
SOME THEOREMS ON THE RATIO OF EMPIRICAL
DISTRIBUTION TO THE THEORETICAL

DISTRIBUTION

S. C. TANG

1. Introduction. Let Xlt X2, " ,Xn be mutually independent ran-
dom variables with the common cumulative distribution function F(x).
Let X*,X*, "',X* be the same set of variables rearranged in in-
creasing order of magnitude. In statistical language Xu X,, , Xn

form a sample of n drawn from the distribution with distribution func-
tion F(x). The empirical distribution of the sample Xu •• ,Xn is the
step function Fn{%) denned by

( 1 ) F,(x) =

0 for x ^ X*

— for Xξ < x 5ϊ Xk*+1
it

1 f or x > Xί .

A. Kolmogorov developed a well-known limit distribution law for
the difference between the empirical distribution and the corresponding
theoretical distribution, assuming F(x) continuous:

(0 , for z ^ 0 ,

^P{Vn-^?JFM ~ F^< 4 = {ti-iye— , for * > 0 .

Equally interesting is Smirnov's theorem:

lim p\VH sup [Fn(x) - F(x)] < z\ = ]° ' __2β2

0 , f or z ^ 0 ,

f or z > 0 .

In this paper we shall study the ratio of the empirical distribution
to the theoretical distribution, and evaluate the distribution functions
of the upper and lower bounds of the ratio. We shall prove the follow-
ing four theorems.

THEOREM 1. If F is everywhere continuous then

(0 for z%l

— JL for z > 1 .
z
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THEOREM 2. Let c be a positive number no larger than n and
suppose that F(x) is continuous in the range 0 ^ F(x) g c/n. Then

ίj. F(X)

£? (n\ kk-\nz - &)—*
~~ 2-*\k) 7 ^

Λ=I \κ/ (nz)

m ίg /w - fey ca - k γ~*Λ _ eg - fe y
«•—u \ ι ~~~ iC / \ /yi/y ^ _ If / \ 'V?<y — i* /i —K \ / \ /t,̂  /v / \ / (ί/& /v /

\

THEOREM 3. Under the assumption of Theorem 1,

for 0 < z S

for z ^ 0

for z> —
c

—
e

\ i n f Ή*
lβ<#.(.)si F(X)

for z < —
n

1 -
nz

(fe - l ) * - 1 ^ - fc)""fe

/or 1- ^ ^ <
n

for z > 1 .

THEOREM 4. Under the assumptions of Theorem 2, if 1 <Ξ c : n
then

P^ inf

0

Λ _ 1
V nzJ

/ o r ^ < JL

(fe - l ) * - 1 ^ - k)n~*

(nz)n

for — ^
n

—
n

v n\ (fe

forz>j~.

2. An elementary lemma. We shall use the following lemma.
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LEMMA. Let fc be a positive integer and a an arbitrary real num-
ber. Then

(2) sp r [a r) a
fϋ. r! ( fc-r) ! (fc - 1)! '

(a - 1)* ^ (r - I ) - 1 (a - r)«-' _ a*
k\ ί=i r! (fc-r)l fc! '

If a = k (a special ease) then

1 } h r! (fc - r)! (fc - 1)! fc! '

,,, (k - I)" ^ (r - I ) - 1 (k - r)*-r _ k«
κ ' M #=i r! (fc-r)I fc! '

Proof. Let /(«) be a polynomial whose degree is less than &. Then

i) r/(* ) = (-D"[^/(*)].=. = o

i.e. Σ(ί)(-l)r/(r)=-/(0).

JSΓow we can directly obtain (2) and (3):

(α-D
fc!

r\

k
_L.

1
J

(a

(a

(a

t o

( f c -

-\y
fc!

-D*
fc!
_ 1 ) »

fc!
(a-

s! (fc

r)\

r\

- 4-

- +

— s

z^ -

( -

y-1 («-
(fc

^ ( r -

r\ s=o s! (fc

-f \ 1. Λ g λ. g

i.^ Oί s^l

S! r=i

.l)*-«-«α*-i

(fc - 1)!

- r ) !

1 ) ^ ^ (α -
r=i 7*' s=0 ,

v 1 (-1 '
s = 0

^(-1)

)! fc!

)*-=(« _ i ) .

s!

*-( α _ i) (_
s! (fc - s)!

— r —

r!(fc-

( 1)-

- l ) s ( -

s ! ( f c -

^ ( - •

fA. r!

β ) !

- r —

(fc

-r+
r —

L)'(r

( f c -

-1

•s)l

a"-1

- 1)! '

\y-r-*

β ) !

r — s)!

3. Proof of Theorem l First we consider the case z ̂  1. Let
be the largest root of the equation
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F(x) = A (i ^ k ̂  n) .
nz

Since F is continuous, yk is well defined. Now we evaluate prob-
ability of the inequality

(6) sup ΣΆ
0^F()^ F(X)

that is, the probability that there exists an x such that

(7) F ^ > z .
F(x) ~

If (7) is true, then, since F{x) is nondecreasing and lima._0o (Fn(x)IF(x)) —
1, there exists an xQ such that

F(xQ)

By the definition of Fn, Fn(xQ) = kjn for some k, so that F(xQ) —
kfnz. Therefore we can take x0 as one of yk. In other words, for one
value of yk we have

FM) = -
n

and the inequality

(8) Xt<y*^Xί+i

is true. Now let Ak be the event that this inequality holds.
Clearly (6) occurs if, and only if, at least one among the events

A A A . . . A

occurs. Generally the Afc are not mutually exclusive events so that the
additive law is of no use. We may, with the help of an associated set
of mutually exclusive events, deal with this situation. Put

uk = AXA2 Ak^Ak {k = 1, 2, , n) .

where A denotes the complementary event of A. We have

(9) P{ sup 1M- ^z} = Pl±Ak\ = Pi±uλ = ΣPW .
U<F{χ)^i Fyx) ) U=i J U=i J fc=i

If we employ the following conditional probability formula, we can
evaluate P(uk).

(10) P(Ak) =
r=l
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Now Ak occurs if k of the n observations fall to the left of yk,
and n — k to the right; hence

nz / \ nz

And P(Ak I Ar) is the probability that of (n — r) observations, known to
lie to the right of yr, (k — r) lie to the left of yk and n — k to the
right. The probability of occurrence of an event, whose value is greater
than or equal to yr and is on the interval yr^x ^ yk is

kjnz — r\nz _ k — r

1 — rjnz nz — r

Therefore

k - r \*-V1 _ k- r Y~k

z — r / V nz — r

If we employ the notation

pk(z) =
kl

we get

Equation (10) can be reduced to

kJz) _ Λ p( v pk-r(l)pn-k(z)

= Σ PK)

Hence P,(l) = fcfc/^! and P,_r(l) = (k - r)*-r/(fc - r)!. By (3) of our
lemma we know that

P(Mr) P»(g) Z ! l i ΪHL P ( ) 1 1 1 fo ) " r

p ( ^ ) r! ' r r! pn(«) (nz)n rl (n — r)\

And (9) and the (2) of our lemma tell us that

P{ sup ^ L < z) = 1 - P{ sup -§M. ^

{nzf έΊ fc! (n - k)\

- 1)!
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This completes the proof of Theorem 1.

Proof of Theorem 2. Since the ratio is nonnegative, the prob-
ability of the inequality is zero if z ^ 0. Under the condition z > njc,
we know that the event {supo<r{x)^eιnFn(x)IF(x) Ξ> z} is still equal to
Σt=i A by the result of Theorem 1. Suppose 0 < z ^njc. Then

P i QITΠ n\fi) > ? I — p j sf* A J_ A * I — 'S? PΓ?/ ^ 4- T^di^Λ

lθ<F(x)^ F(X) ) U=l J fc=l

where

{ c 1
a?: F(^) = —^ ,

n J
1/* - 4 J . , , J 4*

Since P{Uk) has been computed, we need only evaluate P(C/c*). We
have

P(A*) - Σ P(uk)P{A* | A,} + P(u*)P{A* \ A*} ,

P(u*) = P(A*) - Σ P{A* | Ak} .

From this we obtain

pi gup ^ ί ί L < z\ = 1 - Σ P(^fc) - P(%*)
lo^ί'(χ)^ F(x) > k=i

_ . v pίηi \\Λ P / 4 * I A W

ίczl

JL \ wkJ-L χΛ~\.C2 £±-k\

Since

r = 0

we have

γ Ί _ ^ - f e y -
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which completes the proof. The distribution of Theorem 1 is continuous;
the distribution of Theorem 2 is not continuous on the interval 0 ^
z gΞ n/c.

Theorem 3 is a special case of Theorem 4 under the condition c = n.
In fact, by (4) of our lemma, setting z = 1, we deduce Theorem 3 as
follows:

{ ininf ^ < i U ( i - λ)+ ± (I)
F(x) ~ ) \ n) * = i W nn

n L n\ lέi fc! (n - fc)! J

Thus we need only prove Theorem 4. The distribution function of
Theorem 3 has a discontinuity corresponding to 3 = 1; the distribution
function of Theorem 4 is continuous on the interval 1 ̂  c ^ n.

5. Proof of Theorem 4 On the internal Fn(x) > 0 the maximum
of F(x) is 1; the minimum of Fn(x) is 1/n. From these results it fol-
lows that the lower bound of the ratio is no smaller than 1/n. There-
fore

w*i F(x)

if z < ljn. Let zk be the least root of the equation

nz \ n J

Define events

J30. A x ^ Z1 ,

If 1/n ̂  z ^ c/w, the event

is the union of the events

Bo> Bi> B2f , Bίnzl .

For the purpose of evaluating the probability of ^kBk we put

Vo - Bo, Vk= SoB1... S t _ A (fc = 1, 2, . . . , [nz])
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We have

(11) P(Bk) = Σ P ( Vr)P(Bk \Br), (fc = 0,1, , [nz]) „

Here

F{Bk \jbo\ —

Now we transform (11) into the following form:

klpn(z) r=i r pn_r(z)

By (4) of our lemma we obtain

P(Fr) = ( r ~ 1>r'1 p*-*iz) = (n)(r-lY-K™-'> ( 1 < r <
r! pn(z) \r/ '--sn ~ ~

It follows that if 1/n g z ^ c/w,

i \ _1_ "S? I \ N — / \ιvZ — K>)

nz / k=i\K'/ (nz)n

If z > c/w,{ inf ^
U<Fn{x)^~ F(X)

P{ ^ ^ }
U<Fn{x)^~ F(X) >

= Λ _ M

Theorem 4 is thus proved.

6 Conclusions, Theorems 1 and 3 can be applied to test whether
statistical data correspond with the theoretical distribution or not. In
the process of testing, zs and z{ are separately representative of the
ratio's upper and lower bounds. If S(zs) is small and In{z^) large, we
conclude that the empirical data in two extreme tails correspond with
the theoretical distribution; conversely, if S(zs) is very large and In{z^
very small, the statistical data do not correspond with the theoretical
distribution. Our test is more sensitive in the two tails, but less sensi-
tive in the central part, than Smirnov's test.




