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l Introduction* Basic definitions and some known results.
The Geometric Function Theory encounters serious difficulties when

dealing with multilply-connected domains, due to the fact that no domain
function is known in an explicit form for a domain of connectivity
greater than two. It is for this reason that one at least tries to find
properties of the domain functions in terms of geometric characteristics
of their domains.

In this paper we search for information on domain functions and
certain families of functions, defined for p-connected domains, that can
be deduced form properties of functions defined in symmetric domains
of connectivity 2(p-l). We also extend the results to infinitely-connected
domains.

Let Δ be a domain in the z-plane, and let L\Δ) be the class of
functions which are regular and square integrable in Δ. Let Γ(Δ) be
its subclass consisting of those functions which have a single-valued
integral in Δ. Both classes form separable Hubert Spaces [L2(Δ)] and
[12(Δ)] under the scalar multiplication

r r

(1.1) (/; g) = \ f(z) g(z) dω , dω = dx dy, z = x + iy .

Let h\Δ) be the class of functions which belong to the orthogonal
complement of [12(Δ)] with respect to [L2(Δ)]. The Hubert space [h\Δ)]
has a finite dimension p—1, if Δ is p-connected and none of its boundary
components reduces to a point. (See Bergman [3]). If Δ is infinitely-
connected, this space has in general an infinite dimension (See Virtanen [9]).

According to Virtanen [9] (See also Nevanlinna [7], one can construct
an orthogonal basis for h\Δ) as follows: Let Cl9 C2, be a homology
basis of cycles in Δ, subject therefore to the following conditions:

(1) Any cycle in Δ is homologous to a finite chain of these cycles.
(2) No chain is homologous to zero, unless its coefficients are all zero.

We can also assume that each cycle Cjy (j = 1,2, •• )1 is an oriented
analytic Jordan curve. If KA{z, ζ) is the Bergman kernel function for
the class L2(Δ), then the functions

(1.2) Fj(z;J) = i§σjKAς,z)dζ, i = 1,2,

Received July 19, 1961.
1 Throughout this paper the notation 1,2, ••• will mean a finite or infinite sequence,

as the case may be.
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span the space [Λ2(J)]; and if a subsequence F-k (z; Δ) of them is obtained
by omitting those functions which depend on the previous ones, we can
orthonormalize its elements and thus obtain a basis φn(z; Δ) (n = 1, 2, •)
for [h\Δ)]. The coeίicients used in this process are real:

(1.3) φn(z; Δ) = £ cί»> F}k(z; Δ) ck real, n = 1, 2, . . .
k=l

We recall also that

(1.4) Fj(z; Δ) = 2£ ω^; J) , 2 f = A - *A ,

where ω ^ ; J) are the harmonic measures of that part of the boundary
of Δ, which lies inside the cycle C3 . (See Bergman [3], Virtanen [9]).

Clearly, the classes L\Δ) and Γ{Δ) decrease monotonically if the domain
Δ increases, and this fact plays an important role in the development
of the theory of the kernel function. Unfortunately, a monotonic property
for the class h\Δ) does not hold in general. It is therefore interesting
to notice that if B is a symmetric domain with respect to the real axis,
and the extended real axis is contained in B, then

(1.5) h\D) c h\B) ,

where D is that part of B which lies in the upper part of the finite
plane. (Section 2). We study the connection between the bases for the
classes h\B) and h\D), and deduce various relations for the kernel
functions and the Z-kernels for the corresponding classes. (Sections 2, 3).

2. Symmetric domains. Let D be a finitely or infinitely-connected
domain in the 2-plane, the boundary of which consists of the real axis /
as well as other boundary components which shall be denoted by Γ. We
assume that I is an isolated boundary component and we denote by D*
and Γ* the reflections of D and Γ with respect to /, respectively. Let
B be the symmetric domain bounded by Γ and JΠ*.

Let Cj (j = 1, 2, ••) be a basis for the homology group of D, as
described in §1. We choose the orientation on Cj to be counter clockwise
and therefore I is not in the interior of Cό (j — 1, 2, •). We also assume
that CΊ encloses Γ. Let C* (j — 1, 2, •••) be the reflection of Cj with
respect to 7, oriented counter clockwise. Clearly, the Cf's form a
homology basis for D*, and Clf C2, , C*, C3*, form a homology basis
for B. We also denote by Γj9 Γf those parts of Γ and Γ* which are
enclosed by C5 and Cf, respectively (j = 1, 2, ••). (Γ = A) .

The harmonic measures ωά(z\ D) of Γ3 , with respect to D, vanish on
/ and therefore can be continued into D*. They satisfy:
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(2.1) ωά{z\ D) = -0)0; D) , z e B, j = 1, 2, .

Thus, the functions

(2.2) FS(z; D) = 2dω^D) , 3 = 1,2, . . . ,
dz

are single-valued and regular throughtout B, and satisfy

(2.3) Fj(z; D) = - ί y ( I ; D) , j = 1, 2, ., * e B .

Here and elsewhere we use the notation

(2.4) FJ(z; D) =
dζ

By (1.3) it now follows that

(2.5) φn(z; D) = -φn(z; D), z e B , n = 1, 2, .

THEOREM 2.1. If B is a symmetric domain with respect to the real
axis, and contains the real axis, then

(2.6) h\D) c h\B) .

D denotes that part of B which lies in the upper half plane.

Proof. The functions <pd(z; D)jV 2 (j = 1, 2, •) belong to the class
h\B) and form an orthonormal system in B. Indeed, if g{z) e l\B) then
a fortiori g(z) e Γ(D) and ~gϊz) e Γ(D), zeD; hence, by (2.5),

(2.7) j \φn(z; D)W) dω = j \jpn(z; Dj^zj dω - J \jpn(z; D)g{z) dω = 0 .

Similarly,

(2.8) J \φn(z; D)φm(z; D) dω = j \ψJLz\ D)φm(z; D) dω

pn(z; D)φm(z; D) dω = 23nm .

If f(zJ_eh\D), then f(z) = Σnanφn(&D), wher^_ Σn\an\
2 < oo. Thus

J J 1 / 2 α J 2 < co hence /(s) - ^ ^ 2 ^ (^(^)/l/ 2 ) e Λ2(£).
Consider again the symmetric domain B, and let ω^z; B), ωf(z; B)

be the harmonic measures of Γj9 Γf, with respect to B, respectively.
We shall prove that

(2.9) ωf(z; B) = ω^z; B) , z e B , j = 1, 2, . . . .
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Indeed, we exhaust B by a sequence of finitely-connected subdomains
Bι, B2, ,

(2.10) Bm c Bm+1, U Bm = B , m = 1, 2, .

We can assume that each domain is bounded by analytic Jordan curves
and is symmetric and contains the extended real axis. Clearly, for each j ,

(2.11) ωf(z; Bm) = ωtf; Bm) ,

if m is large enough, since both sides are harmonic in Bm and have the
same boundary values. By letting m go to infinity, we obtain (2.9).
(See Virtanen [9]).

In a similar fashion one obtains:

(2.12) ωj(z; B) - ω0\ B) = ωd(z; D), zeB , j = 1, 2 , . .

Applying the operation 2{djdz) to both sides of (2.9) and (2.12), we obtain
the important relations:

(2.13) F}*(z; B) = Fj(z; B)

(2.14) F'ά{z; B) - F}(z; B) = F}(z; D), ze B , j = 1, 2, . . . .

Since h\D) c h\B), it is of interest to have some information on
the orthogonal complement of [h\D)] with respect to [h\B)].

THEOREM 2.2. Let B be a symmetric domain with respect to the
real axis, which contains the real axis, and let D be that part of B
which lies in the upper half plane. Let2

(2.15) ψn(z; B) = φn(z;D)IV'2' = Σ cnkFl(z; D), (cnk real) ,
k = l

(2.16) χn(z; B) = Σ cnkFl(z; B) ,
k=i

where φn(z; D) is an orthonormal basis for [h%D)], as constructed in §1.
Then, the functions

(2.17) rn(z; B) - χn(z; B) - ^ B)

are orthogonal to the functions

ψm(z; B) n, m = 1, 2, .

Proof. It is well known (see Bergman [3], Virtanen [9]) that the

2 We assume that Ff

k(z; D), k = 1, 2, •• , are already independent. Note also that
F[(z;D) = 2F'1(z;B) (see Section 1).
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scalar product (over B) of any two functions from the closed system
{Fj(z; D), F<+1(Z; B), j = 1, 2, •} is real. The same holds true for the
scalar product of ψm(z; B) and χn(z; B). Therefore, in view of (2.5) and
(2.14),

(2.18) \\B

\\ ; B) dω - \\Xn{z\ B)ψm(z; B)dω

B) + χn(z; B)) ψm(z; B) dω - \\χj&\ B)ψm(z; B) dω

B)ψm(z;B)dω = ±-

where δnm = 0 if n φ m, δnn = 1.
On the other hand,

(2.19) ίί ±^Bl
jjB 2

hence the result follows.

COROLLARY 2.1. It is easily verified that

(2.20) rn(z; B) = rn(z; B) , r& , B) = 0

hence, by orthonormalizing the functions rjz; B), n = 2, 3, (with real
coefficients), a complete orthonormal basis ψn(z; B), pn(z; B), n = 1, 2, ,
is constructed for [h\B)]y where

(2.21) fn(z; B) = -ψn(z; B), pn(z; B) = Pn{z; B) , n = 1, 2, . . .

This result, which later will be of much use, implies:

THEOREM 2.3. Let B be a symmetric domain with respect to the
real axis, and contains the real axis, theΨi, each function f(z) of the
class h\B) can be represented as a sum of two functions fτ(z) and f2(z),
of the same class, which satisfy

(2.22) fx{z) = -U

In fact,

(2.23) 2A(z) - f(z) - f(z) , 2f2(z) = f(z) + f(z) .

3 The space Jv&Δ). Let h\{Δ) be a subclass of h\Δ), consisting of
those functions which have real Fourier coefficients with respect to the
base φn(z; Δ) (n = 1, 2, •). This class forms a real Hubert space [K(Δ)],
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with respect to the metric (1.1).
In order to extend some results to the case of a general domain J,

we exhaust Δ by a sequence of smoothly bounded, finitely-connected
subdomains {Δm}, m = 1, 2, which satisfy

(3.1) Δm c Δm+1, \jΔm = Δ , m = 1, 2, . . . .

LEMMA 3.1. If f(z) e h%Δ), there exists a sequence of functions
ί/m(s)}, /m(z) e hl(Δm), m = 1, 2, , wΛicft converges in the mean to f(z),
and therefore converges uniformly to f(z) on each compact set in Δ.

Proof. Given f(z), it follows that

(3.2) f(z) = Σnanpn(z; Δ) , an real, Σna\ < ™ .

The series converges in the mean. If m is large enough, Δm contains
a given cycle Cj which encloses a part Γ w ) of the boundary of Δm. It
is known (see Virtanen [9]) that F-(z; Δm) converges in the mean to
Fj(z, Δ) if m —• co (we define F-(z; Δm) to be zero outside Δm). One now
applies the Gram-Schmidt orthonormalization process to a subsequence
{F-k (z; Δm)}, where k is chosen in such a way that each F}k(z; Δ) is
independent on the functions Fjfa Δ), I = 1, 2, , k — 1. One obtains
for each m an orthonormal system

(3.3) φn(z, Δm) = Σ cPF;k(z; Δm), c^ real, k = 1, 2, , Nm .
kΣ
k — l

Nm is the number of cycles Cjjc which are in Δm. It can be proved by
induction that φn(z; Δm) converges in the mean to φn(z; Δ), defined by
(1.3) and that c{

k

m) —> ck, as m—>oo. Consequently, the functions

(3.4) fm(z) = Σ aΛφn(z; Δm)

converge to f(z) in the mean.
The space hl(Δ) can be characterized differently. To this effect we

apply the i-kernel defined (Bergman Schiffer [4], Schiffer [5]) as

ά.5) uz, ξ) , ^ + : i ι ,

π(z — ζf π dzdζ

where GA{z, ξ) is the Green function of the domain Δ.

LEMMA 3.2. The kernels Ijjz, ζ) for a fixed ζ, converges in the
mean to lΔ{z, ξ). Δm is the exhaustion (3.1).

Proof. We use the known relations (Bergman-Schiffer [4])
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(3-6) (( IJJZ, ζ)l,m{z, ?) dωz = KAm{ζ, ζ) ~ Γjjίξ, ζ) ,
J J4m

where

(3.7, /-̂ .W-i

Δm is the complement of Δm with respect to the 2-plane.

for /(s) e L\Δm). The improper integral on the right hand side of (3.8)
is to be understood in the sense of the limit of integrals over the
domains ΔSιm which are obtained from Δm by removing circles around ξ
with radius ε, ε—*0. Let p ^ m, then

(3.9) ί \ I lJp(z, ζ) - hjz, ζ) |2 dωz ^ KJp(ξ, ξ) - ΓJp(ξ, ξ)

+ K,Jζ, ζ) - ΓJm(ξ, ζ)-2Re\\ hp{z, ζ)hj^ξ) dωz .

By (3.8), the last integral can be estimated:

(3.10)

By Schwarz inequality, the modulus of the last integral can be made
arbitrarily small, if m is large enough, and also KAm (ξ, ζ) tends to
Kj(ζ, ζ) (See Virtanen [9]); hence the right hand side of (3.9) tends to
zero if m —> co.

The limit function is lA(z, ξ) as defined by 3.5, since GJm(z, ξ) converges
to GΛ*, ξ).

THEOREM 3.1. (Bergman-Schiffer) The function f(z)eh\Δ) belongs
to the class h%Δ) if and only if

(3.11) TJ Ξ ^Uz, ζ)f(z) dωz - -f(ξ), ζeΔ.

This theorem was proved in [4] for the case of a sufficiently smooth
bounded, finitely-connected domain. If f(z) e hl{Δ)> where Δ is a general
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domain, it follows from Lemma 3.1 and Lemma 3.2 that TJmfm(z) — —fj£)
implies TJ{z) = -f(ζ). Conversly, if f(z) e h\Δ) then

(3.12) f(z) = Σanφn(z; Δ) + iΣβnφn(z; Δ), a%, βn real

hence TAf(z) — —f(z) can only happen if βn = 0.
If is known [4] that lA{z, ξ) can be represented as a sumjof two

kernels:

(3.13) Uz, ξ) = lT{z, ζ) + Vϊ\z, ξ) ,

where3

(3.14) ii"(2, ζ) = - Σ 9.(2, 4)9.(?, 4) ,

and Zj°(̂ , f) belongs to l\Δ), for each fixed ζ. We therefore obtain:

COROLLARY. A necessary and sufficient condition that a function
f(z) of the class L\Δ) belongs to hl(Δ) is

(3.15) Tf = \\W(z, ξ)f(z) dωz = -f(ξ) , XzΔ.

REMARK. Clearly, Kjk)(z, ξ) — lf{z, ξ) e h\(Δ) as a function of z, where

(3.16) K}k)(z, ξ) = Σ ψn(z; Δ)φn(ζ; Δ) .
n

In the case of a symmetric domain B, Theorem 2.1 can be slightly
improved to the effect that h\(D) c h\(B). Also, if f(z) e h\{D), it follows
from (2.5) that

(3.17) f{z) = -f(z) .

Limiting ourselves to the spaces h2

r(B), h%D), we can now construct
functions in the latter space from functions in the former one:

THEOREM 3.2. If B is a symmetric domain with respect to the real
axis, and contains the real axis, and if f(z) e K{B) then f(z) — βT) e hl(D),
where D is that part of B which lies in the upper half plane.

Proof. We exhaust B by the symmetric domains {Bm} (See (2.10)),
and consider the functions fm(z), defined in (3.4), where f(z) has the
representation (3.2). The functions φn(z; Bm) are finite linear combinations,
with real coefficients, of F k(z; Bm) and F%(z; Bm); consequently, by (2.13)
and (2.14), φn(z; Bm) — φn(z; Bm) are finite linear combintations, with
real coefficients, of Fjk(Dm), which, in turn, are finite linear combintations,

8 The generalization to a general domain is obvious.
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with real coefficients, of φn(z; Dm). Since [h2

r(/lm)] has finite dimensions,
it follows that

(3.18) fm(z) - fm(z) = gM(z) e K{Dm) .

Thus, by Lemma 3.1 if m—>oo, the left hand side converges to the
function f(z) - J(z) = g(z). But g(z) e L\B) c L2(D), hence gm(z) tends
to g(z) which is in hl(D).

This theorem could also be proved directly by the use of Corollary
2.1. We can also use this corollary and the series developments (3.14),
(3.16) in order to prove by direct calculation the following

THEOREM 3.3. If B is a symmetric domain with respect to the
real axis, and contains the real axis, then the following identities hold
for z,ζeB.

(3.19) K™(z, ξ) = KB

h)(ζ, z) ,

(3.20) ϊj»(s, ζ) = lf(z, ζ) ,

(3.21) KB

k)(z, ζ) + lf{z, ξ) = K™(z, ζ),

(3.22) K™{z, ζ) = K},k)(ζ, z) = V»(z, ξ) .

Here D denotes that part of B, which lies in the upper half plane.

REMARK. From the symmerty of B, it follows that the Green function
satisfies the identity

(3.23) GB(z,ξ) = GB(z,ζ), z,ζeB,

therefore, by (3.5) and by the well known formula (See [4], [5])

(3.24) K,(zf ξ) = ~
ππ dzdζ

it follows also that

(3.25) KB(z, ξ) = KB(ζ, z)

(3.26) lB(z, ξ) = lB(z, ζ) .

Hence, similar identities hold also for the kernels Kι

B{z, ξ) and lι

B(z, ξ).
Making use of Corollary 2.1 (2.15), (3.14), (3.16), we also find that

(3.27) κp(z, ς) - iκp(z, ς) - np(z9 ζ) - ι?(z, ζ) = Σ PniΦΛζ)
n

hence,

THEOREM 3.4. If B is a symmetric domain with respect to the real



646 MICHAEL MASCHLER

axis I, and contains the real axis, and if D is that part of B which lies
in the upper half plane, then

(3.28) K^iz, z) ^ lK$ \z, z) , zeB, zφl.

(3.29) l™(z, z) ^ HP(z, z ) , zeB, zφl.

4 Concluding remarks. A domain Δ is said to be of zero span (of
the class 0^, in the terminology of the theory of Riemann Surfaces),
if the class l\Δ) reduces to the zero function. (See Ahlfors-Sario [2],
Nevanlinna [7], Schiffer [8]). This property is invariant under univalent
conformal mappings, and the boundary of Δ can be characterized by
the fact that it is a removable singularity for all the functions, defined
in a neighbourhood of the boundary and belong to the class I2 in that
neighbourhood. (See Painleve Problem, [7]).

Clearly, for such domains,

(4.1) KΔ{z, ξ) = Kj»(z, ξ) l(z, ξ) = l^(z, ξ) .

Therefore, if B is a symmetric domain of zero span, one can replace the
class h\B) by L\B) in all our previous results. One may also deduce
properties of the class h\D) from known properties of the class L\B).

In Maschler [6], it was conjectured that if there exists a point in
a domain Δ, at which all the functions of the class h\Δ) vanish, then
h\Δ) consists of the zero function alone. (In the later case, the domain
is simply-connected except for punctures which are removable with respect
to the function of h\Δ)). This conjecture was proved there under the
assumption that Δ has two boundary components which are not completely
point-like. An analogous statement is correct for the classes L2(Δ) (see
Nevanlinna [7]) and l\Δ) (see Ahlfors Beurling [I]).4 The above mentioned
conjecture is trivially true if Δ has a zero span.

Using the representation (2.21), one derives easily, by (2.15), that
there exists a point t in D, at which all the functions of the class h\D)
vanish, if and only if f{t) = f(t) for all the functions f(z) of the class
hl{B). Thus, if Γ contains a boundary component which is not completely
point-like, then, for any point t in D, there exists a function of the
class hl{B), which does not take a conjugate value at t.

It would be of interest to study also the question whether it is
possible that all the functions f(z) of the class hl(B) satisfy at a particular
point t, teD, the relation f(t) = —f(t). This is equivalent to equality
in (3.28) and (3.29), for z = t. (See (3.27)).

4 The situation in the general case of a Riemann surface is studied in Virtanen [10].
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