
DECOMPOSITION AND HOMOGENEITY OF
CONTINUA ON A 2-MANTFOLD

H. C. WISER

1. Introduction* Many partial results have been obtained in at-
tempting to characterize homogeneous plane continua; a history of this
problem can be found in [4]. The question arises; which of these results
hold for homogeneous proper subcontinua of a 2-manifold, and indeed
do there exist such continua which cannot be embedded in the plane?
The main purpose of this paper is to extend some results for plane
homogeneous continua to corresponding results for continua on a 2-
manifold, with a long range aim of investigating the embedding problem.

Let Xbe a nondegenerate homogeneous plane continuum. F. B. Jones
[10] has shown that X is a simple closed curve if it is aposyndetic or
if it contains a noncutpoint, H. J. Cohen [7] has shown that X is a
simple closed curve if it either contains a simple closed curve or is
arcwise connected, and R. H. Bing [3] has shown that X is a simple
closed curve if it contains an arc. In §4 the above results of Cohen's
and Jones' are generalized to homogeneous continua on 2-manifolds.
Section 3 contains results on collections of continua which arise rather
naturally in considering the generalizations of Cohen's work.

Jones [12] has shown that if X is decomposable and is not a simple
closed curve, at least it becomes one under a natural aposyndetic decom-
position. In § 5 this result is extended to homogeneous continua on a
2-manifold as well as to homogeneous continua with a multicoherence
restriction.

In extending plane results to results on arbitrary 2-manifolds, we
will use as a generalization of the Jordan curve theorem the fact that
for any 2-manifold M there exists a positive integer k such that M is
separated by the sum of any k disjoint simple closed curves on M.

2Φ Definitions* Only separable metric spaces will be considered
here. A connected compact metric space is called a continuum. A 2-
manifold is a continuum such that each of its points lies in an open
set topologically equivalent to Euclidean 2-space. A 2-rnanifold with
boundary is a continuum such that each of its points lies in an open set
whose closure is topologically equivalent to a closed 2-cell.

A point set X is said to be n-homogeneous if for any n points
xl9 %2, "*,^n of X and any n points yl9 y2, , yn of X there is a home-
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omorphism of X onto itself that carries xx + x2 + + xn onto yx + y2

+ + Vn- For n = 1, the term homogeneous is used. A set X is
said to be nearly homogeneous if for any point a? of X and open set D
of X there exists a homeomorphism of X onto itself carrying x into
Zλ A set X is locally homogeneous if for each two points x and 2/ of
X there exists a homeomorphism between two open subsets of X con-
taining x and 2/ respectively such that x is mapped onto y.

A continuum X is said to be aposyndetic at the point p of X if
for any point g of I - p there is a subcontinuum Y of X and an open
subset U of X such that I - g D Γ 3 U "D p. The continuum X is said
to be aposyndetie if it is aposyndetic at each of its points.

A continuum X is said to be semί-locally connected at a point p if
for each positive number ε there exists a positive number 8 such that
X— Vs(p) is contained in a finite number of components of X— Fδ(p),
(Note: In general, Vr(X) is the r-neighborhood of the set X; i.e., the
set of all points x such that the distance, p{x, X), from x to X is less
than r.) If X is semi-locally connected at each of its points, X is said
to be semi-locally connected.

A simple triod is the sum of three arcs each having a point p as
an end point such that p is the common part of each two of these
three arcs.

If G is an upper semi-continuous collection filling a continuum X,
the decomposition space relative to G will be denoted by X'. The
projection map of X onto X' relative to G will be denoted by / through-
out this paper.

3 Collections of continua which fill a continuum. We will state
a theorem and a corollary, from G. T. Whyburn [17, pp. 43-44], which
are needed in the proofs of some of the theorems of this section.

THEOREM W. // G is any uncountable collection of disjoint cut-
tings of a connected set My then some element X of G separates in
M a pair of points belonging to G* — X.1

COROLLARY W. NO continuum of convergence K of a connected set
M contains an uncountable collection of disjoint cuttings of M. In-
deed, if a and b are points of K, no subset of K separates a and b
in M.

THEOREM 1. If G is a nondegenerute collection of disjoint continua
filling a continuum X on a 2-manifold M, Go is a countable subcol-
lection of G, k is an integer such that M is separated by the sum of

For any collection G, G* denotes the sum of the sets of G.
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every k elements of G ~ Go, and D is a complementary domain of X,
then the boundary of D is the sum of a finite number of continua
Bu , Bm each lying in some element of G.

Proof. It follows from work of J. H. Roberts' and N. E. Steen-
rod's [14, Lemma 1] that the boundary of D is the sum of a finite
number of continua Bl9 •••, Bm. Suppose Bx intersects each continuum
of an uncountable subcollectίon Gx of G. There exists an uncountable
collection Z such that each element of Z is the sum of k continua of
G1 — Go and no two distinct elements of Z intersect. It follows from
Theorem W that there is an element Q of Z such that M — Q is the
sum of two mutually separated sets Hλ and H2 containing two continua
g1 and g2, respectively, of Gx — Go. This involves a contradiction, since
D does not intersect Q, and each of gλ and g2 contains a boundary point
of D. Thus, since a continuum cannot be the sum of a countable
number (greater than one) of disjoint closed sets, Bx must be contained
in some element of G.

COROLLARY 1.1. Under the hypothesis of Theorem 1, let G2 be the
set of elements of G — GQ not intersecting the boundary of any com-
plementary domain of X; then any k elements of G2 separate X, G2 is
uncountable, and f(G2) is dense in Xr.

Proof. Suppose C is the sum of k elements of G2, M — C is the
sum of two mutually separated sets H and K, and X — C c H. All
of the complementary domains of X must then lie in H, contradicting
the existence of K. Thus C must separate X. From Theorem 1, since
X has at most a countable number of complementary domains, at most
a countable number of elements of G intersect the boundary of a com-
plementary domain of X; therefore G2 is uncountable and f(G2) is
dense in X'.

THEOREM 2. If G is a collection of disjoint continua filling a
continuum X in a connected space M, Go is a countable subcollection
of G, and k is an integer such that M is separated by every k elements
of G — Go, then G is upper semi-continuous and X' is locally connected.

Proof. Suppose the sequence of points pl9 p2, converges to p0,
where p{ (i = 0,1, •) is a point in a continum gt of the collection G.
It will be shown that g0 z> lim sup {#{}. If lim sup {&} intersects each
continuum of an uncountable subcollection Gλ of G, then, as in Theorem
1, obtain an uncountable collection Z of cuttings of M, each being the
sum of k continua of Gx — Go, and no one containing gQ. By Theorem



1148 H. C. WISER

W, there is an element Q of Z such that M — Q is the sum of two
mutually separated sets Hλ and H2 containing two continua g and g\
respectively, of Gλ — Go and such that Hx Z) g0. But there exists an
integer n such that H± D gt for all i > n; thus gf cannot intersect lim
sup {g%). This contradiction implies that g0 3 lim sup {#;} and G is upper
semi-continuous.

If X' were not locally connected there would exist a sequence of
disjoint nondegenerate continua Xlf X2, in Xf converging to a non-
degenerate continuum Xo in X'. Let F be the collection consisting of
G and the individual points of M — G*. The collection F i s upper semi-
continuous, and ΛF is connected. The nondegenerate continuum f~\X0)
contains an uncountable collection of mutually exclusive cuttings of M,
each consisting of k elements of G — Go; thus Xo contains an uncountable
collection of mutually exclusive cuttings of M', each consisting of k
points. This contradicts Corollary W; hence X' is locally connected.

THEOREM 3. (a) If G is a nondegenerate collection of disjoint
continua filling a continuum X on a 2-manifold, and Go is a countable
subcollection of G such that every continuum of G — Go separates- the
manifold, then G is upper semi-continuous and Xf is a dendron.

(b) If each element of G separates the manifold into two com-
plementary domains, then Xr is an arc.

Proof of (a). From Theorem 2, G is upper semicontinuous, and X'
is locally connected. From the proof of Corollary 1.1, all but a countable
number of elements of G separate X; thus Xf has at most countably
many nonseparating points. Every nondegenerate subcontinuum of X'
then contains uncountably many separating points of Xr so that X' is
a dendron [17, (1.1), p. 88].

Proof of (b). For each point x in X', let gx = f~\x). Suppose
that some complementary domain D of X has a boundary which in-
tersects two elements ga and gb of G. Since X' is a dendron by (a),
there exists an arc [ab] in Xf. Let D1 be the complementary domain
of f~\[ab\) which contains D. By Corollary 1.1, there is a point c of
(ab) such that gc does not intersect the boundary of any complementary
domain of f~\[ah\). Let the two complementary domains of gc be H
and K, with A lying in H. Since D lies in H, ga and gb together with
f-\[ac)) and f"\{cb\) must lie in H. All complementary domains of
f-\[ab\) must then lie in H, and K is empty. From this contradiction
we conclude that the boundary of any complementary domain of X must
lie in one element of G.

If g is an element of G which contains the boundary of some com-
plementary domain of X, then as in a proof of Cohen's [7, Lemma 2.3],
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it can be shown that g does not separate X. As in further proofs of
Cohen's [7, Lemma 4.2 and Lemma 4.3], if [cd] is an arc of X' and p
a point of the open arc {cd), then gv must separate gc from gd in M;
thus, Xr cannot contain a simple triod. From part (a) above, Xf is a
dendron; therefore, Xf is an arc.

THEOREM 4. If G is a nondegenerate collection of disjoint continua
filling a plane continuum X such that each element of G separates
the plane into two complementary domains, then there exist two ele-
ments g0 and g1 of G such that X — (g1 + g0) is an open annulus.

Proof. By Theorem 3, Xr is an arc. From the proof of Theorem
3, no element of G containing the boundary of a complementary domain
of X can separate X. Using Theorem 1 and proceeding as in the case
where G is a collection of simple closed curves [7, Theorem 4], we may
show that the boundary of the unbounded complementary domain of X
must be contained in an element gx of G corresponding to an end point
of X\ the element g0 of G corresponding to the other end point of Xr

must lie in the interior complementary domanin of gu and every point
common to the interior domain of g1 and the exterior domain of g0 must
be in X.

THEOREM 5. If G is a collection of disjoint continua filling
a plane continuum such that each element of G separates the plane
into two complementary domains and is irreducible with respect to
separating the plane, then G is a continuous collection.

Proof. Let X be the plane continuum filled by G. As in Theorem 3
and 4, G is upper semi-continuous, X' is an arc [ab], and the interior
of X is an open annulus. For each x in [ab] let gx be the element of
G such that f(gx) = x. It will be sufficient to show that no sequence
of elements of G converges to a proper subset of an element of G.

Suppose there is a sequence gH, gX2, of elements of G converging
to a proper subset h of an element gXQ of G. Suppose without loss that
x0 Φ a. Since gXQ is irreducible with respect to separating the plane,
there exists an open disk D containing h but not containing all of gXQ

and such that D ga = φ if x0 = b and D (ga + gb) = φ if x0Φ b. For
some x in [ab], gx lies entirely in D. Since x is neither a nor b, there
exists a sub-arc [cd] of (ab) such that f~~ι([cd]) is contained in D and
x is in (cd). From the proof of Theorem 4, f~\(cd)) is an open annulus
with inner boundary contained in gc (or gd). Ύhenf'^ac]) (or f~\[db]f
lies in D, contradicting the choice of D.

Note, In the following theorem, we are justified in referring to
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X', since Theorem 2 and Theorem 3 assure us that G is upper semi-
continuous.

THEOREM 6. If G is a collection of disjoint simple closed curves
filling a continuum X on a 2-manifold M such that Xr is an arc,
then X is an annulus, a Mobius strip, or a Klein bottle.

LEMMA 6.1. If G is a collection of disjoint simple closed curves
filling a continuum X on a 2-manifold M such that X' is an arc or
a simple closed curve, then G is a continuous collection.

Proof of Lemma 6.1.

Case 1. Suppose Xf is an arc. The proof proceeds in the same
fashion as the proof of Theorem 5, since a proper subset h of an ele-
ment of G is an arc or a point, and each open set containing h contains
an open disk containing h.

Case 2. Suppose Xr is a simple closed curve, and g19 g2, is a
sequence of elements of G converging to a proper subset h of an element
gf of G. We may break X' into two arcs Ax and A2 with f{gr) interior
to Ax. We may then choose a subsequence of gu g2, whose elements
correspond to points in Ax and, considering this subsequence and the arc
Alf proceed as in Case 1.

LEMMA 6.2. Under the hypotheses of Theorem 6, X is a 2-manifold
with boundary.

Proof of Lemma 6.2. Let X' be the arc [ab], and for each x in
[ab] let gx be the element of G such that f(gx) = x. By covering gx

with a circular chain of open disks, an open set of M containing gx

may be obtained which is homeomorphic to an open annulus or an open
Mobius strip.

Case 1. Suppose gx lies in an open annulus R, and x is in (ab);
then there is an arc A of Xf such that f~\A) is in R and x is an in-
terior point of A. Using a theorem of Cohen's [7, Theorem 4], f~\A)
is a closed annulus, and each point of gx is contained in an open disk
in X.

Case 2. Suppose gx lies in an open annulus R, and x is an endpoint
(say b) of Xf\ then, as in Case 1, there exists a closed annulus Rλ con-
tained in R such that Rx = f~\[cb]), where [cb] is a subarc of Xf. Let
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p be a point of gx, and D be a Euclidean neighborhood of p in R such
that the diameter of D is less than the distance from gx to f~\Xf —
(cb\). Then D X is contained in JBlf and considering X as space, p has
a neighborhood in D X whose closure is homeomorphic to a closed
disk.

Case 3. Suppose #x lies in an open Mobius strip R, but not in the
interior of any annulus. Suppose without loss that x Φ a. If gx sepa-
rates R then R — gx = H + K where H is an open annulus and K an
open Mobius strip, or H is an open disk and K an open Mobius strip
with a closed disk removed. In either case K contains a simple closed
curve J which fails to separate K, and thus fails to separate R; then
gx is contained in the open annulus R — J. Thus gx does not separate
R, and R — gx is an open annulus. Let [ex] be a subarc of [ab] such
that f~\[cx)) is in 12 — gx; then /^flcx)) is a half open annulus Rx from
[7, Theorem 4]. By Lemma 6.1, G is continuous, and the boundary of
Rx must be the sum of gc and gx. If x φ b there is another half open
annulus R2 = /"^((OHZ]) in R — gx whose boundary is the sum of gx and
gd. But then gx would lie interior to the annulus f~\[cd]). This con-
tradicts the choice of gx; thus x must be equal to b. Let p be a point
of gb. Choose a disk Rp which contains p, has a simple closed curve
C for a boundary, does not intersect f~\[ac\), and is such that the sum
of gh cl(Rp) and C is a theta-curve. Let Rx and 2?2 be the two com-
plementary domains of the theta-curve which lie in Rp. Since p is on
the boundary of f~\[cb)), Rx (say) must intersect f~\[cb)). If Rx — X is
not empty, R± must intersect the bonndary of f~\[cb)) since R± is con-
nected. But neither gc nor gϋ intersect Ru and thus R± is contained
in X. Similarly, either R2 does not intersect X, or R2 lies entirely in
X; in either case, considering X as space, p has a neighborhood in
X Rp whose closure is homeomorphic to a closed disk.

Thus, in any case, X is a 2-manifold with boundary.

Proof of Theorem 6. It follows from results of J. M. Slye's [15,
Theorem 1 and Corollary 10] that if G is an upper semi-continuous
collection of simple closed curves filling a continuum X which is a 2-
manifold with boundary, and Xf is an arc, then X must be an annulus,
a Mobius strip or a Klein bottle. Thus, Theorem 6 follows directly
from Lemma 6.2 and Slye's results.

REMARK. The following is a brief outline of a direct proof of
Theorem 6, which does not use Slye's results.

In Case 3 of the proof of Lemma 6.2, cover gb with a set of open
disks Ru R2, , Rn in M — f~\[ac\) with boundaries consisting of simple
closed curves Clf C2, , Cn such that R1 + R2 + + Rn is an open
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Mobius strip and such that, for i = 1, 2, , n, the sum of C< and
gb cl(Ri) is a theta-curve with interior complementary domain Hi and K{.
Suppose that the complementary domains have been numbered so that
each domain in the sequence Hlf H2, , Hn, Ku K2, , Kn, H± intersects
the next domain in the sequence. As before, any domain intersecting
X must lie in X; thus by an inductive process the whole Mobius strip
Rx + i?2 + + JR« lies in X. If c is in (αδ), it can be shown that,
depending on whether ga and gb fall under Case 2 or Case 3, each of
f'\[ac\) and f~\[cb]) is an annulus or a Mobius strip. Thus X itself
must be an annulus, a Mobius strip, or a Klein bottle.

COROLLARY 6.1. If G is a collection of disjoint simple closed
curves filling a continuum X on a 2-manifold M such that X' is a simple
closed curve, then X must fill M and be a torus or a Klein bottle.

THEOREM 7. If G is a nondegenerate collection of disjoint simple
closed curves filling a proper subcontinuum X of a 2-manifold M, then
X must be an annulus or a Mobius strip.

Proof. By Theorem 2 and Theorem 13, G must be upper semi-
continuous and Xf locally connected. Thus Xf must be a dendron, for
if Xf contains a simple closed curve, then, by Corollary 6.1, X would
fill M. Since M is a 2-manifold, Theorem 6 implies that X' contains no
simple triod. Thus Xr must be an arc, and Theorem 7 follows from
Theorem 6.

REMARK. If the restriction that X be a proper subcontinuum of
M were removed in Theorem 7, X could also be a torus of a Klein
bottle.

COROLLARY 7.1. If G is a collection of disjoint simple closed
curves filling a continuum X on a 2-manifold M, then G is continuous
and X' is an arc or a simple closed curve.

Proof. As in the proof of Theorem 7, either the decomposition
space X' is an arc or it contains a simple closed curve. If X' contains
a simple closed curve, it must be one by Corollary 6.1. The continuity
of G follows from Lemma 6.1.

4. Conditions under which a homogeneous continuum on a 2*
manifold is a simple closed curve*

THEOREM 8. If X is a homogeneous proper subcontinuum of a 2
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manifold M, and X contains a simple closed curve, then X must be a
simple closed curve.

Proof. Suppose X is not a simple closed curve.
(1) X is one-dimensional, for otherwise X would contain an open

set in M and thus would contain M. This contradicts the hypothesis
of Theorem 8.

(2) X is not locally connected, for using (1) and a result of An-
derson's [1, Theorem 13], X must be either a simple closed curve or
the universal one-dimensional curve. This is a contradiction in either
case, since the universal curve contains no open set which can be
embedded in the plane.

(3) Because X is not locally connected, there is a disk on M con-
taining an open set of X which has uncountably many components [7,
Lemma 2.1 and Corollary 2.11].

(4) Suppose X contains a simple triod. By (3), some open set D
of X is contained in a disk of M and has uncountably many components;
thus the homogeneity of X implies that D contains uncountably many
disjoint simple triods. This contradicts a theorem of R. L. Moore's [13,
Theorem 75, p. 254]; thus X contains no simple triod.

(5) No two simple closed curves in X intersect, for if some two
did intersect then X would contain a simple triod, contrary to (4).

(6) Let G be the collection of all simple closed curves in X; then
G fills X and the elements of G are disjoint, since by homogeneity each
point of X lies on a simple closed curve and by (5) no two simple closed
curves intersect.

By Theorem 7, X must be an annulus or a Mobius strip; this con-
tradicts (1), and Theorem 8 follows.

COROLLARY 8.1. If a nondegenerate proper subcontinuum of a 2-
manifold is locally connected and homogeneous, then it must be a
simple closed curve.

Proof. This corollary follows from (1) and (2) in the proof of
Theorem 8.

COROLLARY 8.2. No locally homogeneous proper subcontinuum of
a 2-manifold contains a simple triod.

Proof. This corollary is obtained as in (3) and (4) of the proof of
Theorem 8, where the homogeneity condition may be replaced by local
homogeneity.

REMARK. Cohen [7, Theorem 3] has shown that a homogeneous,
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arcwise connected, plane continuum must be a simple closed curve. In
a similar fashion, we have the following result.

THEOREM 9. // the nondegenerate continuum X is arcwise con-
nected, contains no simple triod, and is either nearly homogeneous or
locally homogeneous; then X is a simple closed curve.

COROLLARY 9.1. If a nondegenerate proper subcontinuum of a 2-
manifold is locally homogeneous and arcwise connected then it must be
a simple closed curve.

This corollary follows from Corollary 8.2 and Theorem 9.

THEOREM 10. If a nondegenerate proper subcontinuum of a 2-
manifold is aposyndetic and homogeneous, then it must be a simple
closed curve.

LEMMA 10.1. Suppose A is an arc, and G is a countably infinite
collection of disjoint arcs such that if A{ = \x{yλ is an arc of G for
i — 1, 2, , then A{ A — x{ + y%\ then for any positive integer k,
there exist k disjoint simple closed curves contained in A + G*.

Proof of Lemma 10.1. For convenience, let A be the unit interval
[01]. Without loss of generality, suppose that xl9 x29 is a monotone
sequence converging to a point x of A, and y19 y2, is a monotone
sequence converging to a point y of A.

Case 1. If x Φ y, let Ix and Iy be disjoint open intervals (or half
open intervals if x or y is an endpoint of A) of A, containing x and y
respectively. Suppose, without loss, that each point of the sequence
xl9 x2, lies in Ix and each point of the sequence yl9 y2, lies in Iy.
Let [pq]A denote a subinterval of A with the points p and q as end-
points. Then J l i 2 = [XχX^A + [y{y^A + Λ + A2 is a simple closed curve
in A + G*. Indeed, {J{2n-i),2n} for n = 1, 2, , fc is a set of k disjoint
simple closed curves in A + G*, where J2n-1,2n — [^Π-I^ΛA + [v^n-iViΛA
+ A2n~ι + A2n.

Case 2. Suppose x — y. If the two sequences xu x2, and yl9

y2, converge to x from opposite sides, then the construction in Case
1 will give the desired set of simple closed curves. Suppose for con-
venience, that both sequences converge to x from the left. There
exists an increasing sequence of positive numbers r19 r2, such that
for each i, both xri+i and yu+1 lie to the right of both xH and yH on
A. Then {Jn}9 for n = 1, 2, •••, k, is a set of k disjoint simple closed
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curves in A + G*, where Jn = [xrnVrn]A + Arn.

LEMMA 10.2. If X is a continuum satisfying the hypothesis of
Theorem 10, then the boundary of each complementary domain of X
is locally connected.2

Proof of Lemma 10.2. Let D be a complementary domain of X.
The boundary of D must consist of a finite number of continua B19 B2,
• , Bm by a lemma of Roberts' and Steenrod's [14, Lemma 1]. Suppose
Bx fails to be locally connected at a point q. Let R be a disk contain-
ing q such that cZ(i2) intersects no B{ for i = 2,3, •••, m. By a stand-
ard construction, there are two open sets Rx and R2 with closures in
R, a continuum Xo in i2, and a sequence of disjoint continua Xlf X2f

in i? with the following properties:
(1) CZ(JRI) does not intersect cl{R2),
(2) i?i and iu2 have simple closed curves d and C2, respectively,

for boundaries,
(3) for each i, JSΓ̂  contains both a point of CΊ and a point of C2

and is a component of the common part of Bx and R — (Rx + R2), and
(4) the sequence Xu X2, converges to Xo.
Let p be a point of Xo — {cl(R^) + cl(R2))f ε be a positive number

less than the distance from p to cl(R^ + cl(R2), and Vs(p) be a circular
neighborhood of p with a circle Cs as boundary. Then there exists a
circular neighborhood V8(p) with a circle Cδ as boundary such that
δ < ε and all of X— V2(p) lies in one component N of X— V5(p). That
such a Fδ(p) exists follows as in a theorem of Whyburn's [16, (6.22)],
since X, being compact and aposyndetic, must be semi-locally connected,
and p must not be a cut point of X because X is homogeneous. With-
out loss of generality, suppose that the X{ (i = 1, 2, •••) have been
chosen so that each intersects V&(p) and such that (Xx Cj), (X2 Cj),

• are ordered, as named, along the simple closed curve Cj (j = 1, 2).
Without change of notation, consider Xt (i = 1, 2, •) to be irreducible
from d to C2.

An open set Oλ in JB is bounded by Xx + X2 + An + Au, where An

is an arc in Ct irreducible from Xx to X2 and intersecting no Xs with
j > 2, and A12 is a similar arc in C2. In the same way, for i = 1, 2,
obtain a ' 'corridor'' 0^ between the continua Xi and Xi+1 bounded by
Xi9 Xi+1 and arcs Aa and Ai2 in Cx and C2 respectively. Now, since
each Xi is on the boundary of D, for i = 2, 3, 4, we may choose a
point Zi in X; Vβ(p) and a neighborhood Ϊ7< of z{ in y"δ(ί>) such that
Ui contains a point ^ of D and intersects no Xά for j Φ i. The point

2 As noted by the referee for this paper, Lemma 10.2 is closely related to results
(mainly for the plane or ^-sphere) of Jones' [9], Whyburn's [16], and Wilder's [18 and 19].
Indeed, the proof given here was motivated by the proof of Theorem 14 in [16].
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Pi must lie in 0^ or O ^ . Possibly discarding some of the Pi (ί = 1,
2, •••) and X{ (i = 2, 3, •••), and re-numbering the remaining points,
continua, and corresponding corridors (retaining the same order as before);
we arrive at a set of points {pj of D with fpi in Oi Vδ(p) (ί — 1, 2, •)•

Run an arc [PιP2] in Z) from ^ to p2. Let ^x be the last point of
Cδ Oi on [PiPa] in the order px to p2. Let yλ be the first point of Cδ

in the order xλ to p2 along (ccxpj, a subarc of [PiP2]. Then ^ is in some
Ojl with yx =£ 1, and (x^) lies in J9 — cί(Fδ(p)), where (x^) is an open
subarc of [pλp2]. Choose n2 such that n2 > 1 and w2 > j l β Now run an
arc [pn2pn2+1] in D — [xλx2\ from p%2 to pΛ a + 1. As before let x2 be the
last point of Cδ 0%2 on [p%2p%2+i] in the order p%2 to pn a + 1, and y2 the
first point of Cδ in the order #2 to p%2+1 along (α?2pW2+J; then y2 is in
some O ia with j2φn2, and (£c23/2) lies in D-cl(V5(p)). Continue con-
structing disjoint arcs [^^] in this manner such that for i — 1, 2, :

(1) Xi is in Cδ 0% i,
(2) y{ is in Cδ 03 t with ^ ^ n<,
(3) nk > Ui ίor k > i and ŵ  > jt for h > i,

(4) [ίc^] lies in Z) - Σ^lt^^/.], and
(5) (xiVi) lies in 2?-rf(Fδ(p)).

The set ^7=i(xi + 2/ί) is a subset of an arc A in Cδ. Lemma 10.1
may now be applied to the arc A and the set of arcs {Aτ) where, for
i = 1, 2, , Ai = [XiVi], Using Theorem 13 and the construction in
Lemma 10.1, obtain m disjoint simple closed curves J[, J2, , J'm whose
sum separates M and such that each one is the sum of one or two
arcs from the set {AJ and one or two arcs of Cδ.

Case 1. Suppose the simple closed curves are of the form given
in Case 1 and the first part of Case 2 of Lemma 10.1. We can then
re-number the arcs and corridors so that J'n = [a^-Ajδ + (j^-i^Js +
A2n-λ + A2n (n = 1, 2, , m), f and xlf x2, , x2m forms an ordered set
along Cβ, where [pg]δ denotes a subarc of A with endpoints p and g.
For each ^ (^ = 1, 2, , m), replace the arcs [x^^x^s and [y^-^nh
with arcs [sca»-i#2*]r and [y2n-iy2n]v> respectively, such that the 2m arcs
of ([Xm-iXinlrf [V2n-iy2n]v} are disjoint, and (x2n-1x2n)r and (y2n-xy27)v are

open arcs lying in Fδ(p). Let Jlf ,Jn be the new simple closed
curves obtained from J[, , J'm by the replacement of arcs as described
above.

We will now show that if zx and z2 are points of Cδ which lie in
different corridors Ox and O2, respectively, and each of zx and z2 is an
end point of some arc in D like the [x^i] described above; then the
arc [^^2]δ of Cδ must intersect N. Let [zλz3] be an arc in D such that
23 is in Cδ Oi where iψl and (zλz^) lies in Z) — cl(V8(p)). Let [^4]
be an arc in D such that z± is in Cδ Ojf where j Φ 2 and (z2z4) lies in



DECOMPOSITION AND HOMOGENEITY OF CONTINUA ON A 2-MANIFOLD 1157

D — cl(Vδ(p)). Let B be the subarc [zλz[] of [zfo], such that z[ is the
first point of Cε on [z^] in the order zλ to 23. Let E be the subarc
[z2z'2] of [£224L such that z[ is the first point of Cε on [2224] in the order
z2 to 24. Let C = [2lz2]ε be an arc of Cε in the same direction as the
arc F = [zλz2]δ on Cδ. Let J be the simple closed curve B + C + E +
i*7 whose interior lies between Cδ and Cε. Then i*1 must intersect X
since ^ and z2 lie in different corridors, and B and i? are in D. Suppose
N does not intersect F, then no component of X — Vδ(p) can intersect
both F and C, for such a component would be contained in N. How-
ever, every component of X— Vδ(p) must intersect Cδ, and thus each
component of X — Vδ(p) which intersects the interior of J must in-
tersect either F or C. Let H be the set of components of X — Vδ(p)
intersecting F, and let K be the set of components intersecting C
Then H* and K* are disjoint closed sets. Then by a theorem proved
by Moore [13, Theorem 12, p. 189], there exists an arc from B to E,
lying interior to J except for end points, which does not intersect X
and thus must lie in D. But then zx can be connected to z2 by an arc
in D cl(Vζ(p)); this contradicts the choice of ε and the fact that zx

and z2 lie in different corridors Oλ and O2. Therefore N must intersect
the interior of F = [£i22]δ.

By the construction of Lemma 10.1, all of the [^2w-i^2n]θ, for n =
1, 2, •••, m, must lie in an arc of Cδ containing none of the Vι (i = 1,
2, « ,2m). Then from the discussion above, since xlf x2, and xs each
lie in different corridors, the interior of each of the arcs [xxx^δ and
[cc2x3]δ must contain a point of N. We can then choose an arc {nxx2u2\h

of Cδ such that

(1) ux + u2 c iV,

(2) (%i£awa)8 does not intersect N,
(3) %! is a point of (α?1α?a)δ,
(4) u2 is a point of (#2#3)δ, and
(5) [ttx&a l̂a — x2 intersects no Jn (n = 1, 2, , m).

Case 2. Suppose the simple closed curves J[, , J'm are of the
form given in the second part of Case 2 in the proof of Lemma 10.1.
We can then re-number the arcs and corridors so that Jf

n — [xnVnh +
An (n = 1, 2, , m), and xl9 y19 x2, y2, , xm, ym forms an ordered set
on A. As before, for n — 1, 2, •••, m replace [&%]/w]δ by the arc [XnVn]v
such that (£C«2/Λ)Γ lies in Vδ(p); thus obtain the set of disjoint simple
closed curves {Jn}, where Jn = [xnyn]v + An.

Since xλ and y± lie in different corridors as do yλ and 05a, we can
obtain an arc [u^u^ of Cδ such that

(1) fa + ujczN,
(2) (^i^/i^2)δ does not intersect JV,
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(3) ux is a point of
(4) u2 is a point of {yλx2)^ and
(5) [u^u^ — yλ intersects no Jn (n = 1, 2, , m).
Notice that, in each of the above cases, N does not intersect

Jx + J2 + + Jm.
For purposes of the remainder of the proof, Case 1 and Case 2 are

identical, and we will use the notation of Case 2. Assume, without
loss, that Jx + J 2 + + Jm separates M, but J 2 + + Jm does not.
There exist points c and d separated from each other on M by Jx + J2

+ * * + Jm and an arc [cd] of M which does not intersect J2 + +
Jm and thus must intersect Jx. Choose εx > 0 such that εx < min [p(u19

Jι), p{u2, JO, ρ(c, Jλ), ρ(d, Jx), ρ(Jlf Jk), k = 2, 3, , m]. Let ?7 be an
annulus or Mδbius strip contained in an ex cover of Jx such that Jx is
interior to U. Let Ci be the first point of Jx on [cd] in the order c to
d and c0 a point of U [ccί] preceding cx on [cd] in the order c to d.
Then in U — Jλ there is an arc Bλ from c0 to a point αx of {uxy^)5 (con-
sider %! and u2 re-numbered if necessary). Similarly construct an arc
B2 in U — Jλ from d0 to a point ί̂  of (yxu^ or (u^)^ where d0 is a
point of 17 [cd] preceding the first point d4 of J x on [cd] in the order
d to c. If 6X is in {yxu^ then [cc0] + Bx + [^^^5 + iV + [δi^2]δ + B2 +
[ώoώ] is a continuum in M - ΣΓ=]/; containing both c and d, and if bλ

is in (wy^i then [cc0] + JBX + [^αjβ + N + [^iδjβ + # 2 + [dod] is a con-
tinuum in I - ΣaT=iJi containing both c and c£. This contradiction
establishes Lemma 10.2.

Proof of Theorem 10. Suppose X is an aposyndetic homogeneous
nondegenerate subcontinuum of a 2-manifold, and X is not a simple closed
curve. By Theorem 8, X contains no simple closed curve. It follows
from Corollary 8.2 and Lemma 10.2 that a component Bx of the bounda-
ry of a complementary domain D of X must be an arc. Cover Bx with
an open disk R that does not intersect any other component of the
boundary of D and does not contain X. Since X is connected, B must
intersect X — Bx. Since Bx is part of the boundary of D, R — Bx is a
connected set intersecting both X and D, and thus intersecting the
bounday of D\ this contradicts our choice of R. Therefore X is a simple
closed curve.

COROLLARY 10.1. Every 2-homogeneous nondegenerate proper sub-
continuum of a 2-manifold is a simple closed curve.

Proof. C. E. Burgess has shown that any 2-homogeneous continuum
is aposyndetic [6, Theorem 7]. Corollary 10.1 then follows directly from
Theorem 10 and the fact that each 2-homogeneous continuum is homo-
geneous [5, Theorem 1].
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COROLLARY 10.2. Every homogeneous nondegenerate continuum,
which contains a non-cutpoint and lies on a 2-manifold, is a simple
closed curve.

Proof. This follows directly from Theorem 10 and the proof of a
theorem of Jones' [10, Theorem 2].

5* Decomposition of decomposable homogeneous continua*

THEOREM 11. If a proper subcontinuum X of a 2-manifold M is
decomposable and homogeneous, then there exists a continuous collection
G of disjoint continua filling X such that Xr is a simple closed curve,
and the elements of G are mutually homeomorphic, homogeneous tree-
like continua.

Proof. A theorem of Jones' [12, Theorem 1] gives a nondegenerate
continuous collection G of mutually exclusive continua filling X such
that

(1) X' is a homogeneous aposyndetic continuum,
(2) the elements of G are mutually homeomorphic, homogeneous

continua, and
(3) if g is a continuum of the collection G and K a subcontinuum

of X containing both a point of g and a point of X — g, then g is a
subset of K.

Case 1. Suppose that each element g of G is treelike. A theorem
of Roberts' and Steenrod's [14, Theorem 1] implies that the collection
consisting of the elements of G together with the individual points of
M — X forms an upper semi-continuous decomposition of M such that
M' is homeomorphic to M. Then since X' is an aposyndetic homogene-
ous continuum on a 2-manifold, it must be a simple closed curve by
Theorem 10.

Case 2. Suppose that each element of G is nontreelike. Since X'
is homogeneous, it can have no separating point; thus, for any element
g of G, X — g is connected and lies in a complementary domain D of
M—g. By a result due to Roberts and Steenrod [14, Lemma 1], D
must contain a continuum K such that D — K = Hx+ + H8 where
the Hi are disjoint open cylinders. By the continuity of G, there is
some subcollection Gx of G filling a continuum A in one of these open
cylinders. Think of this cylinder as embedded in the plane. Each
element of Gλ must separate the plane [2, Theorem 6]; indeed, each
element of Gx must have two complementary domains, since the elements
of G are homeomorphic and the plane does not contain uncountably
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many disjoint continua each having three or more complementary domains.
By Theorem 4, A is two-dimensional; this is a contradiction, since X is
one-dimensional. Case 2 is thus vacuous, and Theorem 11 is established.

REMARK. In the proof of Theorem 11, each element of G± fails to
separate the plane, and thus each element of G is indecomposable by
a theorem of Jones' [11, Theorem 2]. The indecomposability of the
elements of G also follows, as in the proof of Theorem 12, from a
theorem proved by E. Dyer [8, p. 591],

THEOREM 12. If X is a decomposable continuum which is homo-
geneous and hereditarily finitely multicoherent3, then there is a non-
degenerate continuous collection G of disjoint continua filling X such
that X1 is a simple closed curve and the elements of G are mutually
homeomorphic, homogeneous, indecomposable continua.

LEMMA 12.1. An aposyndetic hereditarily finitely multicoherent
continuum must be locally connected.

Proof of Lemma 12.1. Let Xbe an aposyndetic hereditarily finitely
multicoherent continuum. As in the proof Burgess [6, Theorem 8] has
given for the case where X is hereditarily unicoherent, for any subcon-
tinuum K oΐ X and point p of X -— K, there exists a positive integer
m and continua X19 X2, , Xm, Ylf Y2, , Ym such that K c [(X — X±)
+ (X - X2) + + (X - Xm)] and, for each i (i ^ m), X, + Y, = X
and p c X — Yit Since X is hereditarily finitely multicoherent, the
common part of the continua Xlf X2y , Xm is the sum of a finite
number of continua Zu Z2, Zn not intersecting K. Then X — Zx +
Z2 + ••• + Zn + Yχ+ Y2 + + Ym, and X is locally connected by a
theorem of Moore's [13, Theorem 51, p. 134].

LEMMA 12.2 A locally connected, hereditarily finitely multicoherent
continuum X must be hereditarily locally connected.

Proof of Lemma 12.2. Suppose 7 is a subcontinuum of X which
fails to be locally connected. Then there exists a sequence of disjoint
nondegenerate continua Nu N2, in Y converging to a nondegenerate
continuum N. Let px and p2 be points of N and Rλ and R2 be open
sets containing, respectively, pι and p2 such that cl(R^ cl{R2) — 0.
Since X is locally connected, there exist connected open sets Ui and

3 A continuum X is said to be finitely multicoherent if for any two subcontinua Xι and
Xi of X such that X = Xi + X2, the common part of Xi and X2 is the sum of a finite
number of continua. If every subcontinuum of X is finitely multicoherent, then X is said
to be hereditarily finitely multicoherent.
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U2 containing px and p29 respectively, such that Ux and U2 are con-
tained in i?i and R2, respectively. We may choose a sequence of disjoint
continua M19 M2, such that each Mt is a subcontinuum of some Nj9

each Mi is irreducible from cZ(ίTi) to cl(U2), and the sequence M19 M2,
converges to a subcontinuum M of N. Then cl( £7ί) + ΣΓ=i^ίί + M and
cK U2) + ΣΓ=i^; + M are two subcontinua of X whose intersection is the
sum of an infinite number of disjoint continua. This is a contradiction;
hence, X must be hereditarily locally connected

Proof of Theorem 12. There exists a nondegenerate continuous
collection G of disjoint continua filling X having the properties given
at the beginning of the proof of Theorem 11. If A is a subcontinuum
of X', a result of Whyburn's [17, p. 154] for monotone decompositions
implies that A is finitely multicoherent if f~\A) is finitely multicoherent;
thus Xf must be hereditarily finitely multicoherent. But X' is apo-
syndetic and thus, by Lemma 12.1, must be locally connected. By
Lemma 12.2, X' is hereditarily locally connected, and Burgess [6,
Theorem 14] has shown that a nondegenerate continuum which is homo-
geneous and hereditarily locally connected must be a simple closed
curve.

To show the indecomposability of the elements of G, let us choose
a continuous subcollection Gx of G which is an arc with respect to its
elements. Let g0 and g1 be the end elements of this arc, and x0 and
xx be points in g0 and gx respectively. A continuum K in G* which
contains xQ and x± must also contain each element of Gλ which it in-
tersects. But K must then contain both g0 and gl9 and, since K is
connected, K must fill Gf; i.e. G* is irreducible from x0 to x±. Dyer
[8, p. 591] has shown that such a collection must contain an inde-
composable continuum; thus, each continuum of G is indecomposable.
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