DIRECT DECOMPOSITIONS WITH FINITE
DIMENSIONAL FACTORS

PETER CRAWLEY

The principal results. A fundamental theorem of Ore [10] states
that if an element in a finite dimensional modular lattice is represented
in two ways as a direct join of indecomposable elements, then the factors
of the two decompositions are projective in pairs. The Krull-Schmidt
theorem is an immediate consequence of this result. Subsequently many
authors have considered direct decompositions in modular lattices. In
particular, Kurosh [8, 9] and Baer [1, 2] obtained conditions which imply
the existence of projective refinements of two direct decompositions of
an element in an upper continuous modular lattice. When applied to
the decompositions of a group G, the conditions of Kurosh and Baer
are reflected in certain chain conditions on the center of G. In a somewhat
different direction, Zassenhaus [11] has shown that the representation
of an operator group as a direct product of arbitrarily many indecomposable
groups each with a principal series is unique up to isomorphism.

This paper studies the direct decompositions of an element in an
upper continuous modular lattice under the assumption that the element
has at least one decomposition with finite dimensional factors. It is
then shown that every other decomposition of the element refines to
one with finite dimensional factors, and that a strong exchange isomorphism
exists between two decompositions with indecomposable factors. This
latter result sharpens the uniqueness result of Zassenhaus.

Before explicitly stating the principal results, let us note the following
definitions. A lattice L is upper continuous if L is complete and

an Uz.=Uanuw
kEK keEK

for every element a € L and every chain of elements x, (ke K) in L.

If a and a; (t€I) are elements of a complete lattice L with a null
element 0, then o is said to be a direct join of the elements a, (i€ 1),
in symbols

a=Ua,
i€l

if @ = U;e; @i, and for each index hel we have a, N Uiz, @; = 0. The
rdire'zct join of finitely many elements a,, ---,a, is also denoted by
@, U ++- Ua, Anelementbis called a direct factor of a if a = b Uz
for some element . An element a is indecomposable if a + 0 and a =
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z U y implies z = 0 or ¥y = 0. Finally, an element a is said to be finite
dimensional if every chain of elements less than a is finite.

THEOREM 1. If a is an element of an upper continuous modular
lattice and

where x 1s finite dz’mensiona_l and indecomposable, then there exists an
index hel such that t, =r U s and

a:'rL'JyzxL.JsL'JUti.

i#h
THEOREM 2. If a is an element of an upper continuous modular

lattice and a 1s a direct join of finite dimensional elements, then every
direct factor of a is also a direct join of finite dimensional elements.

THEOREM 3. If a is an element of an wupper continuous modular
lattice and

a = U a;, = U bj
1€T JjET

where each a;, (te€I) and each b; (jeJ) is finite dimensional and
indecomposable, then there is a ome-to-one mapping @ of I onto J such
that

a=a;U U b
JFe(3)
for each index i€ 1.

These theorems may be applied directly to the lattice of admissible
normal subgroups of an operator group to yield the following extension
of the result of Zassenhaus mentioned above. If an operator group G
is a direct product G = [l;e; A; where each of the factors A; (1€ I) has
a principal series, then anmy two direct decompositions of G have
centrally isomorphic refinements.

Even with the strong continuity assumption it seems impossible to
relax the assumption of finite dimensionality particularly in Theorems 1
and 3. The free abelian group of rank 2 shows that in general Theorems
1 and 3 fail for lattices satisfying only the ascending chain condition.
The example in the following paragraph shows that continuity and the
descending chain condition also are not sufficient for these results. It

t Cf. Jonsson and Tarski [6].
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is curious that Theorems 1 and 3 hold for groups whose normal subgroup
lattices satisfy only the descending chain condition' and yet fail for
general continuous modular lattices satisfying the descending chain
condition.

The example is as follows. Let p be an odd prime, and let G be
an additive abelian group isomorphic with

Z(p) x Z(p) X Z(p~) X Z(p~) X Z(p~) x Z(p~),

where Z(p) denotes the cyclic group of order » and Z(p~) denotes the
generalized cyclic p-group. Let @, R, S, T, U, and V be subgroups of
G with Q= R=Z(p), S= T= U= V = Z(p~), and

G=QURUSUTUUU V.
Let ¢ and r generate @ and R respectively, and let S, T, U, and V be
generated respectively by sets {s,}, {t.}, {#.}, and {v,}, where

D8 = Or PSpt1 = sn(n = 1! 27 "') ’

with analogous relations holding for the ¢,’s,#,’s and »,’s. Set A =
QUSUTand B=RU UU V. Let C be the subgroup generated by
the set {q + 7,8, 8 + Uy, 8 + Uy, o+, vy, V3 + t;, V5 + ty, -++}, and let D
be the subgroup generated by {g + 27, U, Uy + 8, Uy + 8,, *++, by, &y +
v, ty + vy, - ++}. It then follows that

G=AUB=CUD,

andG=AUB=AUC=AUD=BUC=BUD=CUD. Further-
more, ANC,AND,BNC,BNnND=+0. Now let L be the set of all
subgroups X = S U T U U U V, together with all subgroups of the form
AUX,BUX,CUX,and DU X with X<SUTU UU V, and the
group G. It is easily checked that under set inclusion the elements of
L form a complete sublattice of the lattice of all subgroups of G. Hence
L is an upper continuous modular lattice satisfying the descending chain
condition. Moreover, the subgroups A, B, C, and D are indecomposable
in L, and each is projective only with itself. Thus Theorems 1 and 3
fail for the direct joins G = A U B=C U D.

Proofs of the theorems. The usual notation and terminology is
used throughout. Lattice join, meet, inclusion, and proper inclusion are
denoted respectively by U, N, <, and <. If a and b are elements of
a lattice and b = @, then the quotient sublattice {x|b < « < a} is denoted
by a/b. The symbol = denotes the isomorphism of two lattices. The
null element of a lattice is always denoted by 0.

We begin with the following lemmas. The first is generally known.
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LemMmA 1. If L is an upper continuous lattice, S is a subset of
L, and a is any element of L, then

a N U S = U a N U F y
FeF
where F 1s the collection of all finite subsets of S.

The lemma is trivial when S is finite. Suppose that S is an infinite
subset of L, and suppose that the lemma is true for every subset S’
of cardinality less than the cardinality of S. Then there is a chain S;
(1€ I) of subsets of S such that each S; has cardinality less than that
of S and such that S is the set-sum of the subsets S;(:el). If &,
is the collection of all finite subsets of S;, applying upper continuity
and the inductive assumption we therefore have

aﬂUSzaﬂ[gUSi]zin [a N USi]
=U U nUFl=UaenUF,

€I FEH, FeEF
and hence the lemma follows by induction.

An element ¢ in a complete lattice L is said to be compact if for
every subset SE L with ¢ < |J S there is a finite subset S’ = S such
that ¢ = U S'. A lattice L is compactly generated if L is complete and
every element of L is a join of compact elements.? The next lemma is
an immediate consequnce of the definition of compactness.

LemMMaA 2. If {¢), -+, c,} s a finite set of compact elements in a
complete lattice, then ¢, U -+ U ¢, ts also compact.

LEMMA 3. Every finite dimensional element in an upper continuous
lattice ts compact.

We shall first show that if ¢ is completely join irreducible, then ¢
is compact. Suppose SE L and ¢ = US. Let p=U{z|x <q}. Then
p < q since q is completely join irreducible. Let & denote the collection
of all finite subsets of S. If U F £ q for every Fe. &, then
gNUPF<qand hence g N UF = p for every Fe & . And it follows
by Lemma 1 that

¢g=qnNnUS=Ue¢nUF=»p,
FeF
a contradiction. Hence ¢ is compact.
Now suppose that a is a finite dimensional element different from

2 For a discussion of compactly generated lattices see [4].
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0 and suppose that every element properly contained in a is compact.
If @ is join irreducible, then a is compact from above. If a is not join
irreducible, then there are two elements b, ¢ < a such that ¢ =b U e.
Since b and ¢ are compact, a is therefore compact, and the lemma follows
by induction.

LEMMA 4. If an element a of an upper continuous modular lattice
is a join of finite dimensional elements, then the quotient sublattice a0
1s compactly generated, and each compact element is finite dimensional.

For suppose a = U C where each ceC is finite dimensional. If
¢ < a, then with & denoting the set of all finite subsets of C we have

z=2NUC= U xznNnUF.
FeF

Since the lattice is modular, x N U F' is finite dimensional and hence
compact for each F'e & . The lemma now follows.

LemMA 5. If ¢, a,, @, ++-,a, are elements of a compactly generated
lattice, ¢ is compact, and ¢ < a, U +++ U a,, then for each m =1, <+, n
there is a compact element d,, < a,, such that ¢ <d, U -+ U d,.

Since the lattice is compactly generated, for each m =1, - .-, n there
is a set C, of compact elements such that a,=UC,. Then ¢ =
UcC, U ---UUC, and since ¢ is compact there are finite subsets
C,=C, such that c=UC{ U --- UUZC,. By Lemma 2, UC, is a
compact element for each m =1, ---, n.

LEMMA 6. If a,x,y are elements of a modular lattice, x U y =
xUy, and x =a=2 Uy, then a =z U (e N ¥).

Forzn@ny)=2nNny=0,andxzU@nNy)=anN(xUy =a.

Proof of Theorem 1. Suppose a, %, ¥y, t; (1€I) are elements
of an upper continuous modular lattice, £ is finite dimensional and
indecomposable, and

Since z is compact by Lemma 2, there is a finite subset of indices
{is, +++, %) S I such that x < ¢, U--- Ut;,. For each m =1,2,.--,m
let us set

i, =t

1

Ueee Uty Ut U--Ut,,
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and define x,, = (v U £,) N t; . Then it follows that®

x<b—x1 Uoc

Now «, N &, =(x U t,) Nt nfm:-t,-mﬂtm=0, and

e, Ut,=l@Ut)nt Ut =0 UE)N@UE)=2UT,

Thus 2,,/0 = 2, [%, N Tp = T U E/l =2 U t,./t. = a/x N %,, and hence
each z, is finite dimensional, and its dlmensmn does not exceed the
dimension of ®. It follows that b=a, U - - U 2, is finite dimensional.
Since r <b=ux U Y, we infer from Lemma 6 that

b=z U ®NY.

Therefore, since « is indecomposable and the dimension of each x,, is at

most the dimension of z, it follows from Ore’s theorem* that (renumbering
the z,’s if necessary)

b:xIU(bny)szxziJ---an.

Then y Uz, =y UBNY) Ux=%UDb=a. From the fact that x, is
finite dimensional and x,/x, Ny =, U yly =y U bly = bly N b = «,/0, it
follows that x; N ¥y = 0. Thus

G/ILUIL‘J?/.

Moreover, since », < ¢;, it follows from Lemma 6 that

b, =0 U wn til) .

Let us set

=Ut.

i,

U e Ut St

’Ln-—— 1’1

Then since 2, U ++- Uz, = ¢,

2]

we have
sUlwNt)UErl=aUaU - Uz U@nNt) UL,
=bUWnNt)Ut =t Utf, =a,
and since @/x N [(y N t;) U tf] = a/ly N &) UL, = @/0 = 2/0, it follows
that « N [(y N ¢;) U tf]=0. Hence
a=zUwnt)Ut:l=aU@Nnt)U Ut“
3 See for example [3, p. 95].

4 Actually we use the somewhat stronger version of Ore’s theorem given in [5, pp. 128-
130].
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and the proof of Theorem 1 is complete.

Proof of Theorem 2. Throughout the proof of Theorem 2 we will
assume that a is an element of an upper continuous modular lattice and
a = U a;

1€T
where each a; (7€) is finite dimensional and indecomposable.

Suppose a = r U s. We shall first show that » and s are direct

joins of elements which are joins of a countable number of compact
elements.’

Consider the collection <& of all subsets P of the lattice which
satisfy the following conditions:

&Y Ur=Ut=Uua

teEP

for some subset K < I.

(2) t=(@EN7r)U(tnNs) for each te P,
(3) t N r and t N s are both joins of a countable number of compact
elements for each te P.

27 is nonempty since the null set is in &?. Moreover, since by Lemma
1 a set is independent if every finite subset is independent, it follows
that the set-sum of a chain of sets in <7 also belongs to &#. By the
Maximal Principle &7 contains a maximal element Q.

Set

¢=UQ=YUa, u=Unn, v=UEns.

Then it follows from condition (2) that ¢ =u U v, and from condition
(1) that a =¢ Ub=wuUwvUb where b = Uier—x @;. Furthermore, if
we set ¥ =r N (b Uwv)and s’ =s N (b U v), then it follows from Lemma
6 that » =" Uw and s =s' Uv. Hence

a:r'Us'Uq.

Suppose ¢ # a. Then for some %,€I we must have a; £ q. Since a,

is compact and a/0 is compactly generated by Lemma 3, it follows by

Lemma 5 that compact elements ¢, = 7' and d, < s’ exist such that
aio§cludluq-

¢, U d, is also compact, and hence there is a finite subset M, = I such

5 The proof of this part was suggested by the main theorem of Kaplansky [7].
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that

¢ U dl é U a; .
i€
Again Uiey, @; is compact, and hence there are compact elements ¢, < 7’
and d, < s’ such that

Ua=eUdUg.

iEMl
Continuing in this way we get a sequence {i}, M, M,, «++, M,, -
of finite subsets of I and two sequences of compact elements
€, Cyy *22yCpyoo» =7 and d,, dy, +++,d,, -+ =<8 such that

¢, Ud, = LJ ;= ¢y Udyn U g
€My
for each n =1,2, ---.
Let

r*=Ue,, s*=Ud,.
n<oo n< oo
Then »* < r" and s* < ¢/, and if M* is the set-sum of the sets M, {7y},
M, M,, «+-, it is clear that

and

t*Uq:t*Uq: U e,.
1€ M*

Hence the set-sum of @ and {t*} is a member of &? properly containing
Q. Since this is contrary to the maximality of @, we must have ¢ = a.
It follows that » = and s = v, and thus » and s are direct joins of
elements which are joins of a countable number of compact elements.

We now prove the following: if b is a direct factor of @ and ¢ is
a compact element with ¢ < b, then there exists a finite dimensional
direct factor w of b such that ¢ < w. Suppose a =b Ue. Since ¢ is
compact, there is a finite subset {i,, -+, %,} & I such that f =

a;, U -+ Ua;, =c Applying Theorem 1 to the element a; and the
decompositions

a:ailL'J Uaizb()e,

i1y
it follows that b = b, U b/’, ¢ = ¢ U e/ (where either b = 0 or ¢’ = 0),
and

a=b'Ue UUa;=a;,UbUe.

174
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Now consider the direct decompositions
azaiZU gaizailﬁjb{oe{.
17y
If we apply Theorem 1 to the element a;, and these decompositions, then
since a;; N Uiz, a; = a; >0, it follows that b = b, U by, e =¢, U e,
and
a=bUe/UYa=a,Ua,UbUed.
K3 7/2
Repeating this replacement for each a; we conclude that for every
k=1, ..., n there exist elements b,, by < b and ej, ¢}/ < e¢ such that
a=byUe’U 9 ai=aikL'J UailUb,ﬁUeg.
K5 lk
In particular
a=fUb,Ueé.

Let w =0 N (e, U f). Then w is finite dimensional, and w =26 N f=c.
Moreover, Lemma 6 implies that b = b, U w, and the assertion follows.

In view of what has been proved above, to complete the proof of
Theorem 2 it suffices to show that if b is a direct factor of @, and b is
a join of a countable number of compact elements, then b is a direct
join of finite dimensional elements. To this end, suppose

b=Ue¢c,

n< oo

where ¢, is compact for each » =1,2, --.. Then it follows from the
preceding paragraph that elements w, and v, exist such that w, is finite
dimensional, w, = ¢;, and

b=wlUv1.

Since ¢, is compact and a/0 is compactly generated, by Lemma 5 there
is a compact element d, < v, such that ¢, < w, U d;. Now v, is a direct
factor of a, and again applying the result of the preceding paragraph
we obtain elements w, and v, such that w, is finite dimensional, w, = d,,
and v, = w, U v,. Thus ¢, < w, U w,, and

b=w1[)w2()vz.

Continuing in this way we get a sequence of finite dimensional elements
Wiy Wyy 200y Wyy oo é b SUCh that

w,Jeeee Uw,=w, U - Uw, =c,
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for each n =1,2, ---. Thus the set {w,|n =1,2, ---} is independent
since every finite subset is independent, and hence

b= Uw,,

n< oo

This completes the proof of Theorem 2.

Proof of Theorem 3. Let a be an element of an upper continuous
modular lattice and suppose that

L) a=Ua;=UDd,

i€I JjET
where each a; (¢e€I) and each b; (jeJ) is finite dimensional and
indecomposable. We shall show the following: there exists a well-ordering
(<) on the index set I and a one-to-one mapping ¢ of I onto J such
that for each index hel we have

a':Ubw(i) uUa; =a,U U b; .
i=h 1>h JF@(h)

Let <& be the collection of all ordered triples (H, <, +), where
H< I, () is a well-ordering of H, + is a one-to-one mapping of H into
J, and such that the following conditions are satisfied:

(i) for each index he H we have

1€H,i>h i€I—H

a = U bw)Q U a'io U a;
i€ HiZh

=a,U U b;;
Y (h)
(i) U a; = U by iy
1€EH 1€EH
Partially order & by defining (H', <’, v') = (H, <, ¥) if and only if
H = H’ or there is an element %' <€ H' such that

H={GeH i<k},

(<") on H coincides with (<), and +’, restricted to H coincides with .
Note that & is nonempty since it contains the triple (¢, <°, °) where
#, <° and +° are respectively the empty set, relation, and mapping.

Suppose that (H?, <°, ¥°) (0 € 2) is a chain of elements in <?. Let
H be the set-sum of the subsets H?(c € 3). Define a well-ordering (<)
on Hby i < 4" if and only if ¢, ©'e¢ H* and 7 <° ' for some o€, And
define the mapping ¥ on H into J by (i) = ¥°(3) where i € H°. Then
it is easily verified that (H, <, ¥) e .&” and that (H, <, +) is an upper
bound of the chain (H°, <°, ¥°) (¢ €2%). Thus by the Maximal Principle
7 contains a maximal element (M, <, ®).
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Now the set-sum of {b,. |t€ M} and {a;|1€I — M} is independent
since by (i) every finite subset is independent. Therefore it follows from
(ii) that

(2) a:_U bwi)U_U a; .
1EY 1€l—M

Suppose that M == I. This implies that (M) = J. Pick an index
Jo€dJ — @(M). Then applying Theorem 1 to the element b; and the
direct decompositions (1) and (2), it follows that an index ¢, el — M
exists such that
3 aZbJOUme;U_U,aizaioUUba‘-

iIEM 1€ M, 17 FEak i)

The element a;, is compact, and hence there is a finite subset J, & J
such that

IIA

Ay, Ub;.

€Iy
Let M, be the set-sum of M and {7}, and let {j,, -+, j.} denote the
subset of J, consisting of those indices different from j, which are not
contained in @(M). Then repeated application of Theorem 1 yields the
following: there exist m distinct indices 4, -+, ¢,, € I — M, such that for
each n =1, ---, m we have

U“-UbJ-OmeU U Q;

i€ P@ M, i, euiy

a=b; Ub

In-1

4) o ‘
- ain U L—J b]‘ .

Again the element a; U --+ U a;_is compact, and therefore a finite subset

J, < J exists such that

ail U e U a/imé U bj ¢

Let M, denote the set-sum of M and {i,, ---, %,}, and let {j,.,, ---, 7,}
denote the subset of indices contained in J, but not contained in either
P(M) or {Jy, +++,Jn}. Applying Theorem 1 repeatedly to the elements

b

b bjp it follows that indices 7,.,, +-+, %, € I — M, exist such that
aijnO'--L‘ij‘wHL.ijmU"'L.ijOU Ubﬂi‘,o U @;
- i€ TG My, iy e iy
= Q;, U U b;
i#in

for each n =m + 1, ---, p. We may continue this procedure obtaining

two sequences of indices 4, iy, ++*, %, *++ in I and 7, 7, «++, 4, «++ in
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J (both of which may be finite with an equal number of terms) such
that equations (4) hold for every # =0,1,2, -+« and such that

Ua, =UDb;, U U b, -
nz0 T awZo ® s

Let M* be the set-sum of M and {%, %, *+-, t,, *-+}. Define the well-
ordering (<*) on M* as follows: if 4, ©'e M, then + <*4' if ¢ <4 in
M; and

T <L* gy <F g <F e <*q, <*uu

for every 7€ M. Define the mapping ®* on M* into J by @*(1) = @(7)
for each ¢e€ M, and #*(¢,) = j, foreachn = 0,1, 2, .--. Then it is clear
that (M*, <*, p*)e &# and (M*, <*, »*) > (M, <, ®#). Since this con-
tradicts the maximality of (M, <, ®) we must have M = I. From (2)
it follows that @(M) = o(I) = J. Hence the proof is complete.
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