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1. Let M be a separable, complex-analytic manifold. It is well-
known that, if / is a bounded analytic function on M and p e M, then
f(p) can be expressed as an integral of the "boundary values" of /. In
general the boundary on which the integration is carried out and the
boundary values to be integrated are abstract but in special cases a
concrete description can be given. Suppose that M is an open subset
having compact closure in some larger manifold Mr and we consider
only analytic functions / on M which have continuous extensions to M.
Then the boundary B is a subset of the topological boundary of M,
the boundary values are given by the continuous extension and we
may write

(1.1) f(p) = ( f(b)dμp(b)

where μp is a measure on B which is independent of /. When M i s a
region in the plane with rectifiable Γ we have the familiar Cauchy
integral formula

t - z

Here the integral is expressed with a fixed measure and a kernel func-
tion which is analytic in z. In the abstract proof of (1.1) each of the
measures μp is derived by a separate application of the Hahn-Banach
theorem so we cannot directly replace (1.1) with a formula involving an
integral kernel depending analytically on p. It is the object of this
paper to prove that this is possible.

An explicit formula involving an integral kernel for domains in Cn

having sufficiently smooth boundary has been given by Weil [7]; a new
proof of this formula in slightly more general circumstances will appear
in [3]. Proofs under various circumstances have also been given by Arens
[1], Herve [4] and others. In the present paper we require no regularity
on the boundary, but the integral kernel is not given explicitly. Perhaps
the most remarkable fact about our result is that in the ordinary com-
plex plane it is new or at least not standard.

2 This section is devoted to incorporating into the literature a
proof of the well-known fact that several, apparently different, defi-
nitions of an analytic mapping of a complex-analytic manifold into a
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Banach space coincide. For the one-dimensional case these results are
in [5; p. 92ff].

2.1 DEFINITION. Let M be a complex-analytic manifold of dimension
n. Let φ be a map of M into a Banach space A. We shall say that φ
is analytic at p e M if and only if φ can be represented in the neighbor-
hood of p by a norm-convergent multiple power series in a local coordi-
nate system centered at p. This means

(2.2) φ(q)= Σ aJij2,...Jnz1(qyiz£Q)h---Zn(q)Jn

for all q sufficiently near p, where ζzlf , zny is a local coordinate
system centered at p{zλ{p) — z2(p) — = zn(p) = 0).

We shall say that φ is analytic if it is analytic at each point p of M.

2.3 NOTATION. It is convenient to introduce the abbreviations (j)
for <ii,i2, , jn>, z{3) for z&i* ---zί* and | j | for j \ + j 2 + + j w .

By paraphrasing the standard proofs for the corresponding facts
concerning complex-valued analytic functions we can prove

2.4. A necessary and sufficient condition that the power series

should converge in the polycylinder {λ: | \ | < p, i = 1, •••, n} is that
for every positive ε there exist a constant C such that

for all (j).

2.5. If φ can be represented on an open neighborhood N of p by
a power series in terms of a local coordinate system z centered at p,
then, for any q e N and any local coordinate system w centered at g,
φ can be represented in a neighborhood of q by a power series in w.
Hence the notion analytic is independent of local coordinate systems.

2.6. If T is a bounded linear operator from one Banach space A
to another B and φ is an analytic map of M into A, then TΌ<p is an
analytic map of M into B. In particular, if α* is a bounded linear
functional on A, then a*°φ is an analytic function in the usual sense.

We shall prove a converse of this result below (2.11).

2.7. If α* is a linear functional on A and <p has the local repre-
sentation (2.2) near p, then a*oφ has the local representation
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and we can conclude that a*oφ vanishes locally at p if and only if
α*(α ω ) = o for all (j). Then it follows from the Hahn-Banach theorem
that the coefficients a(j) span the same closed linear manifold in A as
does the <£>-image of any connected open set containing p.

2.8 THEOREM. Suppose φ is a map of a complex-analytic manifold
M into the conjugate A* of a Banach space A. Suppose that, for each
a e A, the map q —> φ(q)(a) is analytic. Then φ is analytic.

Proof. Choose a point p of M and a local coordinate system z
centered at p. For each ae A we can expand

(2.9) φ(q)(a) = ΣfutΦW .

The coefficients / ( J )(a) depend linearly on a because the power series
representation of an analytic function is unique. We must show that
the functionals f{j) are bounded.

For sufficiently small p the equations | zx \ = \ z2 \ = = | zn \ — p
determine a compact set T in the domain of the coordinate system z.
For every ae A, the analytic function q—*φ(q)(a) carries T into a bounded
subset of the complex plane, hence by the Banach-Steinhaus theorem
there is a constant K such that || φ(q) || ^ K for all q e T.

We can express the coefficients in (2.9) by the iterated Cauchy
integral

where q represents the points having coordinates zlt z%, , zn. The
usual estimate gives

whence f(j) is bounded; in fact, | | / ω || ^ Kρ~m. Therefore the power

series

(2.10) Σ / o )Zω

converges in the norm in A* for \z{\ < p, i = 1, * ,n and determines
an analytic map ψ of this polycylindrical neighborhood of p into A*.
Now ψ(q)(a) = φ(q)(a) for all ae A and all q near p. Hence φ has the
expansion (2.10) in a neighborhood of p. Since p is arbitrary φ is
analytic.

2.11 THEOREM. Suppose ψ is a map of a complex-analytic mani-
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fold M into a Banach space A. If a*oφ is an analytic function on M
for each α* e A*, then φ is analytic.

Proof. Let U be the natural enbedding of A in A** given by
(Ua)(a*) = α*(α). Now the map Ϊ7o<p satisfies the hypothesis of Theo-
rem 2.8 so we conclude that Uoφ is an analytic map of into A**.

Say that Uoφ has the local representation (2.10) near a point p e M,
where now fU) e i * * . We must prove that fU)e U A. The latter is a
closed linear manifold in A** which contains the range of Uoφ, hence it
contains also the coefficients as proved in 2.7. We may write therefore
f(j) = UaU) and, because U is an isometry, it follows that φ has the
local representation ^Σχa{j)z

{j). Therefore φ is analytic.

2.12 COROLLARY. Suppose φ is a map of a complex-analytic mani-
fold M into a Banach space A. Suppose B is a closed linear subspace
of A* such that, for some constant K and all a e A

If boφ is an analytic function for each be B, then φ is analytic.

Proof. Map A into 1?* by defining T(a)(b) == b(a). We have then
II Ta\\ ̂ \\a\\ and our condition on B gives \\a\\^ K\\ Ta\\. It follows
that T is an isomorphism of A onto a closed linear manifold of J3* and
the previous proof is valid.

2.13 THEOREM. Let φ be a map of a complex-analytic manifold M
into a Banach space A such that, for every compact subset K of M, φ(K)
is bounded in the norm. Suppose that a*oφ is analytic for every α*
in some total subset of A*. Then φ is analytic.

Proof. Let B be the set of all bounded linear functional α* on A
for which a*oφ is analytic. Clearly B is a linear subspace of A*.

Let {bθ} be a directed system in B such that &<?—•/ weak* in A*
and {|| Ml} is bounded. By virtue of our hypothesis on φ, the directed
system of functions {bθoφ} is uniformly bounded on every compact subset
of M. Since it converges point wise to foφ the latter is analytic. Thus
feB. This proves that B is closed with respect to norm-bounded weak*
convergence. By a well-known theorem of Banach [5, p. 39], B is weak*
closed in A*. But by hypothesis B is total, so B = A* and Theorem 2.11
applies.

There are a number of cases in which the boundedness required by
Theorem 2.13 can be deduced from the Banach-Steinhaus theorem. We
shall give only the case of linear operators from one Banach space to
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another, but it is clear that similar theorems apply to a great range of
spaces of multilinear functionals.

2.14 THEOREM. Let A and B be Banach spaces. Let L be the
Banach space of all bounded linear operators from A to B with the
operator norm. Suppose φ is a map of a complex-analytic manifold
M into L such that, for all aeA and all 6*ei?*, the function
p —> b*(φ(p)(a)) is analytic. Then φ is analytic.

Proof. If if is a compact subset of M, then two applications of
the Banach-Steinhaus theorem show that φ(K) is norm bounded in L.
Thus 2.13 applies.

2.15. We conclude this section by noting that analyticity of maps
into Banach spaces can equally well be defined in terms of differenti-
ability. Suppose for example that φ maps a complex-analytic manifold
M into a Banach space A and that φ has first partial derivatives in
terms of some local coordinate system either in the norm or weakly.
Then Hartogs' theorem implies that a*oφ is an analytic function on the
coordinate domain for every α* e A* and therefore φ is analytic on that
domain. The same considerations apply to weak* differentiability for
functions into conjugate spaces or spaces of linear operators.

3 We shall now study the analytic maps of a complex - analytic
manifold into some of the classical function spaces. For the sake of
future applications we give the results in a more general form that
we shall need.

3.1. Starting with a measure space <X, g7, μ} we shall be concerned
with the associated Banach spaces Lp, 1 ±g p ^ oo of classes of pth power
integrable (or bounded) measurable functions. Our work requires that
we distinguish between a function and the member of Lp which it
represents.

3.2 DEFINITION. Let <X, if, μ> be a measure space and let M be a
topological space. A function defined o n f x l will be called measur-
able with respect to μ if and only if it is measurable with respect to
the least (7-field containing all sets of the form G x E where Ee& and
G is a Baire open set in M. (That is, a set of the form {m: f(m) > 0}
for some continuous real function / defined on M. All open sets have
this form if M is metrizable.)

3.3 LEMMA. Let (X, if, μy be a measure space and let M be a
complex-analytic manifold. Let P be a bounded measurable complex-
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valued function on M x X such that

( a ) (Vx e X)m —> P(m, x) is analytic

and

( b) (Vm e M)x —> P(m, #) is integrable.

Then, for any set E in & of finite measure, 1 P(m, x)dμ(x) is an
JE

analytic function of m.

Proof. Let / be the function defined by the integral. Choose any
point m0 on M and a system z of local coordinates centered at m0. Say
that the range of z contains the closed poly cylinder {λ: | λy | ^ p} and
let T = {λ: IX11 = p}. For each x e X and all m near m0, the iterated
Cauchy formula gives

P(m x) = 1 f P(g,
(2τri)% J (\ 2 (

where q represents the point whose coordinates are Xlf , λn. Under
our hypotheses Fubini's theorem applies when we integrate over the
set E. Interchanging the order of integration gives

f(m) = 1 ί
(2πiy )(2πiy )τ (λ, - z1(m)) (λ, - zn{m))

which shows that / is analytic near ra0 since / is bounded and the
integral expands in a power series by the usual arguments. Since m(

was arbitrary, / is an analytic function.
Ό

3.4 LEMMA. Let {f{j)} be a multiple sequence of points in Lp,
1 ^ P ̂  °°, and let {f{3)} be functions representing these points re-
spectively. Then, for almost all xe X,

(3.5) lim sup (|/iΛ(») I/II/ΪΛ II)1/IJI ^ 1 .

(If 11/11 = o, we interpret 0/0 - 1).

Proof. The result is trivial for p = oo, so we assume p < oo. Sup-

pose that t > 1 and that g is a pth power integrable function. Consider

t h e s e t E = { x : \ g ( x ) \ > t\\g\\p}. E v i d e n t l y μ ( E ) t > \\ g \\* ̂  \\g\p = \\g\\*

and therefore μ(E) ^ Ijt9 ^ 1/t. (If || g \\p - 0, then μ(E) - 0, surely.)

Suppose 0 ^ p< 1 and let £7(i) - {x: \fj}(x) \ > p-w \\f{j) \\p}. Then

) ^ i° l j i. Therefore
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Since the latter tends to zero as k increases, the set Dp = Γ\kΌ\j\>k EU) has
measure zero. For points x $ Dp, the inequality |/ ( J >(a0l ^ p~ι3ι\\fj) | |P is
violated for at most a finite number of (j). Hence (3.5) holds except
on Um A-i/m, which is a null set.

3.6 THEOREM. Let <̂ X, if, μy be a measure space and let Lp be the
associated Lebesgue space where 1 5g p <Ξ oo. Let ψ be a map of a
separable complex-analytic manifold M into Lp which takes compact
sets in M into bounded sets in IΛ Then ψ is analytic if and only if
there exists a measurable function Q on M x X such that

( a ) (Vx e X)m —> Q(m, x) is analytic

and

( b) (Vm G M)x —> Q(m, x) represents ψ(m).

Proof. Sufficiency. Let K be a compact subset of M and let
mlf m2, be a dense sequence of points in K. Then

supm 6 2 Γ I Q(m, x) I = sup; | Q(mif x) \

The right hand expression is clearly a measurable function of x, hence

Ek = {x: sup w 6 ^ I Q(m, x) \ ̂  k}

is a measurable set in X for each integer k.
Let q be the index conjugate to p. Let g be the characteristic

function of some set of finite measure contained in Ek for some k. Now
g represents a member g of Lq and the usual pairing of Lp and Lα gives

m), #> - JQ(m, x)g(x)dμ(x)

which is an analytic function of m on Int K by Lemma 3.3. Since
\Jk Ek — X, the collection of all such functions g determines a total
system of linear functional on Lv. Then Theorem 2.13 asserts that ψ
is analytic on Int K. Thus ψ is analytic in a neighborhood of any
point of M and is therefore analytic.

Necessity. Suppose ψ is an analytic map of M into Lp.

Choose any point ra0 of M and let z be a local coordinate system

centered at m0. Let ψ be expanded in the series

(3.7) Σ/(i)S(m)(Λ

which converges, say, in the region NQ determined by the inequalities
1^(^)1 < P> i = l,2, ,n. Choose representative functions / ( i ) for fU

U).
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Applying 2.4 and 3.4 we see that

(3.8)

converges for me No unless x is in a certain set Yo of measure zero.
We define Qo by (3.8) on No x (X - Yo) and let Qo be 0 on No x Yo.

For a fixed value of me No, the partial sums of (3.8) converge
almost everywhere to QQ(m, x). These partial sums represent the partial
sums of (3.7) which converge to ψ(m) in the norm of ZΛ It follows
that x —> Q0(m, x) represents ψ(m). Moreover, the individual terms and
hence the partial sums of (3.8) are measurable on M x X, so Qo is
measurable. This solves the problem locally on M.

To obtain a global function Q we select a sequence of functions
{Qi}, with Qi defined on Nt x X where N{ is an open set in M, so
that U Nt = M and conditions (a) and (b) hold mutatis mutandis. If
Nif] Nj Φ Λ, then choose a dense sequence {mj in N{ n N3 . Since both
sides represent ψ(ms)9 Qi{mSJ x) — Qj(ms, ώ) unless x is in the certain
null set As. Since Qi and Q3 are continuous in the first argument,
Qi{m, x) = Qj{m, x) for all me JV̂  Π N3 unless x e \JS As = Bitj. Hence,
if x $ Ui ,j Bij we can define Q(m, ΛJ) = Qi(m, x) for any i such that
me N{. For other values of x take Q(m, #) = 0. Now (a) and (b) hold
and Q is measurable. This concludes the proof.

3.9. Let X be a compact Hausdorff space and let C(X) be the
Banach space of complex - valued continuous functions of X with the
usual norm. If μ is a positive Radon measure on X, then the space
L\μ) is isometrically embedded in C(X)* by the map ξ defined by

(ξf)(9) = \ f(x)9(x)dμ(x)

where geC{X), feL\μ), and / is any representative of /. We shall
refer to the £-image of L\μ) as an L1 subspace of C(X)*. The Riesz
representation theorem and the Radon-Nikodyn theorem together charac-
terize the image as consisting of those measures which are absolutely
continuous with respect to μ.

3.10 LEMMA. Every subset of C(X)* which is separable in the
norm topology is contained in an L1 subspace.

Proof. Let E be a separable subset of C{X)* and let el9 e2, be
a sequence in E which is dense in the norm topology. Each of the
functional e{ is determined by a Radon measure π{ on X, and πζ is
absolutely continuous with respect to some positive Radon measure μ{.
Now put μ — Yi μjμi(X)2*. Evidently each of the measures π{ is abso-
lutely continuous with respect to μ. Since the map ξ given in 3.9 is
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an isometry, its range is a closed linear manifold in C(X)* which con-
tains el9 e2, , and therefore all of E.

3.11 THEOREM. Let X be a compact Hausdorff space and let C(X)
be the Banach space of complex - valued continuous functions on X.
Let ψ be an analytic map of a separable complex-analytic manifold
M into C(X)*. There exists a positive Radon measure μ on X and a
complex-valued function Q on M x X measurable with respect to μ
such that

( a ) (Vx e X)m —• Q{m, x) is analytic on M

( b) (Vm e M)x —> Q(m, x) is μ-integrable

( c ) m —> 1 I Q(m, x) \ dμ(x) is continuous on M

and

( d) (V/G C(X)) f(m)(f) - ( Q(m, x)f(x)dμ(x) .

Proof. The range of ψ is a separable subset of C{X)* because ψ
is continuous in the norm. By Lemma 3.10 there is a Radon measure
μ such that the image of L\μ) in C(X)* contains φ(M). Hence we
may regard ψ as the composition of the map ξ of 3.9 and an analytic
map ψQ of M into L\μ). Now the theorem follows from Theorem 3.6
applied to the map φ0.

4 We shall now turn our attention to the lifting problem

, -A

where η is a continuous linear projection of A onto B and φ is an
analytic map of M into B. The required map is to be an analytic map
ψ of M into A such that rjoψ = φ.

It is known [5, p. 42] that there is a constant K such that for any
b G B we can choose ae A with η(a) = b and | | α | | ^ K\\b\\. If we look
at the local representation of ψ as a power series, say φ = Σu^u)ziί\ w e

can lift the coefficients one at a time choosing aU) so that η(aU)) = bU)

and \\a{j) \\ ̂  ίΓ | |6 ( i ) ||. The new series ^a{j)z
U) has the same region of

convergence as the old and defines a function ψ mapping an open set
in M analytically into A satisfying ηoψ = φ. Thus the lifting problem
is trivial locally. The global problem can therefore be treated as a
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problem in homology using coefficients in the kernel of the projection η.
We shall not pursue this attack, however. It is easier to construct a
continuous lifting of ψ and then smooth it to an analytic map using a
kernel function.

In this section it is not important to distinguish between a function
which is square integrable and its equivalence class which is a member
of L\

4.1 DEFINITION. Let M be a (real) manifold of class C". A measure
μ on M will be called proper if and only if it is a Borel measure and, for
any local coordinate system x on M having domain D, the Lebesgue
measure v on D determined by x is absolutely continuous with respect
to μ, and its Radon-Nikodym derivative with respect to μ is bounded on
compact subsets of D.

4.2 LEMMA. Let M be a manifold of class C satisfying the second
axiom of countability. Let f be any continuous complex-valued function
on M. There exists a proper measure μ on M such that feL2(μ).

Proof. Since M is separable and paracompact we can find a counta-
ble, locally finite partition {g{} of unity such that each function gt is
supported on a compact subset of the domain of a single coordinate
system ζx[i], x<λ

ί], , x^y. Let μi be the measure on M defined by
g^dx^dx^ -*-dx{:]\ and put ft = ΣA/2> i(tf). Then ft is a finite
measure on M and it is clear that on the domain of any local coordinate
system x it is a locally finite sum of nonnegative continuous functions
multiplied by the Lebesgue measue v determined by x with at least one
of the functions positive at each point. The Radon-Nikodym derivative
of v with respect to ft is therefore an everywhere positive continuous
function. Therefore ft is a proper measure. If we divide ft by the
positive continuous function 1 + | / | 2 we obtain a new proper measure
μ for which feL\μ).

4.3 LEMMA. Let N be a neighborhood of the origin in Cn. There
is a neighborhood P of the origin in Cn and a bounded Borel measur-
able function ψ on N having compact support in N—P such that, for
every complex analytic function f defined on N and every λ e P

(4.4) f(X) = ( /frW;> dv(p)
U (σλ - λx) (σH - λn)

where v stands for Lebesgue measure.

Proof. There is no loss of generality in assuming that N is the
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poly cylinder {λ: | λ, | < α, j = 1, 2, , n}. Choose numbers b and c so
that 0 < b < c < a and take P as the poly cylinder {λ: | λ, | < 6}.

Consider to begin with the case n = 1. From the ordinary Cauchy
integral formula we see that, for every g analytic on N and every λe P,

2π(c-b)
g{σ)σ

2π(c — b) JD a — λ \σ

where vx is the Lebesgue measure in the plane and D is the annulus

{λ: b ^ I λ I ^ c}. If α/r0 is the function z(2π(c -b)\z I)"1 on D and 0

elsewhere, then g(X) = \ g(σ)ψQ(σ)(σ — λ ) " 1 ^ ! ^ ) .
J JV

In the general case put f{σ) = ψ(σlf σ2, . , (7W) = f 0(̂ 1)̂ 0(̂ 2) f 0(^»)
and we obtain (4.4) by breaking the 2^-dimensional integral into an n
times iterated 2-dimensional integral.

4.5 THEOREM. Let M be a complex-analytic manifold. Let μ be
a proper measure on M. Let H be the set of all complex-analytic
functions on M which are in L\μ). Then H is a closed linear mani-
fold in L\μ). For any point pe M the valuation functional χp:f-^f(p)
is continuous in the L2 norm on H. The map p—>χp of M into H* is
analytic. There exists a Hermitian symmetric continuous function K
on M x M such that, for each q e M, p—* K(q, p) is in H and, for
every function g in L\μ), the orthogonal projection f of g on H is
given by

(4.6) f(p) = \ K(p, q)g(q)dμ(q) .

Proof. Let q be any point of M and let 2 be a local coordinate
system centered at q with domain N. By 4.3 there is a neighborhood
P of q and a bounded Borel measurable function ψ with compact sup-
port in N — P such that, for every complex-analytic function /defined
on N and every, pe Pf

(4.7) ftp) = \ mWϊ dv(r)
1 ; JKP) J, (Zl(r) - Zl(V)) (s,(r) - zM)
since μ is a proper measure we can write dv = ξdμ where ξ is a Borel
measurable function bounded on the support of ψ. Evidently the formulas

θp{r) - f (r)r(r)(zχ(r) - z^p))-1 . • • ( # - zn{v))-' for r e N

θ,(r) = 0, for r <β N

define a square integrable function and (4.7) becomes f(p) = ζf, θpy for



522 ANDREW M. GLEASON

feH where <,> represents the inner product and the bar stands for
complex conjugation. This shows that the valuation functional χp is
bounded in the L2 norm.

Moreover, \\θp\\ is bounded for p in any compact subset of P. Hence,
if {fn} is a sequence in H which converges in the L2 norm to g, then
fn—*Q pointwise and uniformly on compact subsets of P. Therefore g
is analytic on a neighborhood of q. Since q is arbitrary g is analytic
on M. This proves that H is closed in L\μ).

The map p—>χp is analytic by virtue of Theorem 2.8 and a fortiori
continuous. The map which identifies linear functionals on H with
vectors of H is a conjugate linear isometry, hence if we choose, for
each p, hpeH so that f(p) = </, hpy, the map p-*hp is continuous.
Now set K{p, q) = (hq, hpy = hq(p). It is obvious that K is Hermitian
symmetric and continuous on M x M. If g is any member of L\μ)
and / is its orthogonal projection on H, then, for any p e M, we have
<J3f K> = </, K> + <9 ~ /, &„> = </, λp> - /(P). Writing the inner
product as an integral this becomes (4.6).

4.8 THEOREM. Let A and B be Banach spaces and let η be a linear
map of A onto B. Let M be a complex - analytic manifold and let φ
be an analytic map of M into B. There exists an analytic map ψ of
M into A such that φ = ψψ.

Proof. It has been shown by Bartle and Graves [2] that there is
a continuous map ξ of B into A such that τjoξ is the identity. Hence,
if ψ0 = ξ°φ, then ψ0 is a continuous, but not necessarily analytic, so-
lution of the lifting problem.

Each component of a complex-analytic manifold is separable and we
may deal with the components of M one at a time in constructing ψ, so
we may assume that M is separable. According to Lemma 4.2 we can
choose a proper measure μ on M such that the function p~-+\\ψQ(p)\\ is
in L\μ). The norm inequality shows that α*oα/r0 is in L\μ) for every
α* e A*; moreover, the function b*oφ is analytic and in L\μ) for every
6* € B*. Let K be the kernel function associated with μ as in Theorem
4.5 and put

ψ(p) - J^ K{p, q)flq)dμ{q) .

Since the integrand is a continuous function and the norm of the
integrand is itself integrable, this integral exists in the sense of norm
convergence of appropriate approximating sums.

Now, for any α* eA*, a*ψ(p) = \ K(p, q)a*ψo(q)dq(μ) which is ana-

lytic function of p by Theorem 4.5. This proves that ψ is an analytic
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map of M into A, using Theorem 2.11. Finally, for any &* e 1?*,

b*Vf (p) = \^K(p, q)b*ηψQ(q) = ^K(p, b)b*φ{q)dμ{q) = b*φ(p) according to

4.5. This proves that ηoψ = φ and concludes the proof.

5* We can now prove our abstract version of the Cauchy-Weil integral
formula after a brief discussion of the Shilov boundary.

5.1. Let A be a Banach algebra with unit. The unitary homomor-
phisms of A into the complex numbers are a subset H of the dual space
A* which is compact in the weak * topology. In what follows H is
endowed with this topology.

With every ae A, we can associate a continuous function a on H by
defining d{h) — h(a). The mapping a—* a is then a continuous homomor-
phism of A into the algebra C(H). It is known that | | ά | | ίg | | α | | , but
inequality is possible, in fact the map need not even be one-to-one.

From now on suppose that A is a unitary subalgebra of the bounded
continuous functions on some space X. We define a map φ of X into
H by φ(x){a) — a(x) for all a e A. It is easily seen that φ is continuous
and that ψ is one-to-one if and only if A separates the points of X.
Evidently doφ = a for any α e i , and therefore | | α | | ^ | | α | | . Hence
the map a —> a is an isometry in this case.

For any set JQH we can form | | α | | j = sup {\d(h)\: h e J}. It turns
out that among the compact subsets of H there is at least one, J5, for
which || Ha = || \\H- This set is called the Shilov boundary of A.

As we showed above | |α |Uχ) = \\a\\ii for all aeA and therefore
If X is compact and φ is one-to-one, then φ(X) = φ(X) and

φ is a homeomorphism. Therefore we can regard B as a subset of X
If X is compact but φ is not one-to-one, then every function in A
achieves its norm on the set φ~\B), but this set need not be minimal.
In general there will be many minimal compact subsets of X which
carry the norms of the function in A.

For a more complete discussion of the Shilov boundary see [6].

5.2 THEOREM. Let M be a separable complex-analytic manifold
ane let A be the algebra of bounded complex-analytic functions on M.
Let B be the Shilov boundary of the ideal space of A. There exists a
positive Radon measure μ on B and a μ-measurable function Q on
M x B such that

( a ) (VbeB) m—>Q(m,b) is analytic

( b) (Vm € M) b —• Q(m, b) is μ-integrable

( c ) m —> \ I Q(m, 6) | dμ(b) is continuous, and
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(d) for any function f in A and any m in M,

\ m, b)f(b)dμ(b) ,
JB

where f represents the function induced by f on B.

f(m) = \
J

Proof. The map /—•/ embeds A isometrically in C(B). Denote
the transpose of this map by τj; it is a continuous linear map of C(B)*
onto A*.

Define the map φ of M into A* by φ(m)(f) = f(m) for all f in A
and all m in M. According to Theorem 2.8, φ is an analytic mapping.
By Theorem 4.8 we can find an analytic map f of I into C{B)* such
that η°ψ = φ. Finally Theorem 3.11 tells us that ψ can be represented
by a kernel. Conditions (a), (b), and (c) of 3.11 become (a), (b), and
(c) above while (d) above comes from 3.11 (d) and f(m) = φ(τn)(f) =

5.3 REMARK. It follows from the minimality properties of the Shilov
boundary that, for any nonempty open set V of B, μ(V) > 0.

5.4 COROLLARY Let G be an open subset of a complex-analytic
manifold M having compact closure. Let A be the algebra of continu-
ous functions on G which are analytic on G. There is a subset B of
G — G, a positive Radon measure μ on B, and a μ-measurable function
Q on G x B such that (a), (b), and (c) of 5.2 hold (with M replaced
by G) and

(d) for any function f in A and any m in G

f(m) = ( Q(m, b)f(b)dμ(b) .

Proof. The argument of 5.2 holds provided only that the restriction
map which sends A into C(B) is an isometry. The maximum modulus
principle shows that we can take B = G — G. There may be smaller
sets which will work equally well. If A separates points in G then
there will be a least B which will do; it is the inverse image of the
Shilov boundary under the natural embedding φ of G into A*. If A
does not separate points there may be more than one minimal set B.
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