\

vo χ-y

soon shows. In preparation for the proof of the last theorem, we shall
show that the extra condition, that the r-by-r minors be in D and with-
out common divisor, is sufficient in the cases when D — D\i\ is a unique
factorisation ring, for example when D = F[tu t2, , tk].

LEMMA V. Let D be a unique factorisation domain with quotient
field K, and let A be an r-by-n matrix of rank r such that, for 1 S
k ^ r, the k-by-k minors of the first k rows of A are all in D and
without common divisor. Then the first row is, of course, over D and,
for 1 ̂  k < r, and for all u in Dn and perpendicular to the first k
rows of A, the inner product Rί+1. >u is in D.

Proof. Since we use induction on r, it is necessary only to deal
with the case of u perpendicular to the first r — 1 rows of A. Consider
the equations

arl, ' , dm

L-r

\

•

•

•

/ 0 \

0

p

ur+1

To show p e D, we multiply both sides by (d, Cn), these being the
co-factors of the rth column of the n-by-n matrix: hence

an α l r

α r ί α r r

ur = Crp + Cr+1ur+
Cnun

But Cr equals the minor formed with the first r — 1 rows and columns,



A SPECIAL CLASS OF MATRICES 707

while Cr+1, , Cn are also equal to cofactors from the first r — 1 rows.
Thus, Crp e D. Since changing the order of the columns of A does not
alter the truth of the hypotheses, we know that for all the minors C at
the (r — l)st stage, Cp e D. But these minors are without common
divisor. Hence pe D, as required.

COROLLARY. Every matrix of the form PLV, as in Theorem III,
has property PD.

Proof. Since P serves only to permute the rows, we may ignore it.
Then we observe that since L is triangular with elements of D* on the
diagonal, the orthogonality property for V of Lemma III, Corollary, is
not changed by going to LV. Thus, it is enough to use Lemma Fwith
r — n.

Proof of Theorem III. We have just proved the "sufficienty" part
of the theorem. So now assume A has PD. By Lemma III we can order
the rows of A so that for all u e Dn and perpendicular to the first k rows,
Rl+1 ue D and is not always zero. By using only those u with n — k
entries uilf , uin_k equal to zero, we see that the matrix obtained by
erasing columns ii3 , in-k and the last n — k rows of A has the ortho-
gonality property. By Lemma IV we deduce that the first k rows of A
have all k-by-k minors in D. We now put A in the form L V by taking
common factors as follows. We examine the first row of A: it is over
D, so we take out the common factors. Proceed inductively: assume that
factors have been take out so that the co-factors for the first k rows are
without common divisor, for 1 g k < r, and the new matrix still has the
orthogonality property. If the minors of the r rows are not relatively
prime, divide the rth row by the common factor. Lemma V shows that
the orthogonaltiy property is not lost by this process, so we can continue.
This completes the proof of Theorem III.
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