SIMPLE MALCEV ALGEBRAS OVER FIELDS OF CHARACTERISTIC ZERO

ARTHUR A. SAGLE

1. Introduction. Malcev algebras are a natural generalization of Lie algebras suggested by introducing the commutator of two elements as a new multiplicative operation in an alternative algebra [3]. The defining identities obtained in this way for a Malcev algebra A are

$$(1.1) xy = -yx$$

(1.2)
$$xy \cdot xz = (xy \cdot z)x + (yz \cdot x)x + (zx \cdot x)y$$

for all $x, y, z \in A$. Since Albert [1] has shown that every simple alternative ring which contains an idempotent not its unity quantity is either associative or the split Cayley-Dickson algebra C, it is natural to see if a simple Malcev algebra can be obtained from C. In [3] a seven dimensional simple non-Lie Malcev algebra A^* is obtained from C and is discussed in detail. In this paper we shall prove the following

THEOREM. Let A be a finite dimensional simple non-Lie Malcev algebra over an algebraically closed field of characteristic zero. Furthermore assume A contains an element u such that the right multiplication by u, R_u , is not a nilpotent linear transformation. Then A is isomorphic to A^* .

The necessary identities and notation from [3] for any algebra A are repeated here for convenience:

- (1.3) Commutator, (x, y) = [x, y] = xy yx
- (1.4) Associator, $(x, y, z) = xy \cdot z x \cdot yz$
- (1.5) Jacobian, $J(x, y, z) = xy \cdot z + yz \cdot x + zx \cdot y$

for $x, y, z \in A$. If $h(x_1, \dots, x_n)$ is a function of n indeterminates such that for any n subsets B_i of A and $b_i \in B_i$, the elements $h(b_1, \dots, b_n)$ are in A, then $h(B_1, \dots, B_n)$ will denote the linear subspace of A spanned by all of the elements $h(b_1, \dots, b_n)$.

For a Malcev algebra A of characteristic not 2 or 3, we shall use the following identities and theorems from [3]:

(1.6)
$$J(x, y, xz) = J(x, y, z)x$$

Received September 2, 1961. The author would like to thank Professor L. J. Paige for his assistance in the preparation of the manuscript. This research was sponsored in part by the National Science Foundation under NSF Grant G-9504.

ARTHUR A. SAGLE

(1.7)
$$J(x, y, wz) + J(w, y, xz) = J(x, y, z)w + J(w, y, z)x$$

$$(1.8) 2wJ(x, y, z) = J(w, x, yz) + J(w, y, zx) + J(w, z, xy)$$

(1.9)
$$J(wx, y, z) = wJ(x, y, z) + J(w, y, z)x - 2J(yz, w, x)$$

$$(1.10) \qquad xy \cdot zw = x(wy \cdot z) + w(yz \cdot x) + y(zx \cdot w) + z(xw \cdot y)$$

for all $w, x, y, z \in A$. If $N = \{x \in A : J(x, A, A) = 0\}$, then it is shown in [3] that N is an ideal of A which is a Lie subalgebra and furthermore for $a, b \in A$

(1.11)
$$J(a, b, A) = 0 \text{ implies } ab \in N.$$

It is also shown in [3] that J(A, A, A) is an ideal of A. Thus if A is a simple non-Lie Malcev algebra we have

(1.12)
$$N = 0$$
 and $A = J(A, A, A)$.

We shall assume throughout this paper that A is a finite dimensional simple non-Lie Malcev algebra over an algebraically closed field F of characteristic not 2 or 3 containing an element u such that R_u is not a nilpotent linear tansformation. In §2 the basic multiplicative identities are derived using methods analogous to those of Lie algebras. Decomposing $A = A_0 \bigoplus A_{\alpha} \bigoplus \cdots \bigoplus A_{\gamma}$ into weight spaces relative to R_u [2; page 132] we prove the block multiplication identities $A_{\alpha}A_{\beta} \subset A_{\alpha+\beta}$ if $\alpha \neq \beta$, $A_{\alpha}^2 \subset A_{-\alpha}$ and $A_0^2 = 0$. Further identities are derived in §3 which lead to the important result that there exists a nonzero weight α such that $A = A_0 \oplus A_{\alpha} \oplus A_{-\alpha} \oplus A_{-\alpha}$ where $A_0 = A_{\alpha}A_{-\alpha}$.

In §4 we show that $R(A_0)$, the set of right multiplications R_{x_0} by elements $x_0 \in A_0$, is a set of commuting linear transformations on the subspaces A_0, A_{α} and $A_{-\alpha}$. Analogous to Lie algebras we decompose $A = A_0 \bigoplus A_{\alpha} \bigoplus A_{-\alpha}$ into weight spaces relative to $R(A_0)$ [2; page 133] and thus find a basis of A which simultaneously triangulates the matrices of $R(A_0)$. We now introduce the trace form, $(x, y) = \text{trace } R_x R_y$, in §5 and assume for the remainder of the paper that the algebraically closed field is of characteristic zero. With this and the results of §4 we easily show that (x, y) is a nondegenerate invariant form on A = $A_0 \bigoplus A_{\alpha} \bigoplus A_{-\alpha}$ and $A_0 = uF$.

In §6 we show that R_u has a diagonal matrix of the form

$$\begin{bmatrix} 0 & & 0 \\ & \alpha I \\ 0 & & -\alpha I \end{bmatrix}$$

Using this and a few more identities we show in §7 that the simple Malcev algebra $A = A_0 \bigoplus A_{\alpha} \bigoplus A_{-\alpha}$ is isomorphic to the seven dimen-

1058

sional algebra A^* .

2. Basic multiplication identities. Let R_u $(u \in A)$ be a fixed nonnilpotent linear transformation and decompose the simple Malcev algebra A into the weight space direct sum $A = A_0 \bigoplus A_{\alpha} \bigoplus \cdots \bigoplus A_{\gamma}$ relative to R_u where the weight space of R_u ,

$$A_a = \{x \in A: x(aI - R_u)^k = 0 ext{ for some integer } k > 0\}$$
 ,

is a nonzero R_u -invariant subspace of A corresponding to the weight a of R_u . Let $x_{\alpha} \in A_{\alpha}$, $x_{\beta} \in A_{\beta}$, then using (1.6)

$$J(u, x_{\alpha}, x_{\beta})R_u = J(u, x_{\alpha}, x_{\beta})u = J(u, x_{\alpha}, ux_{\beta}) = -J(u, x_{\alpha}, x_{\beta}R_u)$$

and therefore

$$J(u, x_{lpha}, x_{eta})(eta I + R_u) = J(u, x_{lpha}, x_{eta}(eta I - R_u))$$
.

Now letting $y_{\beta} = x_{\beta}(\beta I - R_u) \in A_{\beta}$ we have

$$egin{aligned} J(u,\,x_lpha,\,x_eta(eta I-R_u)^2) &= J(u,\,x_lpha,\,y_eta(eta I-R_u)) \ &= J(u,\,x_lpha,\,y_eta)(eta I+R_u) \ &= J(u,\,x_lpha,\,x_eta(eta I-R_u))(eta I+R_u) \ &= (u,\,x_lpha,\,x_eta)(eta I+R_u)(eta I+R_u)^2 \ . \end{aligned}$$

Continuing by induction we obtain

$$(2.1) J(u, x_{\alpha}, x_{\beta})(\beta I + R_{u})^{n} = J(u, x_{\alpha}, x_{\beta}(\beta I - R_{u})^{n})$$

for every integer *n*. Since $x_{\beta} \in A_{\beta}$ there exists an integer *N* such that $0 = J(u, x_{\alpha}, x_{\beta}(\beta I - R_u)^N) = J(u, x_{\alpha}, x_{\beta})(\beta I + R_u)^N$ and this shows $J(u, x_{\alpha}, x_{\beta}) \in A_{-\beta}$. Now interchanging the roles of x_{β} and x_{α} in (2.1) we also obtain $J(u, x_{\alpha}, x_{\beta}) \in A_{-\alpha}$ and thus

$$(2.2) J(u, A_{\alpha}, A_{\beta}) \subset A_{-\alpha} \cap A_{-\beta}.$$

From (2.2) we have the following relations

$$(2.3) J(u, A_{\alpha}, A_{\alpha}) \subset A_{-\alpha}$$

(2.4)
$$J(u, A_{\alpha}, A_{\beta}) = 0 \quad \text{if } \alpha \neq \beta .$$

We shall now prove

(2.5)
$$A_{\alpha}A_{\beta} \subset A_{\alpha+\beta} \text{ if } \alpha \neq \beta$$
.

For if $\alpha \neq \beta$ and $x_{\alpha} \in A_{\alpha}$, $x_{\beta} \in A_{\beta}$ we have by (2.4),

$$0=J(u, x_{lpha}, x_{eta})=(x_{lpha}x_{eta})Ru-x_{lpha}R_u\cdot x_{eta}-x_{lpha}\cdot x_{eta}R_u$$
 ;

that is, $(x_{\alpha}x_{\beta})R_{u} = x_{\alpha}R_{u} \cdot x_{\beta} + x_{\alpha} \cdot x_{\beta}R_{u}$ and so R_{u} is a derivation of

 $A_{\alpha}A_{\beta}$ into $A_{\alpha}A_{\beta}$. This yields

$$(x_{\alpha}x_{\beta})(R_u - (\alpha + \beta)I) = x_{\alpha}(R_u - \alpha I) \cdot x_{\beta} + x_{\alpha} \cdot x_{\beta}(R_u - \beta I)$$

and in the usual was we prove the Lebnitz rule for derivations which then yields that for some integer N, $(x_{\alpha}x_{\beta})(R_u - (\alpha + \beta)I)^N = 0$ and therefore $x_{\alpha}x_{\beta} \in A_{\alpha+\beta}$. In particular we have

$$(2.6) A_0 A_\alpha \subset A_\alpha \text{ if } \alpha \neq 0 .$$

We shall now investigate A_0 more closely. Let $x_{\alpha} \in A_{\alpha}$, $x_{\beta} \in A_{\beta}$ and $x_0 \in A_0$, then by (1.7) $J(x_0, x_{\beta}, ux_{\alpha}) + J(u, x_{\beta}, x_0x_{\alpha}) = J(x_0, x_{\beta}, x_{\alpha})u + J(u, x_{\beta}, x_{\alpha})x_0$. Therefore if $0 \neq \alpha \neq \beta$ we have by (2.4) $J(x_0, x_{\beta}, ux_{\alpha}) = J(x_0, x_{\beta}, x_{\alpha})u$. This yields $J(x_0, x_{\beta}, x_{\alpha}(\alpha I - R_u)) = J(x_0, x_{\beta}, x_{\alpha})(\alpha I + R_u)$ and as in the proof of (2.4) we obtain

$$(2.7) J(A_0, A_{\alpha}, A_{\beta}) = 0 \quad \text{if } 0 \neq \alpha \neq \beta \neq 0 .$$

Next let $x_0, y_0 \in A_0$ and $x_{\alpha} \in A_{\alpha}$ where $\alpha \neq 0$, then using (1.9), (2.4) and (2.6) we have

$$egin{aligned} J(x_{\scriptscriptstyle 0} u,\,y_{\scriptscriptstyle 0},\,x_{\scriptscriptstyle lpha}) &= x_{\scriptscriptstyle 0} J(u,\,y_{\scriptscriptstyle 0},\,x_{\scriptscriptstyle lpha}) + J(x_{\scriptscriptstyle 0},\,y_{\scriptscriptstyle 0},\,x_{\scriptscriptstyle lpha}) u - 2 J(y_{\scriptscriptstyle 0} x_{\scriptscriptstyle lpha},\,x_{\scriptscriptstyle 0},\,u) \ &= J(x_{\scriptscriptstyle 0},\,y_{\scriptscriptstyle 0},\,x_{\scriptscriptstyle lpha}) u \end{aligned}$$

and in general we have $J(x_0R_u^n, y_0, x_\alpha) = J(x_0, y_0, x_\alpha)R_u^n$ which implies $J(x_0, y_0, x_\alpha) \in A_0$. Now by (1.7), $J(x_0, y_0, ux_\alpha) + J(u, y_0, x_0x_\alpha) = J(x_0, y_0, x_\alpha)u + J(u, y_0, x_\alpha)x_0$; and using (2.4) and (2.6) we obtain $J(x_0, y_0, x_\alpha R_u) = -J(x_0, y_0, x_\alpha)R_u$ which implies $J(x_0, y_0, x_\alpha (R_u - \alpha I)) = -J(x_0, y_0, x_\alpha)(R_u + \alpha I)$. Thus, as usual, we have $J(x_0, y_0, x_\alpha) \in A_{-\alpha}$ and therefore $J(x_0, y_0, x_\alpha) \in A_0 \cap A_{-\alpha}$ which proves

(2.8)
$$J(A_0, A_0, A_\alpha) = 0 \text{ if } \alpha \neq 0.$$

We shall now show $A_0^2 \subset A_0$. From our basic decomposition $A = A_0 \bigoplus A_{\alpha} \bigoplus \cdots \bigoplus A_{\gamma}$ relative to R_u we can find a basis $\{x_1(\tau), \cdots, x_m(\tau)\}$ $(m = m_{\tau})$ of A_{τ} such that

(2.9)
$$x_i(\tau)R_u = \sum_{j=1}^{i-1} a_{ij}x_j(\tau) + \tau x_i(\tau)$$

where τ , $a_{ij} \in F$ and $i = 1, \dots, m$. In particular let $\{x_1(0), \dots, x_{n_0}(0)\} \equiv \{x_1, \dots, x_n\}$ be the above type for A_0 . Then $x_1R_u = 0$ and

$$x_i R_u = \sum_{k=1}^{i-1} a_{ik} x_k$$
 $(i=2,\cdots,n)$.

Furthermore,

$$egin{aligned} J(u,\,x_i,\,x_j) &= (x_i x_j) R_u + x_j R_u \cdot x_i + x_j \cdot x_i R_u \ &= (x_i x_j) R_u + \sum\limits_{k=1}^{j-1} a_{jk} x_k x_i + \sum\limits_{k=1}^{i-1} lpha_{ik} x_j x_k \end{aligned}$$

1060

with the understanding that $a_{10} = 0$.

Using (1.6) and operating on both sides of the previous equation with R_u^n , we obtain

$$(-1)^n J(u, x_i, x_j R_u^n) = J(u, x_i, x_j) R_u^n \ = (x_i x_j) R_u^{n+1} + \sum_{k=1}^{j-1} a_{jk}(x_k x_i) R_u^n \ + \sum_{k=1}^{i-1} a_{ik}(x_j x_k) R_u^n \;.$$

Now by assuming i < j and choosing *n* large enough, a simple inductive argument yields $x_i x_j \in A_0$ for all *i* and *j*. Thus $A_0^2 \subset A_0$.

Using (1.8), $A_0^2 \subset A_0$ and (2.8) we have

$$A_lpha J(A_{\scriptscriptstyle 0},\,A_{\scriptscriptstyle 0},\,A_{\scriptscriptstyle 0}) \subset J(A_lpha,\,A_{\scriptscriptstyle 0},\,A_{\scriptscriptstyle 0}^2) \subset J(A_lpha,\,A_{\scriptscriptstyle 0},\,A_{\scriptscriptstyle 0}) = 0 \quad ext{for} \ lpha
eq 0 \; .$$

Thus, $AJ(A_0, A_0, A_0) \subset \sum_{\alpha} A_{\alpha}J(A_0, A_0, A_0) = A_0J(A_0, A_0, A_0) \subset J(A_0, A_0, A_0)$, or $J(A_0, A_0, A_0)$ is an ideal of A. But since $J(A_0, A_0, A_0) \subset A_0 \neq A$ and A is simple we have

$$(2.10) J(A_0, A_0, A_0) = 0 .$$

Now using (2.8) and (2.10) we have $J(A_0, A_0, A) = \sum_{\alpha} J(A_0, A_0, A_{\alpha}) = 0$ and by (1.11) and (1.12),

(2.11)
$$A_0^2 \subset N = 0$$
.

In particular this means the kernel of R_u is A_0 .

We shall now show $A_{\alpha}^{2} \subset A_{-\alpha}$. Let $x_{\alpha}, y_{\alpha} \in A_{\alpha}$ for $\alpha \neq 0$, then by (2.3) $J(u, x_{\alpha}, y_{\alpha}) = (x_{\alpha}y_{\alpha})R_{u} + y_{\alpha}R_{u} \cdot x_{\alpha} + y_{\alpha} \cdot x_{\alpha}R_{u} = w_{-\alpha} \in A_{-\alpha}$. There-

fore $(x_{\alpha}y_{\alpha})R_u = x_{\alpha}R_u \cdot y_{\alpha} + y_{\alpha} \cdot y_{\alpha}R_u + w_{-\alpha}$ which yields

$$(x_lpha y_lpha)(R_u-2lpha I)=x_lpha(R_u-lpha I)\cdot y_lpha+x_lpha\cdot y_lpha(R_u-lpha I)+w_{-lpha}^{(1)}$$
 .

By induction we obtain

$$(x_{\alpha}y_{\alpha})(R_u-2\alpha I)^n=w_{-\alpha}^{(n)}+\sum_{r=0}^n C_{n,r}x_{\alpha}(R_u-\alpha I)^{n-r}\cdot y_{\alpha}(R_u-\alpha I)^r$$

where $w_{-\alpha}^{(n)} \in A_{-\alpha}$. Therefore for large enough N, $(x_{\alpha}y_{\alpha})(R_u - 2\alpha I)^N \in A_{-\alpha}$. Now let $x_{\alpha}y_{\alpha} = \sum_{\gamma} z_{\gamma}$ where $z_{\gamma} \in A_{\gamma}$, then $(x_{\alpha}y_{\alpha})(R_u - 2\alpha I)^N = \sum_{\gamma} z_{\gamma}(R_u - 2\alpha I)^N \in A_{-\alpha}$. Therefore by the R_u -invariance of the A_{γ} and the uniqueness of the decomposition $A = A_0 \bigoplus A_{\alpha} \bigoplus \cdots \bigoplus A_{\lambda}$, $z_{\gamma}(R_u - 2\alpha I)^N = 0$ if $\gamma \neq -\alpha$. Thus if $\gamma \neq -\alpha$, $z_{\gamma} \in A_{2\alpha}$. Therefore $x_{\alpha}y_{\alpha} = z_{2\alpha} + z_{-\alpha}$ which proves

$$(2.12) A_{\alpha}^2 \subset A_{2\alpha} \bigoplus A_{-\alpha} .$$

LEMMA 2.13. $J(u, A_{\alpha}^2, A_{2\alpha}) = 0.$

Proof. Using (2.12), (2.7) and (2.3) we have

$$J(u,\,A^{\scriptscriptstyle 2}_{\scriptscriptstyle lpha},\,A_{\scriptscriptstyle 2lpha})\subset J(u,\,A_{\scriptscriptstyle -lpha},\,A_{\scriptscriptstyle 2lpha})+J(u,\,A_{\scriptscriptstyle 2lpha},\,A_{\scriptscriptstyle 2lpha})\subset J(u,\,A_{\scriptscriptstyle 2lpha},\,A_{\scriptscriptstyle 2lpha})\subset A_{\scriptscriptstyle -2lpha}\;.$$

Now for any $x, y \in A_{\alpha}, z \in A_{2\alpha}$ we have by (1.7) J(z, u, xy) + J(x, u, zy) = J(z, u, y)x + J(x, u, y)z and using (2.4), (2.5) and (2.3) this yields $J(z, u, xy) = J(x, u, y)z \in A_{-\alpha} \cdot A_{2\alpha} \subset A_{\alpha}$. Combining these results we have $J(u, A_{\alpha}^2, A_{2\alpha}) \subset A_{\alpha} \cap A_{-2\alpha} = 0$.

Now let $w \in A_{2\alpha}$, $x, y \in A_{\alpha}$ and $xy = z_{2\alpha} + z_{-\alpha}$ where $z_{2\alpha} \in A_{2\alpha}$, $z_{-\alpha} \in A_{-\alpha}$, then using Lemma 2.13 and the fact $J(u, A_{-\alpha}, A_{2\alpha}) = 0$ we have

$$0 = J(u, xy, w) = J(u, z_{2\alpha}, w) + J(u, z_{-\alpha}, w) = J(u, z_{2\alpha}, w);$$

that is,

$$J(u, z_{2\alpha}, A_{2\alpha}) = 0.$$

Now since $z_{2\alpha} \in A_{2\alpha}$ we also have by (2.4) $J(u, z_{2\alpha}, A_{\beta}) = 0$ if $\beta \neq 2\alpha$. Combining these results, $J(u, z_{2\alpha}, A) = \sum_{\beta} J(u, z_{2\alpha}, A_{\beta}) = 0$ and therefore $z_{2\alpha}u \in N = 0$ by (1.11) and (1.12). Thus $0 = z_{2\alpha}R_u$ and therefore $z_{2\alpha} \in A_0 \cap A_{2\alpha} = 0$ and this proves

Also note that we now have

$$(2.15) J(A_{\alpha}, A_{\alpha}, A_{\alpha}) \subset A_{-\alpha} .$$

3. More identities. Let $A = A_0 \bigoplus A_{\alpha} \bigoplus \cdots \bigoplus A_{\gamma}$ be the decomposition of A into a weight space direct sum relative to R_u and suppose that for weights α, β, γ of $R_u, \beta \neq \gamma$ and $\beta + \gamma \neq \alpha$. Then for $x \in A_{\alpha}$, $y \in A_{\beta}$ and $z \in A_{\gamma}$ we have by (1.9) and (2.4)

$$J(xu, y, z) = xJ(u, y, z) + J(x, y, z)u - 2J(yz, x, u) = J(x, y, z)u$$

and therefore $J(x(R_u - \alpha I), y, z) = J(x, y, z)(R_u - \alpha I)$. By induction we have $J(x(R_u - \alpha I)^n, y, z) = J(x, y, z)(R_u - \alpha I)^n$ and hence

$$(3.1) J(A_{\alpha}, A_{\beta}, A_{\gamma}) \subset A_{\alpha} \text{ if } \beta \neq \gamma \text{ and } \beta + \gamma \neq \alpha .$$

By the symmetry of the α , β and γ we may also conclude

$$(3.2) J(A_{\beta}, A_{\gamma}, A_{\alpha}) \subset A_{\beta} \quad \text{if } \gamma \neq \alpha \text{ and } \gamma + \alpha \neq \beta$$

(3.3)
$$J(A_{\gamma}, A_{\alpha}, A_{\beta}) \subset A_{\gamma} \text{ if } \alpha \neq \beta \text{ and } \alpha + \beta \neq \gamma.$$

Now assume $\alpha \neq \beta \neq \gamma \neq \alpha$. Suppose $\beta + \gamma = \alpha$. If $\gamma + \alpha = \beta$,

1062

then $\gamma = 0$ and therefore $\alpha = \beta$, a contradiction. Therefore $\gamma + \alpha \neq \beta$ and by (3.2) $J(A_{\beta}, A_{\gamma}, A_{\alpha}) \subset A_{\beta}$. Similarly if $\alpha + \beta = \gamma$, then $\beta = 0$ and $\alpha = \gamma$, a contradiction. Therefore $\alpha + \beta \neq \gamma$ and by (3.3) $J(A_{\gamma}, A_{\alpha}, A_{\beta}) \subset A_{\gamma}$. Thus we have $J(A_{\alpha}, A_{\beta}, A_{\gamma}) \subset A_{\gamma} \cap A_{\beta} = 0$ if $\alpha \neq \beta \neq \gamma \neq \alpha$ and $\beta + \gamma = \alpha$.

With the assumption $\alpha \neq \beta \neq \gamma \neq \alpha$, suppose now that $\beta + \gamma \neq \alpha$. Then by (3.1), $J(A_{\alpha}, A_{\beta}, A_{\gamma}) \subset A_{\alpha}$. We next note that it is impossible to have $\gamma + \alpha = \beta$ and $\alpha + \beta = \gamma$. So using (3.2) or (3.3) together with $J(A_{\alpha}, A_{\beta}, A_{\gamma}) \subset A_{\alpha}$ we conclude $J(A_{\alpha}, A_{\beta}, A_{\gamma}) = 0$. Thus we can conclude, using the preceding paragraph,

$$(3.4) J(A_{\alpha}, A_{\beta}, A_{\gamma}) = 0 \text{ if } \alpha \neq \beta \neq \gamma \neq \alpha .$$

Now assume two weights are equal, that is, $\alpha = \beta$. Suppose $\gamma \neq 0, \alpha, -\alpha$ or 2α , then

$$egin{aligned} J(A_lpha,A_lpha,A_\gamma) &\subset A^2_lpha A_\gamma + A_lpha A_\gamma \cdot A_lpha + A_\gamma A_lpha \cdot A_lpha \ &\subset A_{-lpha} A_\gamma + A_{lpha+\gamma} A_lpha \ &\subset A_{-lpha+\gamma} igoplus A_{\gamma+2lpha} \;. \end{aligned}$$

However using (3.1) $J(A_{\alpha}, A_{\alpha}, A_{\gamma}) \subset A_{\alpha}$ and therefore $J(A_{\alpha}, A_{\alpha}, A_{\gamma}) \subset A_{\alpha} \cap (A_{-\alpha+\gamma} \bigoplus A_{\gamma+2\alpha}) = 0$. This proves

$$(3.5) J(A_{\alpha}, A_{\alpha}, A_{\gamma}) = 0 \quad \text{if } \gamma \neq 0, \, \alpha, \text{ or } -\alpha \, 2\alpha \; .$$

For the "exceptional" cases we have

$$(3.6) J(A_{\alpha}, A_{\alpha}, A_{\alpha}) \subset A^{2}_{\alpha} \cdot A_{\alpha} \subset A_{-\alpha}A_{\alpha} \subset A_{0}.$$

$$(3.7) J(A_{\alpha}, A_{\alpha}, A_{0}) \subset A_{\alpha}^{2}A_{0} + A_{\alpha}A_{0} \cdot A_{\alpha} \subset A_{-\alpha}.$$

$$(3.8) J(A_{\alpha}, A_{\alpha}, A_{-\alpha}) \subset A_{\alpha}^{2}A_{-\alpha} + A_{\alpha}A_{-\alpha} \cdot A_{\alpha} \subset A_{\alpha} .$$

$$(3.9) J(A_{\alpha}, A_{\alpha}, A_{2\alpha}) = 0.$$

To prove (3.9) let $x, y \in A_{\alpha}, z \in A_{2\alpha}$, then by (1.9), (2.5) and (2.4)

$$egin{aligned} J(xu,\,y,\,z) &= xJ(u,\,y,\,z) + J(x,\,y,\,z)u - 2J(yz,\,x,\,u) \ &= J(x,\,y,\,z)u \end{aligned}$$

and as usual we have $J(x(R_u - \alpha I)^n, y, z) = J(x, y, z)(R_u - \alpha I)^n$. Therefore $J(x, y, z) \in A_{\alpha}$. However by (1.7) J(x, y, uz) + J(u, y, xz) = J(x, y, z)u + J(u, y, z)x and using (2.4) we obtain J(x, y, uz) = J(x, y, z)u. This yields $J(x, y, z(2\alpha I - R_u)^n) = J(x, y, z)(2\alpha I + R_u)^n$ and therefore $J(x, y, z) \in A_{-2\alpha}$. Combining the above results we have $J(x, y, z) \in A_{\alpha} \cap A_{-2\alpha} = 0$ if $\alpha \neq 0$.

We shall now show $A_{\alpha}A_{\beta} = 0$ if $\alpha \neq 0$ and $\beta \neq 0, \pm \alpha$. Let α and β be fixed weights of R_{u} and assume $\beta \neq k\alpha, k = 0, \pm 1, \pm 2, \cdots$, with

 $\alpha \neq 0$. Then for any other weight γ we have by (3.4) $J(A_{\beta}, A_{\alpha}, A_{\gamma}) = 0$ if $\beta \neq \alpha \neq \gamma \neq \beta$. However $\alpha \neq \beta$ and therefore $J(A_{\beta}, A_{\alpha}, A_{\gamma}) =$ if $\alpha \neq \gamma \neq \beta$. Suppose $\gamma = \alpha$, then by (3.5) and the choice of β , $J(A_{\beta}, A_{\alpha}, A_{\alpha}) = 0$. Suppose $\gamma = \beta$, then $J(A_{\beta}, A_{\alpha}, A_{\beta}) = J(A_{\beta}, A_{\beta}, A_{\alpha}) = 0$ if $\alpha \neq 0, \beta, -\beta$ or 2β . We know $\alpha \neq 0, \beta$ or $-\beta$ so if $\alpha = 2\beta$, then by (3.9) $J(A_{\beta}, A_{\beta}, A_{\alpha}) = 0$. Combining all these cases we have shown $J(A_{\beta}, A_{\alpha}, A_{\gamma}) = 0$ for any weight γ and therefore $J(A_{\beta}, A_{\alpha}, A) = \sum_{\gamma} J(A_{\beta}, A_{\alpha}, A_{\gamma}) = 0$. By (1.11) and (1.12) $A_{\alpha}A_{\beta} \subset N = 0$. This proves

$$(3.10) \qquad A_{\alpha}A_{\beta}=0 \quad \text{if } \alpha\neq 0 \text{ and } \beta\neq k\alpha, \, k=0,\,\pm 1,\,\pm 2,\,\cdots.$$

We now assume $\alpha \neq 0$ and $\beta = k\alpha$ for $k \neq 0, \pm 1$, then $J(A_{\alpha}, A_{\beta}, A_{\gamma}) = J(A_{\alpha}, A_{k\alpha}, A_{\gamma}) = 0$ if $\alpha \neq ka \neq \gamma \neq \alpha$, by (3.4). But since $k \neq 1$ we have $J(A_{\alpha}, A_{k\alpha}, A_{\gamma}) = 0$ if $\alpha \neq \gamma \neq k\alpha$. Suppose $\gamma = \alpha$, then using (3.5)

$$egin{aligned} J(A_lpha,\,A_eta,\,A_\gamma) &= J(A_lpha,\,A_{klpha},\,A_\gamma) \ &= J(A_lpha,\,A_{klpha},\,A_lpha) \ &= J(A_lpha,\,A_{lpha},\,A_{lpha}) \ &= 0 \end{aligned}$$

if $k\alpha \neq 0, \alpha, -\alpha$ or 2α . But by the choice of k we need only consider $k\alpha = 2\alpha$ and in this case $J(A_{\alpha}, A_{\alpha}, A_{k\alpha}) = 0$ by (3.9). Now suppose $\gamma = k\alpha$, then

$$egin{aligned} J(A_lpha,\,A_eta,\,A_\gamma) &= J(A_lpha,\,A_{klpha},\,A_\gamma) \ &= J(A_lpha,\,A_{klpha},\,A_{klpha}) \ &= J(A_{lpha},\,A_{klpha},\,A_{lpha}) \ &= 0 \end{aligned}$$

if $\alpha \neq 0, k\alpha, -k\alpha$ or $2k\alpha$, by (3.5). Again by the choice of k and α we need only consider $\alpha = 2k\alpha$. In this case k = 1/2 and therefore $\gamma = \beta = k\alpha = 1/2\alpha$. This yields $J(A_{\alpha}, A_{\beta}, A_{\gamma}) = J(A_{\beta}, A_{\beta}, A_{23}) = 0$ by (3.9). Combining all of these cases we have for any weight γ , $J(A_{\alpha}, A_{k\alpha}, A_{\gamma}) = 0$ if $\alpha \neq 0, k \neq 0, \pm 1$ and as before this gives

$$(3.11) A_{\alpha}A_{k\alpha} = 0 \quad \text{if } \alpha \neq 0, \, k \neq 0, \, \pm 1 \, .$$

(3.10) and (3.11) yield

(3.12)
$$A_{\alpha}A_{\beta} = 0 \text{ if } \alpha \neq 0, \beta \neq 0, \pm \alpha.$$

Since R_u is not nilpotent, there exists a weight $\alpha \neq 0$. We shall now show that $-\alpha$ is also a weight of R_u . For suppose $-\alpha$ is not a weight, then by the usual convention $A_{-\alpha} = 0$ and noting that none of the previously derived identities use the fact that $A_{-\alpha} \neq 0$ we have for $\beta \neq 0$ or α , that $A_{\alpha}A_{\beta} = 0$ by (3.12). For $\beta = 0, A_{\alpha}A_{\beta} \subset A_{\alpha}$ and for $\beta = \alpha, A_{\alpha}A_{\beta} \subset A_{-\alpha} = 0$ using (2.14). Therefore A_{α} is a nonzero ideal of A and so $A = A_{\alpha}$. But $u \in A$ and $u \notin A_{\alpha} = A$, a contradiction. Therefore $-\alpha$ is a weight if α is a weight.

Now set $\mathscr{A}_{\alpha} = A_{\alpha}A_{-\alpha} \bigoplus A_{\alpha} \bigoplus A_{-\alpha}$ where α is a nonzero weight. Then $\mathscr{A}_{\alpha} \neq 0$ and for $\beta = 0, \pm \alpha$ we have $\mathscr{A}_{\alpha}A_{\beta} \subset \mathscr{A}_{\alpha}$. For $\beta \neq 0, \pm \alpha$ we have $A_{\alpha}A_{\beta} = A_{-\alpha}A_{\beta} = 0$ by (3.12). Now by (3.4) and (3.12) we have for $x \in A_{\alpha}, y \in A_{-\alpha}, z \in A_{\beta}$ that $0 = J(x, y, z) = xy \cdot z + yz \cdot x + zx \cdot y =$ $xy \cdot z$ and so $0 = A_{\alpha}A_{-\alpha} \cdot A_{\beta}$. Thus in all cases $\mathscr{A}_{\alpha}A_{\beta} \subset \mathscr{A}_{\alpha}$ and therefore \mathscr{A}_{α} is a nonzero ideal of A and we have $A = \mathscr{A}_{\alpha}$. This proves

PROPOSITION 3.13. If A is a finite dimensional simple non-Lie Malcev algebra over an algebraically closed field of characteristic not 2 or 3 and A contains an element u such that R_u is not a nilpotent linear transformation, then there exists an $\alpha \neq 0$ such that $A = A_0 \bigoplus A_{\alpha} \bigoplus A_{-\alpha}$ where $A_{\alpha} = \{x \in A : x(\alpha I - R_u)^k = 0 \text{ for some } k > 0\}$ and $A_0 = A_{\alpha}A_{-\alpha}$.

4. A decomposition of A relative to A_0 . Let us consider the decomposition of A as given Proposition 3.13; that is,

$$A=A_{\scriptscriptstyle 0}\oplus A_{\scriptscriptstyle lpha}\oplus A_{\scriptscriptstyle -lpha}$$
 .

For any $y_0, z_0 \in A_0$ and $x \in A_a(a = 0, \pm \alpha)$, we use (2.8) and (2.11) to see that

$$0 = J(x, y_0, z_0) = x(R_{y_0}R_{z_0} - R_{z_0}R_{y_0}) .$$

Therefore,

$$R(A_{\scriptscriptstyle 0}) \equiv \{R_{x_{\scriptscriptstyle 0}} : x_{\scriptscriptstyle 0} \in A_{\scriptscriptstyle 0}\}$$

is a commuting set of linear transformations acting on A_a . We can find $R(A_0)$ -invariant subspaces $M_{\lambda}(a)$ [2; Chapter 4] such that

$$A_a = \sum \bigoplus M_\lambda(a)$$
 $(a = 0, \pm \alpha)$,

where on each $M_{\lambda}(a)$ the transformation R_{x_0} , for any $x_0 \in A_0$, has a matrix of the form

$$\begin{bmatrix} \lambda(x_0) & 0 \\ * & \lambda(x_0) \end{bmatrix};$$

that is, $M_{\lambda}(a)$ has a basis $\{x_1, x_2, \dots, x_m\}$ $(m = m(\lambda, a))$ such that for any $x_0 \in A_0$, there exists $a_{ij}(x_0) \in F$ for which

(4.1)
$$x_i R_{x_0} = \sum_{j=1}^{i-1} a_{ij}(x_0) x_j + \lambda(x_0) x_i$$
,

where $\lambda(x_0) \in F$ and, of course, $i = 1, 2, \dots, m$.

ARTHUR A. SAGLE

Using the usual terminology we call the function λ defined by $\lambda: x_0 \to \lambda(x_0)$ a weight of A_0 in A_a or just a weight and the corresponding $M_{\lambda}(\alpha)$ a weight space of A_a corresponding to λ or just a weight space of A_a . It is easily seen [2] that A_a has finitely many weights and the weights are linear functionals on A_0 to F. Also

$$M_{\lambda}(a) = \{x \in A_a: ext{ for all } x_0 \in A_0, x(R_{x_0} - \lambda(x_0)I)^k = 0 \ ext{ for some integer } k > 0\}$$

and for this weight λ we have $\lambda(u) = a$. For suppose $\lambda(u) = b$, then there exists an $x \neq 0$ in $M_{\lambda}(a)$ such that $bx = xR_u$. But $M_{\lambda}(a) \subset A_a =$ $\{x \in A: x(R_u - aI)^n = 0\}$; therefore $(b - a)x = x(R_u - aI)$ and by induction $(b - a)^n x = x(R_u - aI)^n$ so for some integer N, $(b - a)^n x =$ $x(R_u - aI)^n = 0$ and thus $a = b = \lambda(u)$. We now combine the weight space decompositions of the A_a to form a weight space decomposition of A in

PROPOSITION 4.2. Let $A = A_0 \bigoplus A_{\alpha} \bigoplus A_{-\alpha}$ be a simple Malcev algebra as determined by Proposition 3.13, then we can write $A = A_0 \bigoplus \sum_{\lambda} \bigoplus M_{\lambda}(\alpha) \bigoplus \sum_{\mu} \bigoplus M_{\mu}(-\alpha)$ where all weights are distinct and any nonzero weight ρ of A_0 in A is a weight of A_0 in A_{α} or $A_{-\alpha}$ but not both.

Proof. The first part is clear noting that in the original weight space decomposition $A_{\alpha} = \sum_{\gamma} \bigoplus M_{\gamma}(\alpha)$ the weights of A_0 in A_{α} can be taken to be distinct. Also if λ is a weight of A_0 in A_{α} and μ a weight of A_0 in $A_{-\alpha}$, then $\lambda(u) = \alpha \neq -\alpha = \mu(u)$ and therefore $\lambda \neq \mu$. Now let $\rho \neq 0$ be any weight of A_0 in A with weight space $M_{\rho} = \{x \in A: x(R_{x_0} - \rho(x_0)I)^k = 0\}$ and let $y = y_0 + y_{\alpha} + y_{-\alpha} \in M_{\rho}$ where $y_a \in A_a$ with $a = 0, \pm \alpha$. Then for some integer N > 0,

$$egin{aligned} 0 &= y(R_{x_0} -
ho(x_0)I)^N \ &= y_0(R_{x_0} -
ho(x_0)I)^N \ &+ y_{s}(R_{x_0} -
ho(x_0)I)^N + y_{-s}(R_{x_0} -
ho(x_0)I)^N \end{aligned}$$

and by the uniqueness of the decomposition $A = A_0 \bigoplus A_{\alpha} \bigoplus A_{-\alpha}$ we have $y_a(R_{x_0} - \rho(x_0)I)^N = 0$ for $a = 0, \pm \alpha$. Now by using the binomial theorem and $A_0^2 = 0$ we have $0 = y_0(R_{x_0} - \rho(x_0)I)^N = y_0\rho(x_0)^N$ and since $\rho \neq 0, y_0 = 0$. Thus we have $y_a(R_{x_0} - \rho(x_0)I)^N = 0, a = \pm \alpha$, for some integer N and so ρ is a weight of A_0 in A_{α} and $A_{-\alpha}$. Now suppose y_{α} and $y_{-\alpha}$ are both nonzero, then since ρ is a weight of A_0 in $A_{\alpha}, \rho(u) = \alpha$ and since ρ is a weight of A_0 in $A_{-\alpha}, \rho(u) = -\alpha$, a contradiction. Thus ρ is a weight of A_0 in either A_{α} or $A_{-\alpha}$ but not both.

We shall use the usual convention that if ρ is not a weight of A_0 in A, then $M_{\rho} = 0$. Let $M_{\lambda}(a)$ and $M_{\mu}(a)$ be weight spaces of A_0 in A_a and let $x_0, y_0 \in A_0$ and $x \in M_{\lambda}(a), y \in M_{\mu}(a)$, then using (2.8) and (1.7) we have

$$egin{aligned} J(x,\,x_{\scriptscriptstyle 0},\,y_{\scriptscriptstyle 0}\!y) &= J(y_{\scriptscriptstyle 0},\,x_{\scriptscriptstyle 0},\,xy) + J(x,\,x_{\scriptscriptstyle 0},\,y_{\scriptscriptstyle 0}\!y) \ &= J(y_{\scriptscriptstyle 0},\,x_{\scriptscriptstyle 0},\,y)x + J(x,\,x_{\scriptscriptstyle 0},\,y)y_{\scriptscriptstyle 0} \ &= J(x,\,x_{\scriptscriptstyle 0},\,y)y_{\scriptscriptstyle 0} \ . \end{aligned}$$

Thus $J(x_0, x, y(R_{y_0} - \mu(y_0)I)) = -J(x_0, x, y)(R_{y_0} + \mu(y_0)I)$ and by induction

$$J(x_{\scriptscriptstyle 0},\,x,\,y(R_{y_{\scriptscriptstyle 0}}-\mu(y_{\scriptscriptstyle 0})I)^{*})=(-1)^{*}J(x_{\scriptscriptstyle 0},\,x,\,y)(R_{y_{\scriptscriptstyle 0}}+\mu(y_{\scriptscriptstyle 0})I)^{*}\;.$$

From this we obtain $J(x_0, x, y) \in M_{-\mu}(-a)$ and interchanging the roles of x and y we see $J(x_0, x, y) \in M_{-\lambda}(-a)$; this proves

$$(4.3) J(A_0, M_{\lambda}(a), M_{\mu}(a)) \subset M_{-\lambda}(-a) \cap M_{-\mu}(-a)$$

From (4.3) we obtain

$$(4.5) J(A_0, M_\lambda(a), M_\mu(a)) = 0 \text{ if } \lambda \neq \mu .$$

We shall next show

$$(4.6) M_{\lambda}(a)M_{\mu}(a) = 0 \text{ if } \lambda \neq \mu .$$

For let $x_0 \in A_0$, $x \in M_{\lambda}(a)$ and $y \in M_{\mu}(a)$, then by (4.5) $0 = J(x, y, x_0)$ and therefore $xyR_{x_0} = xR_{x_0} \cdot y + x \cdot yR_{x_0}$ and hence $xy(R_{x_0} - (\mu(x_0) + \lambda(x_0))I) =$ $x(R_{x_0} - \lambda(x_0)I) \cdot y + x \cdot y(R_{x_0} - \mu(x_0)I)$. In the usual way we can prove there exists an integer N such that $xy(R_{x_0} - (\mu(x_0) + \lambda(x_0))I)^N = 0$ and since we know $xy \in A_{-a}$ this shows $xy \in M_{\lambda+\mu}(-a)$ if $\lambda + \mu$ (defined by $(\lambda + \mu)(x_0) = \lambda(x_0) + \mu(x_0))$ is a weight of A_0 in A_{-a} , or xy = 0. If $xy \neq 0$, then $\lambda + \mu$ is a weight of A_0 in A_{-a} where λ and μ are weights of A_0 in A_a and therefore $-a = (\lambda + \mu)(u) = \lambda(u) + \mu(u) = a + a$, a contradiction.

Next we have for any weight λ of A_0 in A_a

$$(4.7) M_{\lambda}(a)M_{\lambda}(a) \subset M_{-\lambda}(-a)$$

if $-\lambda$ is a weight of A_0 in A_{-a} . For let $x_0 \in A_0$ and $\lambda \equiv \lambda(x_0) \in F$ and let $M_{\lambda}(a)$ have basis $\{x_1, \dots, x_m\}$ as in (4.1). Then using (1.2) we obtain

$$egin{aligned} \lambda^2 x_1 x_2 &= \lambda x_1 (\lambda x_2 + a_{21} x_1) \ &= x_1 R_{x_0} \cdot x_2 R_{x_0} \ &= (x_0 x_1 \cdot x_2) x_0 + (x_1 x_2 \cdot x_0) x_0 + (x_2 x_0 \cdot x_0) x_1 \ &= -\lambda x_1 x_2 R_{x_0} + x_1 x_2 R_{x_0}^2 + \lambda^2 x_2 x_1 \end{aligned}$$

and thus

$$0 = x_1 x_2 (R_{x_0}^2 - \lambda R_{x_0} - 2\lambda^2 I) = x_1 x_2 (R_{x_0} + \lambda I) (R_{x_0} - 2\lambda I)$$
.

Now since λ is a weight of A_0 in A_a , -2λ is not a weight of A_0 in A_{-a} : $-a = (2\lambda)(u) = 2\lambda(u) = 2a$. Thus the above equation implies $x_1x_2(R_{x_0}+\lambda I)=0 \hspace{1.5cm} ext{and} \hspace{1.5cm} ext{therefore} \hspace{1.5cm} x_1x_2\in M_{-\lambda}(-a). \hspace{1.5cm} ext{Next} \hspace{1.5cm} x_1x_0ullet x_3x_0=$ $\lambda x_1(\lambda x_3+a_{32}x_2+a_{31}x_1)=\lambda^2 x_1 x_3+s ext{ where } s\in M_{-\lambda}(-a) ext{ and } (x_0x_1\cdot x_3)x_0+$ $(x_1x_3\cdot x_0)x_0+(x_3x_0\cdot x_0)x_1=-\lambda x_1x_3R_{x_0}+x_1x_3R_{x_0}^2+\lambda^2x_3x_1+t ext{ where } t\in M_{-\lambda}(-a).$ Therefore using (1.2) we obtain $0 = x_1 x_3 (R_{x_0} + \lambda I) (R_{x_0} - 2\lambda I) + w$ where $w \in M_{-\lambda}(-a)$ and actually $w = 3\lambda a_{31} x_2 x_1$. Therefore $0 = x_1 x_3 (R_{x_0} + \lambda I)^2$ $(R_{x_0}-2\lambda I)$ and as before $x_1x_3(R_{x_0}+\lambda I)^2=0$ so that $x_1x_3\in M_{-\lambda}(-a)$. Continuing this process we obtain $x_1x_k \in M_{-\lambda}(-a)$ for $k = 1, 2, \dots, m$. Next consider the product x_2x_3 .

$$egin{array}{lll} x_2 x_0 cdot x_3 x_0 &= (\lambda x_2 + a_{21} x_1) (\lambda x_3 + a_{32} x_2 + a_{31} x_1) \ &= \lambda^2 x_3 x_3 + s \end{array}$$

where $s \in M_{-\lambda}(-a)$ and

$$(x_0x_2 \cdot x_3)x_0 + (x_2x_3 \cdot x_0)x_0 + (x_3x_0 \cdot x_0)x_2 = x_2x_3(R_{x_0}^2 - \lambda R_{x_0} - \lambda^2 I) + t$$

where $t \in M_{-\lambda}(-a)$, therefore $0 = x_2 x_3 (R_{x_0} + \lambda I) (R_{x_0} - 2\lambda I) + w$ where $w \in M_{-\lambda}(-a)$. Therefore for some integer k > 0 such that $w(R_{x_0} + \lambda I)^k =$ 0 we have $0 = x_2 x_3 (R_{x_0} + \lambda I)^{k+1} (R_{x_0} - 2\lambda I)$ and as before $x_2 x_3 \in M_{-\lambda}(-a)$. We continue this process showing $x_i x_k \in M_{-\lambda}(-a)$ and in general $x_i x_i \in M_{-\lambda}(-a)$ for $i, j = 1, \dots, m$. This completes the proof of (4.7).

We now show

$$(4.8) M_{\lambda}(a) \cdot M_{\mu}(-a) = 0 \quad \text{if } \lambda + \mu \neq 0 \; .$$

By (2.7) we have for $x \in M_{\lambda}(a)$, $y \in M_{\mu}(-a)$ and $x_0 \in A_0$ that 0 = $J(x, y, x_0)$ and as usual we obtain $xy(R_{x_0} - (\lambda(x_0) + \mu(x_0))I)^N = 0$ for some integer N > 0. Now $z = xy \in A_0$ and suppose $z \neq 0$, then, since $\lambda + \mu \neq 0, \lambda + \mu$ is a nonzero weight of A_0 in A_0 , a contradiction to Proposition 4.2.

Let $x \in M_{\rho}(a)$, $y \in M_{\lambda}(a)$ and $z \in M_{\mu}(-a)$, then using (1.9), (2.7) and (2.8) we have

$$egin{aligned} J(xx_{\scriptscriptstyle 0},\,y,\,z) &= xJ(x_{\scriptscriptstyle 0},\,y,\,z) + J(x,\,y,\,z)x_{\scriptscriptstyle 0} - 2J(yz,\,x,\,x_{\scriptscriptstyle 0}) \ &= J(x,\,y,\,z)x_{\scriptscriptstyle 0} \end{aligned}$$

and therefore $J(x(R_{x_0} - \rho(x_0)I), y, z) = J(x, y, z)(R_{x_0} - \rho(x_0)I)$ and as usual we obtain $J(x, y, z) \in M_{\rho}(a)$. Interchanging x and y we also obtain $J(x, y, z) \in M_{\lambda}(a)$ and therefore $J(x, y, z) \in M_{\lambda}(a) \cap M_{\rho}(a) = 0$ if $\lambda \neq \rho$. Now assume $\lambda \neq \rho$ and assume $\mu = -\lambda$ is a weight of A_0 in A_{-a} , then

$$0 = J(x, y, z) = xy \cdot z + yz \cdot x + zx \cdot y = yz \cdot x,$$

using (4.6) and (4.8). This proves

(4.9)
$$M_{\lambda}(a)M_{-\lambda}(-a) \cdot M_{\rho}(a) = 0$$

if $\lambda \neq \rho$ are weights of A_0 in A_a such that $-\lambda$ is a weight of A_0 in A_{-a} .

We shall now show if λ is a nonzero weight of A_0 in A_a with weight space $M_{\lambda}(a)$, then $-\lambda$ is a nonzero weight of A_0 in A_{-a} with weight space $M_{-\lambda}(-a)$. The proof is similar to that following (3.12): Suppose $-\lambda$ is not a weight of A_0 in A_{-a} , then $M_{-\lambda}(-a) = 0$; $M_{\lambda}(a)M_{\lambda}(a) =$ 0; $M_{\lambda}(a)M_{\rho}(a) = 0$ if $\rho \neq \lambda$; $A_0M_{\lambda}(a) \subset M_{\lambda}(a)$ and $M_{\lambda}(a)M_{\mu}(-a) = 0$ if $\mu + \lambda \neq 0$. Thus $M_{\lambda}(a)$ is a proper ideal of A, a contradiction.

Set $M_{\lambda} = M_{\lambda}(\alpha)M_{-\lambda}(-\alpha) \oplus M_{\lambda}(\alpha) \oplus M_{-\lambda}(-\alpha)$ for some nonzero weight λ of A_0 in A_{α} . Then analogous to Proposition 3.13, M_{λ} can be shown to be a nonzero ideal of A and we have

PROPOSITION 4.10. If $A = A_0 \oplus A_{\alpha} \oplus A_{-\alpha}$ is a simple Malcev algebra as determined by Proposition 3.13, then there exists a nonzero weight λ of A_0 in A with weight space $M_{\lambda}(\alpha) = A_{\alpha}$ and such that $-\lambda$ is a weight of A_0 in A with weight space $M_{-\lambda}(-\alpha) = A_{-\alpha}$.

We shall identify α with λ as a weight, that is, use the notation $\alpha(x_0)$ for $\lambda(x_0)$ and also identify $M_{\lambda}(\alpha) = A_{\alpha}$, $M_{-\lambda}(-\alpha) = A_{-\alpha}$. Note that Proposition 4.10 implies there exists a basis for A so that for every $x \in A_0$, R_x has a matrix of the form

$$\begin{bmatrix} 0 & 0 & 0 \\ & \begin{bmatrix} \alpha(x) & 0 \\ & \ddots & \\ & & \alpha(x) \end{bmatrix} & 0 \\ 0 & 0 & \begin{bmatrix} -\alpha(x) & 0 \\ & \ddots & \\ & & -\alpha(x) \end{bmatrix} \end{bmatrix}$$

5. The trace form. Set $(x, y) = \text{trace } R_x R_y$, then it is shown [3] that this is actually an *invariant form*; that is (x, y) is a bilinear form on A such that for all $x, y, z \in A$, (xy, z) = (x, yz). Also a bilinear form (x, y) is nondegenerate on A if (x, y) = 0 for all $y \in A$ implies x = 0.

THEOREM 5.1. If $A = A_0 \oplus A_{\alpha} \oplus A_{-\alpha}$ is a finite dimensional simple non-Lie Malcev algebra over an algebraically closed field of characteristic zero and if A contains an element u such that R_u is not nilpotent, then $(x, y) = trace R_x R_y$ is a nondegenerate invariant form on A and dimension $A_{\alpha} = dimension A_{-\alpha}$.

Proof. On $A = A_0 \oplus A_{\alpha} \oplus A_{-\alpha} R_u$ has the matrix

and since $u \in A = J(A, A, A)$ (by 1.12) we have by [3; 2.12] that 0 =trace $R_u = \alpha(n_\alpha - n_{-\alpha})$ where $n_a =$ dimension A_a , $a = \pm \alpha$.

Now to show (x, y) is nondegenerate, let $T = \{x \in A : (x, A) = 0\}$ where for subsets B, C of A we set $(B, C) = \{(b, c) : b \in B, c \in C\}$ and for $x \in A, (x, C) = \{(x, c) : c \in C\}$. Since (x, y) is an invariant form on A, T is an ideal of A and since A is simple, T = 0 or T = A. If T =A, then (A, A) = 0 and from the matrix of R_u we see that

$$0=(u, u)= ext{trace}\ R_u^2=2nlpha^2$$

where $n = \text{dimension } A_{\alpha}$. Since F is of characteristic zero, $\alpha = 0$, a contradiction. Thus T = 0 which implies (x, y) is nondegenerate on A.

COROLLARY 5.2. If $A = A_0 \oplus A_{\alpha} \oplus A_{-\alpha}$ is a simple Malcev algebra as above then

$$(A_0, A_{\alpha}) = (A_0, A_{-\alpha}) = (A_{\alpha}, A_{\alpha}) = (A_{-\alpha}, A_{-\alpha}) = 0$$
.

Proof. Since R_u is nonsingular on A_a , $a \neq 0$, $A_a = A_a R_u$. Therefore $(A_0, A_a) = (A_0, A_a R_u) = (A_0 R_u, A_a) = 0$, the second equality uses (x, y) is an invariant form and the third uses (2.11). Also $(A_a, A_a) = (uA_a, A_a) = (u, A_a A_a) \subset (u, A_{-a}) = 0$.

COROLLARY 5.3. If A_0^* is the dual space of A_0 consisting of linear functionals on A_0 and $f \in A_0^*$, then $f = c\alpha$ for some $c \in F$.

Proof. First, (x, y) is nondegenerate on A_0 . For if $x_0 \in A_0$ is such that $(x_0, A_0) = 0$, then

$$egin{aligned} &(x_{\scriptscriptstyle 0},\,A)=(x_{\scriptscriptstyle 0},\,A_{\scriptscriptstyle 0}\oplus A_{\scriptscriptstyle lpha}\oplus A_{\scriptscriptstyle -lpha})\ &\subset (x_{\scriptscriptstyle 0},\,A_{\scriptscriptstyle 0})+(x_{\scriptscriptstyle 0},\,A_{\scriptscriptstyle lpha})+(x_{\scriptscriptstyle 0},\,A_{\scriptscriptstyle -lpha})\ &=0 \end{aligned}$$

by the preceding corollary and therefore $x_0 = 0$ by Theorem 5.1. Now if $f \in A_0^*$, then there exists a unique element [2, page 141] $a_f \in A_0$

such that for all $x \in A_0$, $f(x) = (x, a_f) = \text{trace } R_x R_{a_f} =$

$$\operatorname{trace}\begin{bmatrix} 0 & 0 & 0 \\ 0 \begin{bmatrix} \alpha(x) & 0 \\ & \ddots \\ & & \alpha(x) \end{bmatrix} & 0 \\ 0 & 0 & \begin{bmatrix} -\alpha(x) & 0 \\ & \ddots \\ & & -\alpha(x) \end{bmatrix} \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 0 \begin{bmatrix} \alpha(a_f) & 0 \\ & \ddots \\ & & \alpha(a_f) \end{bmatrix} & 0 \\ 0 & 0 & \begin{bmatrix} -\alpha(a_f) & 0 \\ & \ddots \\ & & -\alpha(a_f) \end{bmatrix} \end{bmatrix}$$

 $=2n\alpha(a_f)\alpha(x)$; using the remarks at the end of §4 to obtain the form of the matrices of R_x and R_{α_f} . Thus $f = c\alpha$ where $c = 2n\alpha(\alpha_f) \in F$.

COROLLARY 5.4. The dimension of A_0 is one.

Proof. $0 < \text{dimension } A_0 = \text{dimension } A_0^* = \text{dimension } uF = 1.$

We shall frequently refer to a Malcev algebra A that satisfies Theorem 5.1 as a "usual simple non-Lie Malcev algebra" and for the remainder of this paper we shall assume the algebraically closed field Fis of characteristic zero.

6. The diagonalization of R_u . Using Proposition 4.10 and Corollary 5.4 we are able to decompose A relative to $R(A_0)$ into the form

$$A=A_{\scriptscriptstyle 0}\oplus A_{\scriptscriptstyle lpha}\oplus A_{\scriptscriptstyle -lpha}$$

where $A_0 = uF$. From this the matrix of R_u on A_a , $a = \pm \alpha$, has the form

$\lceil a \rceil$	ך0
•••	
*	· a_

We shall show in this section that R_u can be diagonalized. Put R_u into its Jordan canonical form on A_a , that is, find R_u -invariant subspaces $U_i(a)$ of A_a such that $A_a = U_1(a) \oplus \cdots \oplus U_{m_a}(a)$ and each $U_i(a)$ has a basis $\{x_{i1}, \dots, x_{im_i}\}$ so that the action of R_u is given by

(6.1)
$$egin{array}{lll} x_{i1}R_u &= ax_{i1} \ x_{ij}R_u &= ax_{ij} + x_{ij-1} \ j &= 2, \cdots, m_i \ . \end{array}$$

Thus on $U_i(a)$, R_u has an $m \times m$ matrix of the form

$$\begin{bmatrix} a & & 0 \\ 1 & a & & \\ & 1 & & \\ & & \ddots & & \\ 0 & & 1 & a \end{bmatrix}$$

where $m = \text{dimension } U_i(a)$. We shall now investigate the multiplicative relations between the U's and show that the dimension of all the $U_i(a)$ is one and therefore R_u will have a diagonal matrix.

LEMMA 6.2. $U_i(a) U_i(a) = 0$.

Proof. Let $U_i(a)$ have basis $\{x_1, \dots, x_m\}$ as given by (6.1). If m = 1, we are finished. Suppose m > 1, then using (1.6)

$$egin{aligned} 0 &= -J(u,\,x_2,\,x_2)R_u\ &= J(u,\,x_2,\,x_2R_u)\ &= aJ(u,\,x_2,\,x_2) + J(u,\,x_2,\,x_1)\ &= J(u,\,x_2,\,x_1)\ &= x_2x_1\cdot u + x_1u\cdot x_2 + ux_2\cdot x_2\ &= x_2x_1(R_u-2aI)\ . \end{aligned}$$

But we know $A_{2a} = 0$, therefore $x_1x_2 = 0$. Now using (1.6) we have, in general, for any $i = 1, \dots, m$,

$$egin{aligned} 0 &= J(u,\,x_i,\,x_iR_u) \ &= J(u,\,x_i,\,x_{i-1}) + aJ(u,\,x_i,\,x_i) \ &= J(u,\,x_i,\,x_{i-1}) \end{aligned}$$

and again using (1.6),

$$egin{aligned} 0 &= J(u,\,x_i,\,x_{i-1}R_u) \ &= J(u,\,x_i,\,x_{i-2}) + a J(u,\,x_i,\,x_{i-1}) \ &= J(u,\,x_i,\,x_{i-2}) \;. \end{aligned}$$

Continuing this process we have

$$J(u, x_i, x_k) = 0$$

for all $k \leq i$. Now if i < k, then by the preceding sentence

$$0 = J(u, x_k, x_i) = J(u, x_i, x_k)$$
.

Thus

$$J(u, x_i, x_k) = 0$$
 for all $i, k = 1, \dots, m$.

By linearity this implies

$$J(u, x, y) = 0$$
 for all $x, y \in U_i(a)$.

Thus

$$xyR_u = xR_u \cdot y + \cdot yR_u$$

and

$$xy(R_u - 2aI) = x(R_u - aI) \cdot y + x \cdot y(R_u - aI)$$

As usual we can find an N large enough so that $xy(R_u - 2aI)^N = 0$. But we know $A_{2a} = 0$, therefore xy = 0.

LEMMA 6.3. Let $x \in A_a$ be such that $xR_u = ax$ and let $U_i(-a) \equiv \{y_1, \dots, y_m\}$, then $xy_i = 0$ for $i = 1, \dots, m-1$ and $xy_m = \lambda u$ where $\lambda = -(y_m, x)/2na$.

Proof. Using the invariant form (x, y) we have $(y_m x, u) = (y_m, xu) = a(y_m, x)$. Since $xy_m \in A_0 = uF$ we may write $xy_m = \lambda u$, then $(y_m x, u) = (-\lambda u, u) = -\lambda (u, u) = -\lambda 2na^2(a = \pm \alpha)$. Thus $\lambda = -(y_m, x)/2na$.

Now since $x \in A_a$ and $U_i(-a) \subset A_{-a}$, we have by (2.4) and (2.11) that $0 = J(x, y_2, u) = xy_2 \cdot u + y_2u \cdot x + ux \cdot y_2 = (-ay_2 + y_1)x - axy_2 = y_1x$. Again $0 = J(x, y_3, u) = xy_3 \cdot u + y_3u \cdot x + ux \cdot y_3 = (-ay_3 + y_2)x - axy_3 = y_2x$. Continuing this process we eventually obtain $0 = J(x, y_m, u) = xy_m \cdot u + y_mu \cdot x + ux \cdot y_m = y_{m-1}x$.

THEOREM 6.4. Let $x \in A_a$ be such that $xR_u = ax$ and let $U_i(-a)$ be such that $xU_i(-a) \neq 0$, then dimension $U_i(-a) = 1$.

Proof. Let $B = uF \bigoplus xF \bigoplus U_i(-a)$, then using the preceding lemmas and their notation we see that B is a subalgebra of A and $xy_m = \lambda u$ where $\lambda \neq 0$. Now by (2.4) we have $J(u, x, y_m) = 0$, therefore by [3; Corollary 4.4] we see that u, x and y_m are contained in a Lie subalgebra, L, of A. However this implies $y_m u = -ay_m + y_{m-1} \in L$ and therefore $y_{m-1} \in L$; again $y_{m-1}u = -ay_{m-1} + y_{m-2} \in L$ and therefore $y_{m-2} \in L$. Continuing this process we obtain $B \subset L$ and so B is a Lie subalgebra of A. Thus for any $z \in B$,

$$0 = J(z, x, y_m) = z(R_x R_{y_m} - R_{y_m} R_x - R_{xy_m}) = z([R_x, R_{y_m}] - \lambda R_u) .$$

Thus on B we have $\lambda R_u = [R_x, R_{y_m}]$ and therefore the trace of R_u on B is zero. But calculating the trace of R_u from its matrix on B, we obtain that the trace is 0 + a - am. Thus m = 1.

COROLLARY 6.5. The dimensional of all the $U_i(-a)$, $a = \pm \alpha$, is one.

Proof. Suppose there exists $U_i(-a) \equiv \{y_1, \dots, y_m\}$ of dimension m > 1. Then for every $U_i(a), y_1U_i(a) = 0$. For if there exists some

 $U_i(a)$ such that $y_1U_i(a) \neq 0$, then by Theorem 6.4, dimension $U_i(a) = 1$. But this means there exists $x \in A_a$ such that $xR_u = ax$ and $0 \neq xy_1 \in xU_i(-a)$; so again by Theorem 6.4, dimension $U_i(-a) = 1$, a contradiction. Thus $y_1U_i(a) = 0$ for all *i* and this implies $y_1A_a = y_1(U_1(a) \bigoplus \cdots \bigoplus U_{m_a}(a)) = 0$. Now from Corollary 5.2 we have, since $y_1 \in A_{-a}$, $(A_0, y_1) = (A_{-a}, y_1) = 0$ and using the preceding sentence

$$(A_a, y_1) = (A_a, y_1 u) = (A_a y_1, u) = 0$$
.

Thus $(A, y_1) = 0$ and since (x, y) is nondegenerate on $A, y_1 = 0$, a contradiction.

7. Proof of the theorem. Let $A = A_0 \bigoplus A_{\alpha} \bigoplus A_{-\alpha}$ be the usual simple non-Lie Malcev algebra, then we have just seen that A_a is the null space of $R_u - aI$, $a = 0, \pm \alpha$. The choice of $\alpha \neq 0$ is fixed but arbitrary. In particular we want to consider the case $\alpha = -2$, then all we must do is consider $u' = (-2/\alpha)u$ and decompose A relative to R_u , (which is also not nilpotent) to obtain $A = A_0 \bigoplus A_{-2} \bigoplus A_2$. However we shall work with a fixed α and normalize when necessary.

Let $a, b \in F$ be any characteristic roots (weights) of R_u , that is, $a, b = 0, \pm \alpha$ with characteristic vectors $x, y \in A$; that is, $ax = xR_u$, by $= yR_u$ or $x \in A_a, y \in A_b$, then we have

(7.1)
$$J(x, y, u) = xy \cdot u - (a + b)xy$$
 where $x \in A_a, y \in A_b$.

Using (2.4) and (7.1) we also have

(7.2)
$$xy \cdot u = (a + b)xy$$
 where $y \in A_a, y \in A_b$ and $a \neq b$.

Since $xy \in A_{-a}$ if $x, y \in A_{a}$, we have

(7.3)
$$xy \cdot u = -axy$$
 where $x, y \in A_a$.

Combining (7.3) and (7.1) yields

$$(7.4) J(x, y, u) = -3axy where x, y \in A_a.$$

Let $x, y, z \in A_a$, then using (2.14), (2.4), (1.9) and (7.4) we have

$$0 = J(xy, z, u)$$

= $xJ(y, z, u) + J(x, z, u)y - 2J(zu, x, y)$
= $x(-3ayz) + (-3axz)y - 2aJ(z, x, y)$.

Therefore

$$2J(x, y, z) = -3(x \cdot yz + xz \cdot y)$$

= $3(xy \cdot z + yz \cdot x + zx \cdot y) - 3xy \cdot z$

and thus

1074

(7.5)
$$J(x, y, z) = 3xy \cdot z \quad \text{where } x, y, z \in A_a.$$

Now $J(x, z, y) = 3xz \cdot y$ and adding this to (7.5) yields $0 = xy \cdot z + xz \cdot y$ and with a slight change of notation we have

(7.6)
$$xy \cdot z = -x \cdot yz$$
 where $x, y, z \in A_a$.

From (7.6) with z = x we obtain

.

$$(7.7) xy \cdot x = 0 \text{ where } x, y \in A_a$$

Now let $x, y \in A_a, z \in A_{-a}$, then -aJ(x, y, z) = J(x, y, zu) and J(z, y, xu) = aJ(z, y, x) = -aJ(x, y, z). So

$$\begin{aligned} -2aJ(x, y, z) &= J(z, y, xu) + J(x, y, zu) \\ &= J(z, y, u)x + J(x, y, u)z = J(x, y, u)z , \end{aligned}$$

using (1.7) for the second equality, (2.4) for the third. Thus we have -2aJ(x, y, z) = J(x, y, u)z = (-3axy)z using (7.4) and hence

(7.8)
$$2J(x, y, z) = 3xy \cdot z$$
 where $x, y \in A_a, z \in A_{-a}$.

This yields $3xy \cdot z = 2(xy \cdot z + yz \cdot x + zx \cdot y)$ or

(7.9)
$$xy \cdot z = -2(xz \cdot y + x \cdot yz)$$
 where $x, y \in A_a, z \in A_{-\alpha}$.

We now use (7.9) to prove the important identity (7.10). Thus let w, x, y, z be elements of A_a and set v = J(x, y, z), 2x' = yz, -2y' = xz and 2z' = xy. Then

(7.10)
$$vw = 6(x'w \cdot x + y'w \cdot y + z'w \cdot z)$$

To prove this note that $x', y', z' \in A_{-a}$ and using (7.9) we have $2x'x \cdot w = xw \cdot x' - 2wx' \cdot x, 2y'y \cdot w = yw \cdot y' - 2wy' \cdot y, 2z'z \cdot w = zw \cdot z' - 2wz' \cdot z$. Adding these equations and multiplying by 2 yield

$$2vw=2(xw\cdot x'+yw\cdot y'+zw\cdot z')+4(x'w\cdot x+y'w\cdot y+z'w\cdot z)$$
 .

Now using (1.10),

$$2(xw \cdot x' + yw \cdot y' + zw \cdot z') = xw \cdot yz + yw \cdot zx + zw \cdot xy$$

= $x(zw \cdot y) + z(wy \cdot x) + w(yx \cdot z) + y(xz \cdot w) + y(xw \cdot z) + x(wz \cdot y)$
+ $w(zy \cdot x) + z(yx \cdot w) + z(yw \cdot x) + y(wx \cdot z) + w(xz \cdot y) + x(zy \cdot w)$
= $w(yx \cdot z) + w(zy \cdot x) + w(xz \cdot y) + y(xz \cdot w) + z(yx \cdot w) + x(zy \cdot w)$
= $-wv + y(-2y'w) + z(-2z'w) + x(-2x'w)$

noting some cancellation to obtain the third equality. Thus $2vw = vw + 2(x'w \cdot x + y'w \cdot y + z'w \cdot z) + 4(x'w \cdot x + y'w \cdot y + z'w \cdot z)$ and this proves (7.10).

Since A is simple non-Lie Malcev algebra, we shall use the facts $A^2 = A$ and A = J(A, A, A) to obtain more identities for A. First we have

$$egin{aligned} &A_{lpha} \bigoplus A_{-lpha} = A = J(A,\,A,\,A)\ &\subset J(A_{0},\,A,\,A) + J(A_{lpha},\,A,\,A) + J(A_{-lpha},\,A,\,A)\ &\subset J(A_{0},\,A_{lpha},\,A_{lpha}) + J(A_{0},\,A_{-lpha},\,A_{-lpha}) + J(A_{lpha},\,A_{lpha},\,A_{lpha})\ &+ J(A_{-lpha},\,A_{-lpha}) + J(A_{lpha},\,A_{-lpha}) + J(A_{lpha},\,A_{-lpha}) + J(A_{lpha},\,A_{-lpha})\ &\subset A_{0} \bigoplus A_{lpha} \bigoplus A_{-lpha} \end{aligned}$$

and therefore

$$egin{aligned} &A_{_0}=J(A_{_lpha},A_{_lpha},A_{_lpha})+J(A_{_{-lpha}},A_{_{-lpha}},A_{_{-lpha}})\ ,\ &A_{_lpha}=J(A_{_0},A_{_{-lpha}},A_{_{-lpha}})+J(A_{_lpha},A_{_lpha},A_{_{-lpha}})\ ,\ &A_{_{-lpha}}=J(A_{_0},A_{_lpha},A_{_lpha})+J(A_{_lpha},A_{_{-lpha}},A_{_{-lpha}})\ . \end{aligned}$$

We now use $A = A^2$ to obtain

$$egin{aligned} A_{\mathfrak{a}} \bigoplus A_{-lpha} &= A = A^{\mathfrak{2}} \ &= A_{\mathfrak{0}}A_{lpha} + A_{\mathfrak{0}}A_{-lpha} + A^{\mathfrak{2}}_{lpha} + A_{\mathfrak{a}}A_{-lpha} + A^{\mathfrak{2}}_{-lpha} \end{aligned}$$

and therefore

$$egin{aligned} A_{\scriptscriptstyle 0} &= A_{lpha} A_{-lpha} ext{ ,} \ A_{lpha} &= A_{\scriptscriptstyle 0} A_{lpha} + A_{-lpha}^{\scriptscriptstyle 2} ext{ ,} \ A_{-lpha} &= A_{\scriptscriptstyle 0} A_{-a} + A_{lpha}^{\scriptscriptstyle 2} ext{ .} \end{aligned}$$

Since $A_{\scriptscriptstyle 0} = uF$ we have $A_{\scriptscriptstyle 0}A_{\scriptscriptstyle a} = A_{\scriptscriptstyle a}(a=\pm lpha).$ Also

$$egin{aligned} &J(A_{_0},\,A_{_{-a}},\,A_{_{-a}})\subset A_a=A_0A_a\ &\subset A_0J(A_0,\,A_{_{-a}},\,A_{_{-a}})+A_0J(A_a,\,A_a,\,A_{_{-a}})\ &\subset J(A_0,\,A_0,\,A_{^2a}^2)+J(A_0,\,A_{_{-a}},\,A_{_{-a}}A_0)+J(A_0,\,A_{_{-a}},\,A_0A_{_{-a}})\ &+J(A_0,\,A_a,\,A_aA_{_{-a}})+J(A_0,\,A_{_{-a}},\,A_{_{-a}}A_a)+J(A_0,\,A_{_{-a}},\,A_{_{a}}^2)\ &\subset J(A_0,\,A_{_{-a}},\,A_{_{-a}}) \;, \end{aligned}$$

obtaining the second inclusion from $A_a = J(A_o, A_{-a}, A_{-a}) + J(A_a, A_a, A_{-a})$ and the third inclusion from (1.8). Thus we have

 $A_a=J(A_{\scriptscriptstyle 0},A_{\scriptscriptstyle -a},A_{\scriptscriptstyle -a})$, a
eq 0 .

From this and remembering $A_0 = uF$ we obtain

 $A_a = A_{-a}A_{-a}$, $a \neq 0$.

 $\begin{array}{ll} \text{For} \ A_{-a}A_{-a}\subset A_a=J(A_{\scriptscriptstyle 0},\,A_{-a},\,A_{-a})\subset A_{-a}A_{-a}. \quad \text{Also}\\ A_{\scriptscriptstyle 0}=J(A_{\scriptscriptstyle a},\,A_{\scriptscriptstyle a},\,A_{\scriptscriptstyle a}) \ , \quad a=\pm\alpha \ . \end{array}$

 $\mathbf{F_{or}}$

$$egin{aligned} J(A_a,\,A_a,\,A_a) \subset A_0 &= A_a A_{-a} \ &= A_a J(A_0,\,A_a,\,A_a) \ &\subset J(A_a,\,A_0,\,A_a^2) + J(A_a,\,A_a,\,A_aA_0) + J(A_a,\,A_a,\,A_0A_a) \ &\subset J(A_a,\,A_a,\,A_a) \;. \end{aligned}$$

We summarize these identities in

PROPOSITION 7.11. Let $A = A_0 \bigoplus A_{\alpha} \bigoplus A_{-\alpha}$ be the usual simple non-Lie Malcev algebra, then we have for $a = \pm \alpha$,

$$A_a = A_0 A_a = A_{-a} A_{-a}$$

and

$$A_{\scriptscriptstyle 0} = A_{\scriptscriptstyle a} A_{\scriptscriptstyle -a} = J(A_{\scriptscriptstyle a}, A_{\scriptscriptstyle a}, A_{\scriptscriptstyle a})$$
 .

THEOREM 7.12. Let $A = A_0 \oplus A_{\alpha} \oplus A_{-\alpha}$ be the usual simple non-Lie Malcev algebra, then A is isomorphic to the simple seven dimensional Malcev algebra A^* discussed in the introduction.

Proof. Since $uF = A_0 = A_{\alpha}A_{-\alpha} = A_{\alpha} \cdot A_{\alpha}A_{\alpha}$, there exists $x, y, z \in A_{\alpha}$ such that $x \cdot yz = 2u$. Define 2x' = yz, -2y' = xz and 2z' = xy and form the subspace B generated by $\{u, x, y, z, x', y', z'\}$. First the x, yand z are linearly independent over F. For if ax + by + cz = 0 with $a, b, c \in F$ and, for example, $a \neq 0$, then write x = b'y + c'z and therefore using (7.7) $2u = x \cdot yz = b'y \cdot yz + c'z \cdot yz = 0$, a contradiction. Similarly noting u = xx' and assuming a relation of the type x' =b'y' + c'z' and using the definitions of x', y' and z' we see that the x', y' and z' are also linearly independent. Since $A = A_0 \bigoplus A_{\alpha} \bigoplus A_{-\alpha}$, $\{u, x, y, z, x', y', z'\}$ is a linearly independent set of vectors over F. Using identities (1.2), (7.6) and (7.7) we obtain the following multiplication table for B.

	u	x	y	z	x'	y'	z'
u	0	$-\alpha x$	$-\alpha y$	$-\alpha z$	$\alpha x'$	$\alpha y'$	αz'
x	αx	0	2z'	-2y'	u	0	0
y	αy	-2z'	0	2x'	0	u	0
2	αz	2y'	-2x'	0	0	0	u
x'	$-\alpha x'$	-u	0	0	0	αz	$-\alpha y$
y'	$-\alpha y'$	0	-u	0	$-\alpha z$	0	αx
z'	$-\alpha z'$	0	0	-u	αy	$-\alpha x$	0

By the remarks at the beginning of this section we can choose $\alpha = -2$

and consequently obtain that B is isomorphic to A^* . It remains to show the dimension of A over F is seven. For this it suffices to show dimension $A_{\alpha} = 3$, since dimension $A_{\alpha} = \text{dimension } A_{-\alpha}$. Let $0 \neq w \in A_{\alpha}$, then by (7.5)

$$6u = 3x \cdot yz = -J(x, y, z)$$

and therefore by (7.10),

$$6\alpha w = 6wu = x_0x + y_0y + z_0z$$

where $x_0, y_0, z_0 \in A_0 = uF$. But by the action of u on x, y and z we have $6\alpha w = a_0x + b_0y + c_0z$ where $a_0, b_0, c_0 \in F$. Thus the dimension of A_x is three.

BIBLIOGRAPHY

1. A. A. Albert, On simple alternative rings, Canadian J. Math., 4 (1952), 129-135.

2. N. Jacobson, Lectures in abstract algebra, Vol. 2, D. Van Norstrand.

3. A. Sagle, Malcev algebras, Trans. Amer. Math. Soc., 101 (1961), 426-458.

THE UNIVERSITY OF CHICAGO AND SRNACUSE UNIVERSITY