SIMPLE MALCEV ALGEBRAS OVER FIELDS
 OF CHARACTERISTIC ZERO

Arthur A. Sagle

1. Introduction. Malcev algebras are a natural generalization of Lie algebras suggested by introducing the commutator of two elements as a new multiplicative operation in an alternative algebra [3]. The defining identities obtained in this way for a Malcev algebra A are

$$
\begin{gather*}
x y=-y x \tag{1.1}\\
x y \cdot x z=(x y \cdot z) x+(y z \cdot x) x+(z x \cdot x) y \tag{1.2}
\end{gather*}
$$

for all $x, y, z \in A$. Since Albert [1] has shown that every simple alternative ring which contains an idempotent not its unity quantity is either associative or the split Cayley-Dickson algebra C, it is natural to see if a simple Malcev algebra can be obtained from C. In [3] a seven dimensional simple non-Lie Malcev algebra A^{*} is obtained from C and is discussed in detail. In this paper we shall prove the following

Theorem. Let A be a finite dimensional simple non-Lie Malcev algebra over an algebraically closed field of characteristic zero. Furthermore assume A contains an element u such that the right multiplication by u, R_{u}, is not a nilpotent linear transformation. Then A is isomorphic to A^{*}.

The necessary identities and notation from [3] for any algebra A are repeated here for convenience:

$$
\begin{array}{ll}
\text { Commutator, } & (x, y)=[x, y]=x y-y x \\
\text { Associator, } & (x, y, z)=x y \cdot z-x \cdot y z \\
\text { Jacobian, } & J(x, y, z)=x y \cdot z+y z \cdot x+z x \cdot y \tag{1.5}
\end{array}
$$

for $x, y, z \in A$. If $h\left(x_{1}, \cdots, x_{n}\right)$ is a function of n indeterminates such that for any n subsets B_{i} of A and $b_{i} \in B_{i}$, the elements $h\left(b_{1}, \cdots, b_{n}\right)$ are in A, then $h\left(B_{1}, \cdots, B_{n}\right)$ will denote the linear subspace of A spanned by all of the elements $h\left(b_{1}, \cdots, b_{n}\right)$.

For a Malcev algebra A of characteristic not 2 or 3 , we shall use the following identities and theorems from [3]:

$$
\begin{equation*}
J(x, y, x z)=J(x, y, z) x \tag{1.6}
\end{equation*}
$$

[^0]\[

$$
\begin{align*}
& J(x, y, w z)+J(w, y, x z)=J(x, y, z) w+J(w, y, z) x \tag{1.7}\\
& 2 w J(x, y, z)=J(w, x, y z)+J(w, y, z x)+J(w, z, x y) \tag{1.8}\\
& J(w x, y, z)=w J(x, y, z)+J(w, y, z) x-2 J(y z, w, x) \tag{1.9}\\
& x y \cdot z w=x(w y \cdot z)+w(y z \cdot x)+y(z x \cdot w)+z(x w \cdot y) \tag{1.10}
\end{align*}
$$
\]

for all $w, x, y, z \in A$. If $N=\{x \in A: J(x, A, A)=0\}$, then it is shown in [3] that N is an ideal of A which is a Lie subalgebra and furthermore for $a, b \in A$

$$
\begin{equation*}
J(a, b, A)=0 \quad \text { implies } a b \in N \tag{1.11}
\end{equation*}
$$

It is also shown in [3] that $J(A, A, A)$ is an ideal of A. Thus if A is a simple non-Lie Malcev algebra we have

$$
\begin{equation*}
N=0 \quad \text { and } \quad A=J(A, A, A) \tag{1.12}
\end{equation*}
$$

We shall assume throughout this paper that A is a finite dimensional simple non-Lie Malcev algebra over an algebraically closed field F of characteristic not 2 or 3 containing an element u such that R_{u} is not a nilpotent linear tansformation. In § 2 the basic multiplicative identities are derived using methods analogous to those of Lie algebras. Decomposing $A=A_{0} \oplus A_{\alpha} \oplus \cdots \oplus A_{\gamma}$ into weight spaces relative to R_{u} [2; page 132] we prove the block multiplication identities $A_{\alpha} A_{\beta} \subset$ $A_{\alpha+\beta}$ if $\alpha \neq \beta, A_{\alpha}^{2} \subset A_{-\alpha}$ and $A_{0}^{2}=0$. Further identities are derived in §3 which lead to the important result that there exists a nonzero weight α such that $A=A_{0} \oplus A_{\alpha} \oplus A_{-\alpha}$ where $A_{0}=A_{\alpha} A_{-\alpha}$.

In $\S 4$ we show that $R\left(A_{0}\right)$, the set of right multiplications $R_{x_{0}}$ by elements $x_{0} \in A_{0}$, is a set of commuting linear transformations on the subspaces A_{0}, A_{α} and $A_{-\alpha}$. Analogous to Lie algebras we decompose $A=A_{0} \oplus A_{\alpha} \oplus A_{-\alpha}$ into weight spaces relative to $R\left(A_{0}\right)$ [2; page 133] and thus find a basis of A which simultaneously triangulates the matrices of $R\left(A_{0}\right)$. We now introduce the trace form, $(x, y)=\operatorname{trace} R_{x} R_{y}$, in §5 and assume for the remainder of the paper that the algebraically closed field is of characteristic zero. With this and the results of §4 we easily show that (x, y) is a nondegenerate invariant form on $A=$ $A_{0} \oplus A_{\alpha} \oplus A_{-\alpha}$ and $A_{0}=u F$.

In $\S 6$ we show that R_{u} has a diagonal matrix of the form

$$
\left[\begin{array}{rrr}
0 & & 0 \\
& \alpha I & \\
0 & & -\alpha I
\end{array}\right]
$$

Using this and a few more identities we show in § 7 that the simple Malcev algebra $A=A_{0} \oplus A_{\alpha} \oplus A_{-\alpha}$ is isomorphic to the seven dimen-
sional algebra A^{*}.
2. Basic multiplication identities. Let $R_{u}(u \in A)$ be a fixed nonnilpotent linear transformation and decompose the simple Malcev algebra A into the weight space direct sum $A=A_{0} \oplus A_{\alpha} \oplus \cdots \oplus A_{\gamma}$ relative to R_{u} where the weight space of R_{u},

$$
A_{a}=\left\{x \in A: x\left(a I-R_{u}\right)^{k}=0 \text { for some integer } k>0\right\}
$$

is a nonzero R_{u}-invariant subspace of A corresponding to the weight a of R_{u}. Let $x_{\alpha} \in A_{\alpha}, x_{\beta} \in A_{\beta}$, then using (1.6)

$$
J\left(u, x_{\alpha}, x_{\beta}\right) R_{u}=J\left(u, x_{\alpha}, x_{\beta}\right) u=J\left(u, x_{\alpha}, u x_{\beta}\right)=-J\left(u, x_{\alpha}, x_{\beta} R_{u}\right)
$$

and therefore

$$
J\left(u, x_{\alpha}, x_{\beta}\right)\left(\beta I+R_{u}\right)=J\left(u, x_{\alpha}, x_{\beta}\left(\beta I-R_{u}\right)\right)
$$

Now letting $y_{\beta}=x_{\beta}\left(\beta I-R_{u}\right) \in A_{\beta}$ we have

$$
\begin{aligned}
J\left(u, x_{\alpha}, x_{\beta}\left(\beta I-R_{u}\right)^{2}\right) & =J\left(u, x_{\alpha}, y_{\beta}\left(\beta I-R_{u}\right)\right) \\
& =J\left(u, x_{\alpha}, y_{\beta}\right)\left(\beta I+R_{u}\right) \\
& =J\left(u, x_{\alpha}, x_{\beta}\left(\beta I-R_{u}\right)\right)\left(\beta I+R_{u}\right) \\
& =\left(u, x_{\alpha}, x_{\beta}\right)\left(\beta I+R_{u}\right)^{2} .
\end{aligned}
$$

Continuing by induction we obtain

$$
\begin{equation*}
J\left(u, x_{\alpha}, x_{\beta}\right)\left(\beta I+R_{u}\right)^{n}=J\left(u, x_{\alpha}, x_{\beta}\left(\beta I-R_{u}\right)^{n}\right) \tag{2.1}
\end{equation*}
$$

for every integer n. Since $x_{\beta} \in A_{\beta}$ there exists an integer N such that $0=J\left(u, x_{\alpha}, x_{\beta}\left(\beta I-R_{u}\right)^{N}\right)=J\left(u, x_{\alpha}, x_{\beta}\right)\left(\beta I+R_{u}\right)^{N}$ and this shows $J\left(u, x_{\alpha}, x_{\beta}\right) \in A_{-\beta}$. Now interchanging the roles of x_{β} and x_{α} in (2.1) we also obtain $J\left(u, x_{\alpha}, x_{\beta}\right) \in A_{-\alpha}$ and thus

$$
\begin{equation*}
J\left(u, A_{\alpha}, A_{\beta}\right) \subset A_{-\alpha} \cap A_{-\beta} . \tag{2.2}
\end{equation*}
$$

From (2.2) we have the following relations

$$
\begin{equation*}
J\left(u, A_{\alpha}, A_{\alpha}\right) \subset A_{-\alpha} \tag{2.3}
\end{equation*}
$$

$$
\begin{equation*}
J\left(u, A_{\alpha}, A_{\beta}\right)=0 \quad \text { if } \alpha \neq \beta \tag{2.4}
\end{equation*}
$$

We shall now prove

$$
\begin{equation*}
A_{\alpha} A_{\beta} \subset A_{\alpha+\beta} \quad \text { if } \alpha \neq \beta \tag{2.5}
\end{equation*}
$$

For if $\alpha \neq \beta$ and $x_{\alpha} \in A_{\alpha}, x_{\beta} \in A_{\beta}$ we have by (2.4),

$$
0=J\left(u, x_{\alpha}, x_{\beta}\right)=\left(x_{\alpha} x_{\beta}\right) R u-x_{\alpha} R_{u} \cdot x_{\beta}-x_{\alpha} \cdot x_{\beta} R_{u}
$$

that is, $\left(x_{\alpha} x_{\beta}\right) R_{u}=x_{\alpha} R_{u} \cdot x_{\beta}+x_{\alpha} \cdot x_{\beta} R_{u}$ and so R_{u} is a derivation of
$A_{\alpha} A_{\beta}$ into $A_{\alpha} A_{\beta}$. This yields

$$
\left(x_{\alpha} x_{\beta}\right)\left(R_{u}-(\alpha+\beta) I\right)=x_{\alpha}\left(R_{u}-\alpha I\right) \cdot x_{\beta}+x_{\alpha} \cdot x_{\beta}\left(R_{u}-\beta I\right)
$$

and in the usual was we prove the Lebnitz rule for derivations which then yields that for some integer $N,\left(x_{\alpha} x_{\beta}\right)\left(R_{u}-(\alpha+\beta) I\right)^{N}=0$ and therefore $x_{\alpha} x_{\beta} \in A_{\alpha+\beta}$. In particular we have

$$
\begin{equation*}
A_{0} A_{\alpha} \subset A_{\alpha} \quad \text { if } \alpha \neq 0 . \tag{2.6}
\end{equation*}
$$

We shall now investigate A_{0} more closely. Let $x_{\alpha} \in A_{\alpha}, x_{\beta} \in A_{\beta}$ and $x_{0} \in A_{0}$, then by (1.7) $J\left(x_{0}, x_{\beta}, u x_{\alpha}\right)+J\left(u, x_{\beta}, x_{0} x_{\alpha}\right)=J\left(x_{0}, x_{\beta}, x_{\alpha}\right) u+$ $J\left(u, x_{\beta}, x_{\alpha}\right) x_{0}$. Therefore if $0 \neq \alpha \neq \beta$ we have by (2.4) $J\left(x_{0}, x_{\beta}, u x_{\alpha}\right)=$ $J\left(x_{0}, x_{\beta}, x_{\alpha}\right) u$. This yields $J\left(x_{0}, x_{\beta}, x_{\alpha}\left(\alpha I-R_{u}\right)\right)=J\left(x_{0}, x_{\beta}, x_{\alpha}\right)\left(\alpha I+R_{u}\right)$ and as in the proof of (2.4) we obtain

$$
\begin{equation*}
J\left(A_{0}, A_{\alpha}, A_{\beta}\right)=0 \quad \text { if } 0 \neq \alpha \neq \beta \neq 0 . \tag{2.7}
\end{equation*}
$$

Next let $x_{0}, y_{0} \in A_{0}$ and $x_{\alpha} \in A_{\alpha}$ where $\alpha \neq 0$, then using (1.9), (2.4) and (2.6) we have

$$
\begin{aligned}
J\left(x_{0} u, y_{0}, x_{\alpha}\right) & =x_{0} J\left(u, y_{0}, x_{\alpha}\right)+J\left(x_{0}, y_{0}, x_{\alpha}\right) u-2 J\left(y_{0} x_{\alpha}, x_{0}, u\right) \\
& =J\left(x_{0}, y_{0}, x_{\alpha}\right) u
\end{aligned}
$$

and in general we have $J\left(x_{0} R_{u}^{n}, y_{0}, x_{\alpha}\right)=J\left(x_{0}, y_{0}, x_{\alpha}\right) R_{u}^{n}$ which implies $J\left(x_{0}, y_{0}, x_{\alpha}\right) \in A_{0}$. Now by (1.7), $J\left(x_{0}, y_{0}, u x_{\alpha}\right)+J\left(u, y_{0}, x_{0} x_{\alpha}\right)=$ $J\left(x_{0}, y_{0}, x_{\alpha}\right) u+J\left(u, y_{0}, x_{\alpha}\right) x_{0}$; and using (2.4) and (2.6) we obtain $J\left(x_{0}, y_{0}, x_{\alpha} R_{u}\right)=-J\left(x_{0}, y_{0}, x_{\alpha}\right) R_{u}$ which implies $J\left(x_{0}, y_{0}, x_{\alpha}\left(R_{u}-\alpha I\right)\right)=$ $-J\left(x_{0}, y_{0}, x_{\alpha}\right)\left(R_{u t}+\alpha I\right)$. Thus, as usual, we have $J\left(x_{0}, y_{0}, x_{\alpha}\right) \in A_{-\alpha}$ and therefore $J\left(x_{0}, y_{0}, x_{\alpha}\right) \in A_{0} \cap A_{-\alpha}$ which proves

$$
\begin{equation*}
J\left(A_{0}, A_{0}, A_{\alpha}\right)=0 \quad \text { if } \alpha \neq 0 . \tag{2.8}
\end{equation*}
$$

We shall now show $A_{0}^{2} \subset A_{0}$. From our basic decomposition $A=$ $A_{0} \oplus A_{\alpha} \oplus \cdots \oplus A_{\gamma}$ relative to R_{u} we can find a basis $\left\{x_{1}(\tau), \cdots, x_{m}(\tau)\right\}$ ($m=m_{\tau}$) of A_{τ} such that

$$
\begin{equation*}
x_{i}(\tau) R_{u}=\sum_{j=1}^{i-1} a_{i j} x_{j}(\tau)+\tau x_{i}(\tau) \tag{2.9}
\end{equation*}
$$

where $\tau, a_{i j} \in F$ and $i=1, \cdots, m$. In particular let $\left\{x_{1}(0), \cdots, x_{n_{0}}(0)\right\} \equiv$ $\left\{x_{1}, \cdots, x_{n}\right\}$ be the above type for A_{0}. Then $x_{1} R_{u}=0$ and

$$
x_{i} R_{u}=\sum_{k=1}^{i-1} a_{i k} x_{k} \quad(i=2, \cdots, n)
$$

Furthermore,

$$
\begin{aligned}
J\left(u, x_{i}, x_{j}\right) & =\left(x_{i} x_{j}\right) R_{u}+x_{j} R_{u} \cdot x_{i}+x_{j} \cdot x_{i} R_{u} \\
& =\left(x_{i} x_{j}\right) R_{u}+\sum_{k=1}^{j-1} a_{j k} x_{k} x_{i}+\sum_{k=1}^{i-1} \alpha_{i k} x_{j} x_{k}
\end{aligned}
$$

with the understanding that $a_{10}=0$.
Using (1.6) and operating on both sides of the previous equation with R_{u}^{n}, we obtain

$$
\begin{aligned}
(-1)^{n} J\left(u, x_{i}, x_{j} R_{u}^{n}\right)= & J\left(u, x_{i}, x_{j}\right) R_{u}^{n} \\
= & \left(x_{i} x_{j}\right) R_{u}^{n+1}+\sum_{k=1}^{j-1} a_{j k}\left(x_{k} x_{i}\right) R_{u}^{n} \\
& +\sum_{k=1}^{i-1} a_{i k}\left(x_{j} x_{k}\right) R_{u}^{n}
\end{aligned}
$$

Now by assuming $i<j$ and choosing n large enough, a simple inductive argument yields $x_{i} x_{j} \in A_{0}$ for all i and j. Thus $A_{0}^{2} \subset A_{0}$.

Using (1.8), $A_{0}^{2} \subset A_{0}$ and (2.8) we have

$$
A_{\alpha} J\left(A_{0}, A_{0}, A_{0}\right) \subset J\left(A_{\alpha}, A_{0}, A_{0}^{2}\right) \subset J\left(A_{\alpha}, A_{0}, A_{0}\right)=0 \quad \text { for } \alpha \neq 0
$$

Thus, $A J\left(A_{0}, A_{0}, A_{0}\right) \subset \sum_{\alpha} A_{\alpha} J\left(A_{0}, A_{0}, A_{0}\right)=A_{0} J\left(A_{0}, A_{0}, A_{0}\right) \subset J\left(A_{0}, A_{0}, A_{0}\right)$, or $J\left(A_{0}, A_{0}, A_{0}\right)$ is an ideal of A. But since $J\left(A_{0}, A_{0}, A_{0}\right) \subset A_{0} \neq A$ and A is simple we have

$$
\begin{equation*}
J\left(A_{0}, A_{0}, A_{0}\right)=0 \tag{2.10}
\end{equation*}
$$

Now using (2.8) and (2.10) we have $J\left(A_{0}, A_{0}, A\right)=\sum_{\alpha} J\left(A_{0}, A_{0}, A_{\alpha}\right)=$ 0 and by (1.11) and (1.12),

$$
\begin{equation*}
A_{0}^{2} \subset N=0 \tag{2.11}
\end{equation*}
$$

In particular this means the kernel of R_{u} is A_{0}.
We shall now show $A_{\alpha}^{2} \subset A_{-\alpha}$. Let $x_{\alpha}, y_{\alpha} \in A_{\alpha}$ for $\alpha \neq 0$, then by
(2.3) $J\left(u, x_{\alpha}, y_{\alpha}\right)=\left(x_{\alpha} y_{\alpha}\right) R_{u}+y_{\alpha} R_{u} \cdot x_{\alpha}+y_{\alpha} \cdot x_{\alpha} R_{u}=w_{-\alpha} \in A_{-\alpha}$. Therefore $\left(x_{\alpha} y_{\alpha}\right) R_{u}=x_{\alpha} R_{u} \cdot y_{\alpha}+y_{\alpha} \cdot y_{\alpha} R_{u}+w_{-\alpha}$ which yields

$$
\left(x_{\alpha} y_{\alpha}\right)\left(R_{u}-2 \alpha I\right)=x_{\alpha}\left(R_{u}-\alpha I\right) \cdot y_{\alpha}+x_{\alpha} \cdot y_{\alpha}\left(R_{u}-\alpha I\right)+w_{-\alpha}^{(1)}
$$

By induction we obtain

$$
\left(x_{\alpha} y_{\alpha}\right)\left(R_{u}-2 \alpha I\right)^{n}=w_{-\alpha}^{(n)}+\sum_{r=0}^{n} C_{n, r} x_{\alpha}\left(R_{u}-\alpha I\right)^{n-r} \cdot y_{\alpha}\left(R_{u}-\alpha I\right)^{r}
$$

where $w_{-\alpha}^{(n)} \in A_{-\alpha}$. Therefore for large enough $N,\left(x_{\alpha} y_{\alpha}\right)\left(R_{u}-2 \alpha I\right)^{N} \in A_{-\alpha}$. Now let $x_{\alpha} y_{\alpha}=\sum_{\gamma} z_{\gamma} \quad$ where $\quad z_{\gamma} \in A_{\gamma}$, then $\left(x_{\alpha} y_{\alpha}\right)\left(R_{u}-2 \alpha I\right)^{N}=$ $\sum_{\gamma} z_{\gamma}\left(R_{u}-2 \alpha I\right)^{N} \in A_{-\alpha}$. Therefore by the R_{u}-invariance of the A_{γ} and the uniqueness of the decomposition $A=A_{0} \oplus A_{\alpha} \oplus \cdots \oplus A_{\lambda}$, $z_{\gamma}\left(R_{u}-\right.$ $2 \alpha I)^{N}=0$ if $\gamma \neq-\alpha$. Thus if $\gamma \neq-\alpha, z_{\gamma} \in A_{2 \alpha}$. Therefore $x_{\alpha} y_{\alpha}=$ $z_{2 \alpha}+z_{-\alpha}$ which proves

$$
\begin{equation*}
A_{\alpha}^{2} \subset A_{2 \alpha} \oplus A_{-a} \tag{2.12}
\end{equation*}
$$

Lemma 2.13. $J\left(u, A_{\alpha}^{2}, A_{2 \alpha}\right)=0$.

Proof. Using (2.12), (2.7) and (2.3) we have

$$
J\left(u, A_{\alpha}^{2}, A_{2 \alpha}\right) \subset J\left(u, A_{-\alpha}, A_{2 \alpha}\right)+J\left(u, A_{2 \alpha}, A_{2 \alpha}\right) \subset J\left(u, A_{2 \alpha}, A_{2 \alpha}\right) \subset A_{-2 \alpha} .
$$

Now for any $x, y \in A_{\alpha}, z \in A_{2 \alpha}$ we have by (1.7) $J(z, u, x y)+J(x, u, z y)=$ $J(z, u, y) x+J(x, u, y) z$ and using (2.4), (2.5) and (2.3) this yields $J(z, u, x y)=J(x, u, y) z \in A_{-\alpha} \cdot A_{2 \alpha} \subset A_{\alpha}$. Combining these results we have $J\left(u, A_{\alpha}^{2}, A_{2 \alpha}\right) \subset A_{\alpha} \cap A_{-2 \alpha}=0$.

Now let $w \in A_{2 \alpha}, x, y \in A_{\alpha}$ and $x y=z_{2 \alpha}+z_{-\alpha}$ where $z_{2 \alpha} \in A_{2 \alpha}$, $z_{-\alpha} \in A_{-\alpha}$, then using Lemma 2.13 and the fact $J\left(u, A_{-\alpha}, A_{2 \alpha}\right)=0$ we have

$$
0=J(u, x y, w)=J\left(u, z_{2 \alpha}, w\right)+J\left(u, z_{-\alpha}, w\right)=J\left(u, z_{2 \alpha}, w\right) ;
$$

that is,

$$
J\left(u, z_{2 \alpha}, A_{2 \alpha}\right)=0
$$

Now since $z_{2 \alpha} \in A_{2 \alpha}$ we also have by (2.4) $J\left(u, z_{2 \alpha}, A_{\beta}\right)=0$ if $\beta \neq 2 \alpha$. Combining these results, $J\left(u, z_{2 \alpha}, A\right)=\sum_{\beta} J\left(u, z_{2 \alpha}, A_{\beta}\right)=0$ and therefore $z_{2 \alpha} u \in N=0$ by (1.11) and (1.12). Thus $0=z_{2 \alpha} R_{u}$ and therefore $z_{2 \alpha} \in A_{0} \cap A_{2 \alpha}=0$ and this proves

$$
\begin{equation*}
A_{\alpha}^{2} \subset A_{-\alpha} \tag{2.14}
\end{equation*}
$$

Also note that we now have

$$
\begin{equation*}
J\left(A_{0}, A_{\alpha}, A_{\alpha}\right) \subset A_{-\alpha} \tag{2.15}
\end{equation*}
$$

3. More identities. Let $A=A_{0} \oplus A_{\alpha} \oplus \cdots \oplus A_{\gamma}$ be the decomposition of A into a weight space direct sum relative to R_{u} and suppose that for weights α, β, γ of $R_{u}, \beta \neq \gamma$ and $\beta+\gamma \neq \alpha$. Then for $x \in A_{\alpha}$, $y \in A_{\beta}$ and $z \in A_{\gamma}$ we have by (1.9) and (2.4)

$$
J(x u, y, z)=x J(u, y, z)+J(x, y, z) u-2 J(y z, x, u)=J(x, y, z) u
$$

and therefore $J\left(x\left(R_{u}-\alpha I\right), y, z\right)=J(x, y, z)\left(R_{u}-\alpha I\right)$. By induction we have $J\left(x\left(R_{u}-\alpha I\right)^{n}, y, z\right)=J(x, y, z)\left(R_{u}-\alpha I\right)^{n}$ and hence

$$
\begin{equation*}
J\left(A_{\alpha}, A_{\beta}, A_{\gamma}\right) \subset A_{\alpha} \quad \text { if } \beta \neq \gamma \text { and } \beta+\gamma \neq \alpha \tag{3.1}
\end{equation*}
$$

By the symmetry of the α, β and γ we may also conclude

$$
\begin{align*}
& J\left(A_{\beta}, A_{\gamma}, A_{\alpha}\right) \subset A_{\beta} \quad \text { if } \gamma \neq \alpha \text { and } \gamma+\alpha \neq \beta \tag{3.2}\\
& J\left(A_{\gamma}, A_{\alpha}, A_{\beta}\right) \subset A_{\gamma} \quad \text { if } \alpha \neq \beta \text { and } \alpha+\beta \neq \gamma . \tag{3.3}
\end{align*}
$$

Now assume $\alpha \neq \beta \neq \gamma \neq \alpha$. Suppose $\beta+\gamma=\alpha$. If $\gamma+\alpha=\beta$,
then $\gamma=0$ and therefore $\alpha=\beta$, a contradiction. Therefore $\gamma+\alpha \neq \beta$ and by (3.2) $J\left(A_{\beta}, A_{\gamma}, A_{\alpha}\right) \subset A_{\beta}$. Similarly if $\alpha+\beta=\gamma$, then $\beta=0$ and $\alpha=\gamma, \quad$ a contradiction. Therefore $\alpha+\beta \neq \gamma$ and by (3.3) $J\left(A_{\gamma}, A_{\alpha}, A_{\beta}\right) \subset A_{\gamma}$. Thus we have $J\left(A_{\alpha}, A_{\beta}, A_{\gamma}\right) \subset A_{\gamma} \cap A_{\beta}=0$ if $\alpha \neq$ $\beta \neq \gamma \neq \alpha$ and $\beta+\gamma=\alpha$.

With the assumption $\alpha \neq \beta \neq \gamma \neq \alpha$, suppose now that $\beta+\gamma \neq \alpha$. Then by (3.1), $J\left(A_{\alpha}, A_{\beta}, A_{\gamma}\right) \subset A_{\alpha}$. We next note that it is impossible to have $\gamma+\alpha=\beta$ and $\alpha+\beta=\gamma$. So using (3.2) or (3.3) together with $J\left(A_{\alpha}, A_{\beta}, A_{\gamma}\right) \subset A_{\alpha}$ we conclude $J\left(A_{\alpha}, A_{\beta}, A_{\gamma}\right)=0$. Thus we can conclude, using the preceding paragraph,

$$
\begin{equation*}
J\left(A_{\alpha}, A_{\beta}, A_{\gamma}\right)=0 \quad \text { if } \alpha \neq \beta \neq \gamma \neq \alpha \tag{3.4}
\end{equation*}
$$

Now assume two weights are equal, that is, $\alpha=\beta$. Suppose $\gamma \neq$ $0, \alpha,-\alpha$ or 2α, then

$$
\begin{aligned}
J\left(A_{\alpha}, A_{\alpha}, A_{\gamma}\right) & \subset A_{\alpha}^{2} A_{\gamma}+A_{\alpha} A_{\gamma} \cdot A_{\alpha}+A_{\gamma} A_{\alpha} \cdot A_{\alpha} \\
& \subset A_{-\alpha} A_{\gamma}+A_{\alpha+\gamma} A_{\alpha} \\
& \subset A_{-\alpha+\gamma} \oplus A_{\gamma+2 \alpha}
\end{aligned}
$$

However using (3.1) $J\left(A_{\alpha}, A_{\alpha}, A_{\gamma}\right) \subset A_{\alpha}$ and therefore $J\left(A_{\alpha}, A_{\alpha}, A_{\gamma}\right) \subset$ $A_{\alpha} \cap\left(A_{-\alpha+\gamma} \oplus A_{\gamma+2 \alpha}\right)=0$. This proves

$$
\begin{equation*}
J\left(A_{\alpha}, A_{\alpha}, A_{\gamma}\right)=0 \quad \text { if } \gamma \neq 0, \alpha, \text { or }-\alpha 2 \alpha \tag{3.5}
\end{equation*}
$$

For the "exceptional" cases we have

$$
\begin{align*}
& J\left(A_{\alpha}, A_{\alpha}, A_{\alpha}\right) \subset A_{\alpha}^{2} \cdot A_{\alpha} \subset A_{-\alpha} A_{\alpha} \subset A_{0} \tag{3.6}\\
& J\left(A_{\alpha}, A_{\alpha}, A_{0}\right) \subset A_{\alpha}^{2} A_{0}+A_{\alpha} A_{0} \cdot A_{\alpha} \subset A_{-\alpha} \tag{3.7}\\
& J\left(A_{\alpha}, A_{\alpha}, A_{-\alpha}\right) \subset A_{\alpha}^{2} A_{-\alpha}+A_{\alpha} A_{-\alpha} \cdot A_{\alpha} \subset A_{\alpha} \tag{3.8}\\
& J\left(A_{\alpha}, A_{\alpha}, A_{2 \alpha}\right)=0 \tag{3.9}
\end{align*}
$$

To prove (3.9) let $x, y \in A_{\alpha}, z \in A_{2 \alpha}$, then by (1.9), (2.5) and (2.4)

$$
\begin{aligned}
J(x u, y, z) & =x J(u, y, z)+J(x, y, z) u-2 J(y z, x, u) \\
& =J(x, y, z) u
\end{aligned}
$$

and as usual we have $J\left(x\left(R_{u}-\alpha I\right)^{n}, y, z\right)=J(x, y, z)\left(R_{u}-\alpha I\right)^{n}$. Therefore $J(x, y, z) \in A_{\alpha}$. However by (1.7) $J(x, y, u z)+J(u, y, x z)=$ $J(x, y, z) u+J(u, y, z) x$ and using (2.4) we obtain $J(x, y, u z)=J(x, y, z) u$. This yields $J\left(x, y, z\left(2 \alpha I-R_{u}\right)^{n}\right)=J(x, y, z)\left(2 \alpha I+R_{u}\right)^{n}$ and therefore $J(x, y, z) \in A_{-2 \alpha}$. Combining the above results we have $J(x, y, z) \in A_{\alpha} \cap$ $A_{-2 \alpha}=0$ if $\alpha \neq 0$.

We shall now show $A_{\alpha} A_{\beta}=0$ if $\alpha \neq 0$ and $\beta \neq 0, \pm \alpha$. Let α and β be fixed weights of R_{u} and assume $\beta \neq k \alpha, k=0, \pm 1, \pm 2, \cdots$, with
$\alpha \neq 0$. Then for any other weight γ we have by (3.4) $J\left(A_{B}, A_{\alpha}, A_{\gamma}\right)=$ 0 if $\beta \neq \alpha \neq \gamma \neq \beta$. However $\alpha \neq \beta$ and therefore $J\left(A_{\beta}, A_{\alpha}, A_{\gamma}\right)=$ if $\alpha \neq \gamma \neq \beta$. Suppose $\gamma=\alpha$, then by (3.5) and the choice of β, $J\left(A_{\beta}, A_{\alpha}, A_{\alpha}\right)=0$. Suppose $\gamma=\beta$, then $J\left(A_{\beta}, A_{\alpha}, A_{\beta}\right)=J\left(A_{\beta}, A_{\beta}, A_{\alpha}\right)=$ 0 if $\alpha \neq 0, \beta,-\beta$ or 2β. We know $\alpha \neq 0, \beta$ or $-\beta$ so if $\alpha=2 \beta$, then by (3.9) $J\left(A_{\beta}, A_{\beta}, A_{\alpha}\right)=0$. Combining all these cases we have shown $J\left(A_{\beta}, A_{\alpha}, A_{\gamma}\right)=0$ for any weight γ and therefore $J\left(A_{\beta}, A_{\alpha}, A\right)=$ $\sum_{\gamma} J\left(A_{\beta}, A_{\alpha}, A_{\gamma}\right)=0 . \quad$ By (1.11) and (1.12) $A_{\alpha} A_{\beta} \subset N=0$. This proves

$$
\begin{equation*}
A_{\alpha} A_{\beta}=0 \quad \text { if } \alpha \neq 0 \text { and } \beta \neq k \alpha, k=0, \pm 1, \pm 2, \cdots \tag{3.10}
\end{equation*}
$$

We now assume $\alpha \neq 0$ and $\beta=k \alpha$ for $k \neq 0, \pm 1$, then $J\left(A_{\alpha}, A_{\beta}, A_{\gamma}\right)=$ $J\left(A_{\alpha}, A_{k \alpha}, A_{\gamma}\right)=0$ if $\alpha \neq k a \neq \gamma \neq \alpha$, by (3.4). But since $k \neq 1$ we have $J\left(A_{\alpha}, A_{k \alpha}, A_{\gamma}\right)=0$ if $\alpha \neq \gamma \neq k \alpha$. Suppose $\gamma=\alpha$, then using (3.5)

$$
\begin{aligned}
J\left(A_{\alpha}, A_{\beta}, A_{\gamma}\right) & =J\left(A_{\alpha}, A_{k \alpha}, A_{\gamma}\right) \\
& =J\left(A_{\alpha}, A_{k \alpha}, A_{\alpha}\right) \\
& =J\left(A_{\alpha}, A_{\alpha}, A_{k \alpha}\right) \\
& =0
\end{aligned}
$$

if $k \alpha \neq 0, \alpha,-\alpha$ or 2α. But by the choice of k we need only consider $k \alpha=2 \alpha$ and in this case $J\left(A_{\alpha}, A_{\alpha}, A_{k \alpha}\right)=0$ by (3.9). Now suppose $\gamma=k \alpha$, then

$$
\begin{aligned}
J\left(A_{\alpha}, A_{\beta}, A_{\gamma}\right) & =J\left(A_{\alpha}, A_{k \alpha}, A_{\gamma}\right) \\
& =J\left(A_{\alpha}, A_{k \alpha}, A_{k \alpha}\right) \\
& =J\left(A_{k \alpha}, A_{k \alpha}, A_{\alpha}\right) \\
& =0
\end{aligned}
$$

if $\alpha \neq 0, k \alpha,-k \alpha$ or $2 k \alpha$, by (3.5). Again by the choice of k and α we need only consider $\alpha=2 k \alpha$. In this case $k=1 / 2$ and therefore $\gamma=\beta=k \alpha=1 / 2 \alpha$. This yields $J\left(A_{\alpha}, A_{\beta}, A_{\gamma}\right)=J\left(A_{\beta}, A_{\beta}, A_{2,3}\right)=0 \quad$ by (3.9). Combining all of these cases we have for any weight γ, $J\left(A_{\alpha}, A_{k \alpha}, A_{\gamma}\right)=0$ if $\alpha \neq 0, k \neq 0, \pm 1$ and as before this gives

$$
\begin{equation*}
A_{\alpha} A_{k \alpha}=0 \quad \text { if } \alpha \neq 0, k \neq 0, \pm 1 \tag{3.11}
\end{equation*}
$$

(3.10) and (3.11) yield

$$
\begin{equation*}
A_{\alpha} A_{\beta}=0 \quad \text { if } \alpha \neq 0, \beta \neq 0, \pm \alpha \tag{3.12}
\end{equation*}
$$

Since R_{u} is not nilpotent, there exists a weight $\alpha \neq 0$. We shall now show that $-\alpha$ is also a weight of R_{u}. For suppose $-\alpha$ is not a weight, then by the usual convention $A_{-\alpha}=0$ and noting that none of the previously derived identities use the fact that $A_{-\alpha} \neq 0$ we have for $\beta \neq 0$ or α, that $A_{\alpha} A_{\beta}=0$ by (3.12). For $\beta=0, A_{\alpha} A_{\beta} \subset A_{\alpha}$ and for
$\beta=\alpha, A_{\alpha} A_{\beta} \subset A_{-\alpha}=0$ using (2.14). Therefore A_{α} is a nonzero ideal of A and so $A=A_{\alpha}$. But $u \in A$ and $u \notin A_{\alpha}=A$, a contradiction. Therefore $-\alpha$ is a weight if α is a weight.

Now set $\mathscr{A}_{\alpha}=A_{\alpha} A_{-\alpha} \oplus A_{\alpha} \oplus A_{-\alpha}$ where α is a nonzero weight. Then $\mathscr{A}_{\alpha} \neq 0$ and for $\beta=0, \pm \alpha$ we have $\mathscr{A}_{\alpha} A_{\beta} \subset \mathscr{A}_{\alpha}$. For $\beta \neq 0, \pm \alpha$ we have $A_{\alpha} A_{\beta}=A_{-\alpha} A_{\beta}=0$ by (3.12). Now by (3.4) and (3.12) we have for $x \in A_{\alpha}, y \in A_{-\alpha}, z \in A_{\beta}$ that $0=J(x, y, z)=x y \cdot z+y z \cdot x+z x \cdot y=$ $x y \cdot z$ and so $0=A_{\alpha} A_{-\alpha} \cdot A_{\beta}$. Thus in all cases $\mathscr{A}_{\alpha} A_{\beta} \subset \mathscr{A}_{\alpha}$ and therefore \mathscr{A}_{∞} is a nonzero ideal of A and we have $A=\mathscr{A}_{\alpha}$. This proves

Proposition 3.13. If A is a finite dimensional simple non-Lie Malcev algebra over an algebraically closed field of characteristic not 2 or 3 and A contains an element u such that R_{u} is not a nilpotent linear transformation, then there exists an $\alpha \neq 0$ such that $A=A_{0} \oplus A_{\alpha} \oplus A_{-\infty}$ where $A_{a}=\left\{x \in A: x\left(a I-R_{u}\right)^{k}=0\right.$ for some $\left.k>0\right\}$ and $A_{0}=A_{\alpha} A_{-\alpha}$.
4. A decomposition of A relative to A_{0}. Let us consider the decomposition of A as given Proposition 3.13; that is,

$$
A=A_{0} \oplus A_{\alpha} \oplus A_{-\alpha}
$$

For any $y_{0}, z_{0} \in A_{0}$ and $x \in A_{a}(a=0, \pm \alpha)$, we use (2.8) and (2.11) to see that

$$
0=J\left(x, y_{0}, z_{0}\right)=x\left(R_{y_{0}} R_{z_{0}}-R_{z_{0}} R_{y_{0}}\right)
$$

Therefore,

$$
R\left(A_{0}\right) \equiv\left\{R_{x_{0}}: x_{0} \in A_{0}\right\}
$$

is a commuting set of linear transformations acting on A_{a}. We can find $R\left(A_{0}\right)$-invariant subspaces $M_{\lambda}(a)$ [2; Chapter 4] such that

$$
A_{a}=\sum_{\lambda} \oplus M_{\lambda}(a) \quad(a=0, \pm \alpha)
$$

where on each $M_{\lambda}(a)$ the transformation $R_{x_{0}}$, for any $x_{0} \in A_{0}$, has a matrix of the form

$$
\left[\begin{array}{cc}
\lambda\left(x_{0}\right) & 0 \\
* & \lambda\left(x_{0}\right)
\end{array}\right] ;
$$

that is, $M_{\lambda}(\alpha)$ has a basis $\left\{x_{1}, x_{2}, \cdots, x_{m}\right\}(m=m(\lambda, \alpha))$ such that for any $x_{0} \in A_{0}$, there exists $a_{i j}\left(x_{0}\right) \in F$ for which

$$
\begin{equation*}
x_{i} R_{x_{0}}=\sum_{j=1}^{i-1} a_{i j}\left(x_{0}\right) x_{j}+\lambda\left(x_{0}\right) x_{i}, \tag{4.1}
\end{equation*}
$$

where $\lambda\left(x_{0}\right) \in F$ and, of course, $i=1,2, \cdots, m$.

Using the usual terminology we call the function λ defined by $\lambda: x_{0} \rightarrow \lambda\left(x_{0}\right)$ a weight of A_{0} in A_{a} or just a weight and the corresponding $M_{\lambda}(\alpha)$ a weight space of A_{a} corresponding to λ or just a weight space of A_{a}. It is easily seen [2] that A_{a} has finitely many weights and the weights are linear functionals on A_{0} to F. Also

$$
M_{\lambda}(a)=\left\{x \in A_{a}: \text { for all } x_{0} \in A_{0}, x\left(R_{x_{0}}-\lambda\left(x_{0}\right) I\right)^{k}=0\right.
$$

for some integer $k>0\}$
and for this weight λ we have $\lambda(u)=a$. For suppose $\lambda(u)=b$, then there exists an $x \neq 0$ in $M_{\lambda}(\alpha)$ such that $b x=x R_{u}$. But $M_{\lambda}(a) \subset A_{a}=$ $\left\{x \in A: x\left(R_{u}-a I\right)^{n}=0\right\}$; therefore $(b-a) x=x\left(R_{u}-a I\right)$ and by induction $(b-a)^{n} x=x\left(R_{u}-a I\right)^{n}$ so for some integer $N, \quad(b-a)^{N} x=$ $x\left(R_{u}-a I\right)^{N}=0$ and thus $a=b=\lambda(u)$. We now combine the weight space decompositions of the A_{a} to form a weight space decomposition of A in

Proposition 4.2. Let $A=A_{0} \oplus A_{\infty} \oplus A_{-\alpha}$ be a simple Malcev algebra as determined by Proposition 3.13, then we can write $A=A_{0} \oplus$ $\sum_{\lambda} \oplus M_{\lambda}(\alpha) \oplus \sum_{\mu} \oplus M_{\mu}(-\alpha)$ where all weights are distinct and any nonzero weight ρ of A_{0} in A is a weight of A_{0} in A_{α} or $A_{-\alpha}$ but not both.

Proof. The first part is clear noting that in the original weight space decomposition $A_{a}=\sum_{\gamma} \oplus M_{\gamma}(\alpha)$ the weights of A_{0} in A_{a} can be taken to be distinct. Also if λ is a weight of A_{0} in A_{α} and μ a weight of A_{0} in $A_{-\alpha}$, then $\lambda(u)=\alpha \neq-\alpha=\mu(u)$ and therefore $\lambda \neq \mu$. Now let $\rho \neq 0$ be any weight of A_{0} in A with weight space $M_{\rho}=$ $\left\{x \in A: x\left(R_{x_{0}}-\rho\left(x_{0}\right) I\right)^{k}=0\right\}$ and let $y=y_{0}+y_{\alpha}+y_{-\alpha} \in M_{\rho}$ where $y_{a} \in A_{a}$ with $a=0, \pm \alpha$. Then for some integer $N>0$,

$$
\begin{aligned}
0= & y\left(R_{x_{0}}-\rho\left(x_{0}\right) I\right)^{N} \\
= & y_{0}\left(R_{x_{0}}-\rho\left(x_{0}\right) I\right)^{N} \\
& +y_{\alpha}\left(R_{x_{0}}-\rho\left(x_{0}\right) I\right)^{N}+y_{-\alpha}\left(R_{x_{0}}-\rho\left(x_{0}\right) I\right)^{N}
\end{aligned}
$$

and by the uniqueness of the decomposition $A=A_{0} \oplus A_{\alpha} \oplus A_{-\alpha}$ we have $y_{a}\left(R_{x_{0}}-\rho\left(x_{0}\right) I\right)^{N}=0$ for $a=0, \pm \alpha$. Now by using the binomial theorem and $A_{0}^{2}=0$ we have $0=y_{0}\left(R_{x_{0}}-\rho\left(x_{0}\right) I\right)^{N}=y_{0} \rho\left(x_{0}\right)^{N}$ and since $\rho \neq 0, y_{0}=0$. Thus we have $y_{a}\left(R_{x_{0}}-\rho\left(x_{0}\right) I\right)^{N}=0, a= \pm \alpha$, for some integer N and so ρ is a weight of A_{0} in A_{α} and $A_{-\alpha}$. Now suppose y_{α} and $y_{-\alpha}$ are both nonzero, then since ρ is a weight of A_{0} in $A_{\alpha}, \rho(u)=$ α and since ρ is a weight of A_{0} in $A_{-\alpha}, \rho(u)=-\alpha$, a contradiction. Thus ρ is a weight of A_{0} in either A_{α} or $A_{-\alpha}$ but not both.

We shall use the usual convention that if ρ is not a weight of A_{0} in A, then $M_{\rho}=0$. Let $M_{\lambda}(a)$ and $M_{\mu}(a)$ be weight spaces of A_{0} in A_{a}
and let $x_{0}, y_{0} \in A_{0}$ and $x \in M_{\lambda}(a), y \in M_{\mu}(a)$, then using (2.8) and (1.7) we have

$$
\begin{aligned}
J\left(x, x_{0}, y_{0} y\right) & =J\left(y_{0}, x_{0}, x y\right)+J\left(x, x_{0}, y_{0} y\right) \\
& =J\left(y_{0}, x_{0}, y\right) x+J\left(x, x_{0}, y\right) y_{0} \\
& =J\left(x, x_{0}, y\right) y_{0}
\end{aligned}
$$

Thus $J\left(x_{0}, x, y\left(R_{y_{0}}-\mu\left(y_{0}\right) I\right)\right)=-J\left(x_{0}, x, y\right)\left(R_{y_{0}}+\mu\left(y_{0}\right) I\right)$ and by induction

$$
J\left(x_{0}, x, y\left(R_{y_{0}}-\mu\left(y_{0}\right) I\right)^{n}\right)=(-1)^{n} J\left(x_{0}, x, y\right)\left(R_{y_{0}}+\mu\left(y_{0}\right) I\right)^{n}
$$

From this we obtain $J\left(x_{0}, x, y\right) \in M_{-\mu}(-a)$ and interchanging the roles of x and y we see $J\left(x_{0}, x, y\right) \in M_{-\lambda}(-a)$; this proves

$$
\begin{equation*}
J\left(A_{0}, M_{\lambda}(\alpha), M_{\mu}(a)\right) \subset M_{-\lambda}(-a) \cap M_{-\mu}(-\alpha) \tag{4.3}
\end{equation*}
$$

From (4.3) we obtain

$$
\begin{gather*}
J\left(A_{0}, M_{\lambda}(\alpha), M_{\lambda}(\alpha)\right) \subset M_{-\lambda}(-a) \tag{4.4}\\
J\left(A_{0}, M_{\lambda}(\alpha), M_{\mu}(a)\right)=0 \quad \text { if } \lambda \neq \mu . \tag{4.5}
\end{gather*}
$$

We shall next show

$$
\begin{equation*}
M_{\lambda}(a) M_{\mu}(a)=0 \quad \text { if } \lambda \neq \mu \tag{4.6}
\end{equation*}
$$

For let $x_{0} \in A_{0}, x \in M_{\lambda}(a)$ and $y \in M_{\mu}(a)$, then by (4.5) $0=J\left(x, y, x_{0}\right)$ and therefore $x y R_{x_{0}}=x R_{x_{0}} \cdot y+x \cdot y R_{x_{0}}$ and hence $x y\left(R_{x_{0}}-\left(\mu\left(x_{0}\right)+\lambda\left(x_{0}\right)\right) I\right)=$ $x\left(R_{x_{0}}-\lambda\left(x_{0}\right) I\right) \cdot y+x \cdot y\left(R_{x_{0}}-\mu\left(x_{0}\right) I\right)$. In the usual way we can prove there exists an integer N such that $x y\left(R_{x_{0}}-\left(\mu\left(x_{0}\right)+\lambda\left(x_{0}\right)\right) I\right)^{N}=0$ and since we know $x y \in A_{-a}$ this shows $x y \in M_{\lambda+\mu}(-a)$ if $\lambda+\mu$ (defined by $\left.(\lambda+\mu)\left(x_{0}\right)=\lambda\left(x_{0}\right)+\mu\left(x_{0}\right)\right)$ is a weight of A_{0} in A_{-a}, or $x y=0$. If $x y \neq 0$, then $\lambda+\mu$ is a weight of A_{0} in A_{-a} where λ and μ are weights of A_{0} in A_{a} and therefore $-a=(\lambda+\mu)(u)=\lambda(u)+\mu(u)=a+a$, a contradiction.

Next we have for any weight λ of A_{0} in A_{a}

$$
\begin{equation*}
M_{\lambda}(a) M_{\lambda}(a) \subset M_{-\lambda}(-a) \tag{4.7}
\end{equation*}
$$

if $-\lambda$ is a weight of A_{0} in A_{-a}. For let $x_{0} \in A_{0}$ and $\lambda \equiv \lambda\left(x_{0}\right) \in F$ and let $M_{\lambda}(a)$ have basis $\left\{x_{1}, \cdots, x_{m}\right\}$ as in (4.1). Then using (1.2) we obtain

$$
\begin{aligned}
\lambda^{2} x_{1} x_{2} & =\lambda x_{1}\left(\lambda x_{2}+a_{21} x_{1}\right) \\
& =x_{1} R_{x_{0}} \cdot x_{2} R_{x_{0}} \\
& =\left(x_{0} x_{1} \cdot x_{2}\right) x_{0}+\left(x_{1} x_{2} \cdot x_{0}\right) x_{0}+\left(x_{2} x_{0} \cdot x_{0}\right) x_{1} \\
& =-\lambda x_{1} x_{2} R_{x_{0}}+x_{1} x_{2} R_{x_{0}}^{2}+\lambda^{2} x_{2} x_{1}
\end{aligned}
$$

and thus

$$
0=x_{1} x_{2}\left(R_{x_{0}}^{2}-\lambda R_{x_{0}}-2 \lambda^{2} I\right)=x_{1} x_{2}\left(R_{x_{0}}+\lambda I\right)\left(R_{x_{0}}-2 \lambda I\right) .
$$

Now since λ is a weight of A_{0} in $A_{a},-2 \lambda$ is not a weight of A_{0} in $A_{-a}:-a=(2 \lambda)(u)=2 \lambda(u)=2 \alpha$. Thus the above equation implies $x_{1} x_{2}\left(R_{x_{0}}+\lambda I\right)=0$ and therefore $x_{1} x_{2} \in M_{-\lambda}(-a)$. Next $x_{1} x_{0} \cdot x_{3} x_{0}=$ $\lambda x_{1}\left(\lambda x_{3}+a_{32} x_{2}+a_{31} x_{1}\right)=\lambda^{2} x_{1} x_{3}+s$ where $s \in M_{-\lambda}(-\alpha)$ and $\left(x_{0} x_{1} \cdot x_{3}\right) x_{0}+$ $\left(x_{1} x_{3} \cdot x_{0}\right) x_{0}+\left(x_{3} x_{0} \cdot x_{0}\right) x_{1}=-\lambda x_{1} x_{3} R_{x_{0}}+x_{1} x_{3} R_{x_{0}}^{2}+\lambda^{2} x_{3} x_{1}+t$ where $t \in M_{-\lambda}(-\alpha)$. Therefore using (1.2) we obtain $0=x_{1} x_{3}\left(R_{x_{0}}+\lambda I\right)\left(R_{x_{0}}-2 \lambda I\right)+w$ where $w \in M_{-\lambda}(-a)$ and actually $w=3 \lambda a_{31} x_{2} x_{1}$. Therefore $0=x_{1} x_{3}\left(R_{x_{n}}+\lambda I\right)^{2}$ $\left(R_{x_{0}}-2 \lambda I\right)$ and as before $x_{1} x_{3}\left(R_{x_{0}}+\lambda I\right)^{2}=0$ so that $x_{1} x_{3} \in M_{-\lambda}(-\alpha)$. Continuing this process we obtain $x_{1} x_{k} \in M_{-\lambda}(-a)$ for $k=1,2, \cdots, m$. Next consider the product $x_{2} x_{3}$.

$$
\begin{aligned}
x_{2} x_{0} \cdot x_{3} x_{0} & =\left(\lambda x_{2}+a_{21} x_{1}\right)\left(\lambda x_{3}+a_{32} x_{2}+a_{31} x_{1}\right) \\
& =\lambda^{2} x_{2} x_{3}+s
\end{aligned}
$$

where $s \in M_{-\lambda}(-a)$ and

$$
\left(x_{0} x_{2} \cdot x_{3}\right) x_{0}+\left(x_{2} x_{3} \cdot x_{0}\right) x_{0}+\left(x_{3} x_{0} \cdot x_{0}\right) x_{2}=x_{2} x_{3}\left(R_{x_{0}}^{2}-\lambda R_{x_{0}}-\lambda^{2} I\right)+t
$$

where $t \in M_{-\lambda}(-a)$, therefore $0=x_{2} x_{3}\left(R_{x_{0}}+\lambda I\right)\left(R_{x_{0}}-2 \lambda I\right)+w$ where $w \in M_{-\lambda}(-\alpha)$. Therefore for some integer $k>0$ such that $w\left(R_{x_{0}}+\lambda I\right)^{k}=$ 0 we have $0=x_{2} x_{3}\left(R_{x_{0}}+\lambda I\right)^{k+1}\left(R_{x_{0}}-2 \lambda I\right)$ and as before $x_{2} x_{3} \in M_{-\lambda}(-a)$. We continue this process showing $x_{2} x_{k} \in M_{-\lambda}(-\alpha)$ and in general $x_{i} x_{j} \in M_{-\lambda}(-a)$ for $i, j=1, \cdots, m$. This completes the proof of (4.7).

We now show

$$
\begin{equation*}
M_{\lambda}(a) \cdot M_{\mu}(-a)=0 \quad \text { if } \lambda+\mu \neq 0 \tag{4.8}
\end{equation*}
$$

By (2.7) we have for $x \in M_{\lambda}(a), y \in M_{\mu}(-a)$ and $x_{0} \in A_{0}$ that $0=$ $J\left(x, y, x_{0}\right)$ and as usual we obtain $x y\left(R_{x_{0}}-\left(\lambda\left(x_{0}\right)+\mu\left(x_{0}\right)\right) I\right)^{N}=0$ for some integer $N>0$. Now $z=x y \in A_{0}$ and suppose $z \neq 0$, then, since $\lambda+\mu \neq 0, \lambda+\mu$ is a nonzero weight of A_{0} in A_{0}, a contradiction to Proposition 4.2.

Let $x \in M_{\rho}(a), y \in M_{\lambda}(a)$ and $z \in M_{\mu}(-\alpha)$, then using (1.9), (2.7) and (2.8) we have

$$
\begin{aligned}
J\left(x x_{0}, y, z\right) & =x J\left(x_{0}, y, z\right)+J(x, y, z) x_{0}-2 J\left(y z, x, x_{0}\right) \\
& =J(x, y, z) x_{0}
\end{aligned}
$$

and therefore $J\left(x\left(R_{x_{0}}-\rho\left(x_{0}\right) I\right), y, z\right)=J(x, y, z)\left(R_{x_{0}}-\rho\left(x_{0}\right) I\right)$ and as usual we obtain $J(x, y, z) \in M_{\rho}(a)$. Interchanging x and y we also obtain $J(x, y, z) \in M_{\lambda}(a)$ and therefore $J(x, y, z) \in M_{\lambda}(a) \cap M_{\rho}(a)=0$ if $\lambda \neq \rho$. Now assume $\lambda \neq \rho$ and assume $\mu=-\lambda$ is a weight of A_{0} in A_{-a}, then

$$
0=J(x, y, z)=x y \cdot z+y z \cdot x+z x \cdot y=y z \cdot x
$$

using (4.6) and (4.8). This proves

$$
\begin{equation*}
M_{\lambda}(a) M_{-\lambda}(-a) \cdot M_{\rho}(a)=0 \tag{4.9}
\end{equation*}
$$

if $\lambda \neq \rho$ are weights of A_{0} in A_{a} such that $-\lambda$ is a weight of A_{0} in A_{-a}.

We shall now show if λ is a nonzero weight of A_{0} in A_{a} with weight space $M_{\lambda}(\alpha)$, then $-\lambda$ is a nonzero weight of A_{0} in A_{-a} with weight space $M_{-\lambda}(-a)$. The proof is similar to that following (3.12): Suppose $-\lambda$ is not a weight of A_{0} in A_{-a}, then $M_{-\lambda}(-a)=0 ; M_{\lambda}(a) M_{\lambda}(a)=$ $0 ; \quad M_{\lambda}(\alpha) M_{\rho}(\alpha)=0$ if $\rho \neq \lambda ; A_{0} M_{\lambda}(\alpha) \subset M_{\lambda}(a)$ and $M_{\lambda}(a) M_{\mu}(-\alpha)=0$ if $\mu+\lambda \neq 0$. Thus $M_{\lambda}(\alpha)$ is a proper ideal of A, a contradiction.

Set $M_{\lambda}=M_{\lambda}(\alpha) M_{-\lambda}(-\alpha) \oplus M_{\lambda}(\alpha) \oplus M_{-\lambda}(-\alpha)$ for some nonzero weight λ of A_{0} in A_{α}. Then analogous to Proposition 3.13, M_{λ} can be shown to be a nonzero ideal of A and we have

Proposition 4.10. If $A=A_{0} \oplus A_{\alpha} \oplus A_{-\alpha}$ is a simple Malcev algebra as determined by Proposition 3.13, then there exists a nonzero weight λ of A_{0} in A with weight space $M_{\lambda}(\alpha)=A_{\alpha}$ and such that - λ is a weight of A_{0} in A with weight space $M_{-\lambda}(-a)=A_{-\alpha}$.

We shall identify α with λ as a weight, that is, use the notation $\alpha\left(x_{0}\right)$ for $\lambda\left(x_{0}\right)$ and also identify $M_{\lambda}(\alpha)=A_{\alpha}, M_{-\lambda}(-\alpha)=A_{-\alpha}$. Note that Proposition 4.10 implies there exists a basis for A so that for every $x \in A_{0}, R_{x}$ has a matrix of the form

$$
\left[\right] .
$$

5. The trace form. Set $(x, y)=$ trace $R_{x} R_{y}$, then it is shown [3] that this is actually an invariant form; that is (x, y) is a bilinear form on A such that for all $x, y, z \in A,(x y, z)=(x, y z)$. Also a bilinear form (x, y) is nondegenerate on A if $(x, y)=0$ for all $y \in A$ implies $x=0$.

Theorem 5.1. If $A=A_{0} \oplus A_{\alpha} \oplus A_{-\alpha}$ is a finite dimensional simple non-Lie Malcev algebra over an algebraically closed field of characteristic zero and if A contains an element u such that R_{u} is not nilpotent, then $(x, y)=$ trace $R_{x} R_{y}$ is a nondegenerate invariant form on A and dimension $A_{\alpha}=$ dimension $A_{-\alpha}$.

Proof. On $A=A_{0} \oplus A_{\alpha} \oplus A_{-\alpha} R_{u}$ has the matrix

$$
\left[\begin{array}{lllll}
0 & & 0 & & 0 \\
0 & {\left[\begin{array}{cc}
\alpha & \\
l^{*} & \\
{ }_{*} & \\
& \\
& \\
\alpha
\end{array}\right]} & 0 & \\
0 & & 0 & & {\left[\begin{array}{lll}
-\alpha & & 0 \\
* & & { }^{*}
\end{array}\right]}
\end{array}\right]
$$

and since $u \in A=J(A, A, A)$ (by 1.12) we have by [3; 2.12] that $0=$ trace $R_{u}=\alpha\left(n_{\alpha}-n_{-\alpha}\right)$ where $n_{a}=\operatorname{dimension} A_{a}, a= \pm \alpha$.

Now to show (x, y) is nondegenerate, let $T=\{x \in A:(x, A)=0\}$ where for subsets B, C of A we set $(B, C)=\{(b, c): b \in B, c \in C\}$ and for $x \in A,(x, C)=\{(x, c): c \in C\}$. Since (x, y) is an invariant form on A, T is an ideal of A and since A is simple, $T=0$ or $T=A$. If $T=$ A, then $(A, A)=0$ and from the matrix of R_{u} we see that

$$
0=(u, u)=\operatorname{trace} R_{u}^{2}=2 n \alpha^{2}
$$

where $n=$ dimension A_{α}. Since F is of characteristic zero, $\alpha=0$, a contradiction. Thus $T=0$ which implies (x, y) is nondegenerate on A.

Corollary 5.2. If $A=A_{0} \oplus A_{\alpha} \oplus A_{-\alpha}$ is a simple Malcev algebra as above then

$$
\left(A_{0}, A_{\alpha}\right)=\left(A_{0}, A_{-\alpha}\right)=\left(A_{\alpha}, A_{\alpha}\right)=\left(A_{-\alpha}, A_{-\alpha}\right)=0
$$

Proof. Since R_{u} is nonsingular on $A_{a}, a \neq 0, A_{a}=A_{a} R_{u}$. Therefore $\left(A_{0}, A_{a}\right)=\left(A_{0}, A_{a} R_{u}\right)=\left(A_{0} R_{u}, A_{a}\right)=0$, the second equality uses (x, y) is an invariant form and the third uses (2.11). Also $\left(A_{a}, A_{a}\right)=\left(u A_{a}, A_{a}\right)=$ $\left(u, A_{a} A_{a}\right) \subset\left(u, A_{-a}\right)=0$.

Corollary 5.3. If A_{0}^{*} is the dual space of A_{0} consisting of linear functionals on A_{0} and $f \in A_{0}^{*}$, then $f=c \alpha$ for some $c \in F$.

Proof. First, (x, y) is nondegenerate on A_{0}. For if $x_{0} \in A_{0}$ is such that $\left(x_{0}, A_{0}\right)=0$, then

$$
\begin{aligned}
\left(x_{0}, A\right)= & \left(x_{0}, A_{0} \oplus A_{\alpha} \oplus A_{-\alpha}\right) \\
& \subset\left(x_{0}, A_{0}\right)+\left(x_{0}, A_{\alpha}\right)+\left(x_{0}, A_{-\alpha}\right) \\
= & 0
\end{aligned}
$$

by the preceding corollary and therefore $x_{0}=0$ by Theorem 5.1. Now if $f \in A_{0}^{*}$, then there exists a unique element [2, page 141] $a_{f} \in A_{0}$
such that for all $x \in A_{0}, f(x)=\left(x, a_{f}\right)=\operatorname{trace} R_{x} R_{a f}=$

$=2 n \alpha\left(a_{f}\right) \alpha(x)$; using the remarks at the end of $\S 4$ to obtain the form of the matrices of R_{x} and $R_{\alpha f}$. Thus $f=c \alpha$ where $c=2 n \alpha\left(\alpha_{f}\right) \in F$.

Corollary 5.4. The dimension of A_{0} is one.
Proof. $0<$ dimension $A_{0}=$ dimension $A_{0}^{*}=$ dimension $u F=1$.
We shall frequently refer to a Malcev algebra A that satisfies Theorem 5.1 as a "usual simple non-Lie Malcev algebra" and for the remainder of this paper we shall assume the algebraically closed field F is of characteristic zero.
6. The diagonalization of R_{u}. Using Proposition 4.10 and Corollary 5.4 we are able to decompose A relative to $R\left(A_{0}\right)$ into the form

$$
A=A_{0} \oplus A_{\alpha} \oplus A_{-\alpha}
$$

where $A_{0}=u F$. From this the matrix of R_{u} on $A_{a}, a= \pm \alpha$, has the form

$$
\left[\begin{array}{llll}
a & & & \\
& 0 \\
* & & \cdot & \\
& & & \\
\hline
\end{array}\right] .
$$

We shall show in this section that R_{u} can be diagonalized. Put R_{u} into its Jordan canonical form on A_{a}, that is, find R_{u}-invariant subspaces $U_{i}(a)$ of A_{a} such that $A_{a}=U_{1}(a) \oplus \cdots \oplus U_{m_{a}}(a)$ and each $U_{i}(a)$ has a basis $\left\{x_{i 1}, \cdots, x_{i m_{i}}\right\}$ so that the action of R_{u} is given by

$$
\begin{align*}
x_{i 1} R_{u} & =a x_{i 1} \\
x_{i j} R_{u} & =a x_{i j}+x_{i j-1} \tag{6.1}\\
j & =2, \cdots, m_{i} .
\end{align*}
$$

Thus on $U_{i}(a), R_{u}$ has an $m \times m$ matrix of the form

$$
\left[\begin{array}{lllll}
a & & & & 0 \\
1 & a & & & \\
& 1 & & & \\
& \cdot & \cdot & & \\
0 & & & 1 & a
\end{array}\right]
$$

where $m=$ dimension $U_{i}(a)$. We shall now investigate the multiplicative relations between the U 's and show that the dimension of all the $U_{i}(\alpha)$ is one and therefore R_{u} will have a diagonal matrix.

LEMMA 6.2. $\quad U_{i}(a) U_{i}(a)=0$.
Proof. Let $U_{i}(a)$ have basis $\left\{x_{1}, \cdots, x_{m}\right\}$ as given by (6.1). If $m=$ 1 , we are finished. Suppose $m>1$, then using (1.6)

$$
\begin{aligned}
0 & =-J\left(u, x_{2}, x_{2}\right) R_{u} \\
& =J\left(u, x_{2}, x_{2} R_{u}\right) \\
& =a J\left(u, x_{2}, x_{2}\right)+J\left(u, x_{2}, x_{1}\right) \\
& =J\left(u, x_{2}, x_{1}\right) \\
& =x_{2} x_{1} \cdot u+x_{1} u \cdot x_{2}+u x_{2} \cdot x_{1} \\
& =x_{2} x_{1}\left(R_{u}-2 a I\right)
\end{aligned}
$$

But we know $A_{2 a}=0$, therefore $x_{1} x_{2}=0$. Now using (1.6) we have, in general, for any $i=1, \cdots, m$,

$$
\begin{aligned}
0 & =J\left(u, x_{i}, x_{i} R_{u}\right) \\
& =J\left(u, x_{i}, x_{i-1}\right)+a J\left(u, x_{i}, x_{i}\right) \\
& =J\left(u, x_{i}, x_{i-1}\right)
\end{aligned}
$$

and again using (1.6),

$$
\begin{aligned}
0 & =J\left(u, x_{i}, x_{i-1} R_{u}\right) \\
& =J\left(u, x_{i}, x_{i-2}\right)+a J\left(u, x_{i}, x_{i-1}\right) \\
& =J\left(u, x_{i}, x_{i-2}\right)
\end{aligned}
$$

Continuing this process we have

$$
J\left(u, x_{i}, x_{k}\right)=0
$$

for all $k \leqq i$. Now if $i<k$, then by the preceding sentence

$$
0=J\left(u, x_{k}, x_{i}\right)=J\left(u, x_{i}, x_{k}\right)
$$

Thus

$$
J\left(u, x_{i}, x_{k}\right)=0 \quad \text { for all } i, k=1, \cdots, m
$$

By linearity this implies

$$
J(u, x, y)=0 \quad \text { for all } x, y \in U_{i}(a)
$$

Thus

$$
x y R_{u}=x R_{u} \cdot y+\cdot y R_{u}
$$

and

$$
x y\left(R_{u}-2 a I\right)=x\left(R_{u}-a I\right) \cdot y+x \cdot y\left(R_{u}-a I\right)
$$

As usual we can find an N large enough so that $x y\left(R_{u}-2 a I\right)^{N}=0$. But we know $A_{2 a}=0$, therefore $x y=0$.

Lemma 6.3. Let $x \in A_{a}$ be such that $x R_{u}=a x$ and let $U_{i}(-a) \equiv$ $\left\{y_{1}, \cdots, y_{m}\right\}$, then $x y_{i}=0$ for $i=1, \cdots, m-1$ and $x y_{m}=\lambda u$ where $\lambda=-\left(y_{m}, x\right) / 2 n a$.

Proof. Using the invariant form (x, y) we have $\left(y_{m} x, u\right)=\left(y_{m}, x u\right)=$ $a\left(y_{m}, x\right)$. Since $x y_{m} \in A_{0}=u F$ we may write $x y_{m}=\lambda u$, then $\left(y_{m} x, u\right)=$ $(-\lambda u, u)=-\lambda(u, u)=-\lambda 2 n a^{2}(a= \pm \alpha)$. Thus $\lambda=-\left(y_{m}, x\right) / 2 n a$.

Now since $x \in A_{a}$ and $U_{i}(-a) \subset A_{-a}$, we have by (2.4) and (2.11) that $0=J\left(x, y_{2}, u\right)=x y_{2} \cdot u+y_{2} u \cdot x+u x \cdot y_{2}=\left(-a y_{2}+y_{1}\right) x-a x y_{2}=y_{1} x$. Again $0=J\left(x, y_{3}, u\right)=x y_{3} \cdot u+y_{3} u \cdot x+u x \cdot y_{3}=\left(-a y_{3}+y_{2}\right) x-a x y_{3}=$ $y_{2} x$. Continuing this process we eventually obtain $0=J\left(x, y_{m}, u\right)=$ $x y_{m} \cdot u+y_{m} u \cdot x+u x \cdot y_{m}=y_{m-1} x$.

Theorem 6.4. Let $x \in A_{a}$ be such that $x R_{u}=a x$ and let $U_{i}(-a)$ be such that $x U_{i}(-a) \neq 0$, then dimension $U_{i}(-a)=1$.

Proof. Let $B=u F \oplus x F \oplus U_{i}(-\alpha)$, then using the preceding lemmas and their notation we see that B is a subalgebra of A and $x y_{m}=\lambda u$ where $\lambda \neq 0$. Now by (2.4) we have $J\left(u, x, y_{m}\right)=0$, therefore by [3; Corollary 4.4] we see that u, x and y_{m} are contained in a Lie subalgebra, L, of A. However this implies $y_{m} u=-a y_{m}+y_{m-1} \in L$ and therefore $y_{m-1} \in L$; again $y_{m-1} u=-a y_{m-1}+y_{m-2} \in L$ and therefore $y_{m-2} \in L$. Continuing this process we obtain $B \simeq L$ and so B is a Lie subalgebra of A. Thus for any $z \in B$,

$$
\begin{aligned}
0 & =J\left(z, x, y_{m}\right) \\
& =z\left(R_{x} R_{y_{m}}-R_{y_{m}} R_{x}-R_{x y_{m}}\right) \\
& =z\left(\left[R_{x}, R_{y_{m}}\right]-\lambda R_{u}\right) .
\end{aligned}
$$

Thus on B we have $\lambda R_{u}=\left[R_{x}, R_{y_{m}}\right]$ and therefore the trace of R_{u} on B is zero. But calculating the trace of R_{u} from its matrix on B, we obtain that the trace is $0+a-a m$. Thus $m=1$.

Corollary 6.5. The dimensional of all the $U_{i}(-a), a= \pm \alpha$, is one.

Proof. Suppose there exists $U_{j}(-\alpha) \equiv\left\{y_{1}, \cdots, y_{m}\right\}$ of dimension $m>1$. Then for every $U_{i}(a), y_{1} U_{i}(\alpha)=0$. For if there exists some
$U_{i}(a)$ such that $y_{1} U_{i}(a) \neq 0$, then by Theorem 6.4 , dimension $U_{i}(a)=1$. But this means there exists $x \in A_{a}$ such that $x R_{u}=a x$ and $0 \neq$ $x y_{1} \in x U_{j}(-a)$; so again by Theorem 6.4, dimension $U_{j}(-\alpha)=1$, a contradiction. Thus $y_{1} U_{i}(a)=0$ for all i and this implies $y_{1} A_{a}=y_{1}\left(U_{1}(a) \oplus \cdots \oplus\right.$ $\left.U_{m_{a}}(a)\right)=0$. Now from Corollary 5.2 we have, since $y_{1} \in A_{-a},\left(A_{0}, y_{1}\right)=$ ($\left.A_{-a}, y_{1}\right)=0$ and using the preceding sentence

$$
\left(A_{a}, y_{1}\right)=\left(A_{a}, y_{1} u\right)=\left(A_{a} y_{1}, u\right)=0
$$

Thus $\left(A, y_{1}\right)=0$ and since (x, y) is nondegenerate on $A, y_{1}=0$, a contradiction.
7. Proof of the theorem. Let $A=A_{0} \oplus A_{\alpha} \oplus A_{-\infty}$ be the usual simple non-Lie Malcev algebra, then we have just seen that A_{a} is the null space of $R_{u}-a I, a=0, \pm \alpha$. The choice of $\alpha \neq 0$ is fixed but arbitrary. In particular we want to consider the case $\alpha=-2$, then all we must do is consider $u^{\prime}=(-2 / \alpha) u$ and decompose A relative to R_{u}, (which is also not nilpotent) to obtain $A=A_{0} \oplus A_{-2} \oplus A_{2}$. However we shall work with a fixed α and normalize when necessary.

Let $a, b \in F$ be any characteristic roots (weights) of R_{u}, that is, $a, b=0, \pm \alpha$ with characteristic vectors $x, y \in A$; that is, $a x=x R_{u}$, by $=y R_{u}$ or $x \in A_{a}, y \in A_{b}$, then we have

$$
\begin{equation*}
J(x, \mathrm{y}, u)=x y \cdot u-(a+b) x y \quad \text { where } x \in A_{a}, y \in A_{b} . \tag{7.1}
\end{equation*}
$$

Using (2.4) and (7.1) we also have

$$
\begin{equation*}
x y \cdot u=(a+b) x y \quad \text { where } y \in A_{a}, y \in A_{b} \text { and } a \neq b \tag{7.2}
\end{equation*}
$$

Since $x y \in A_{-a}$ if $x, y \in A_{a}$, we have

$$
\begin{equation*}
x y \cdot u=-a x y \quad \text { where } x, y \in A_{a} \tag{7.3}
\end{equation*}
$$

Combining (7.3) and (7.1) yields

$$
\begin{equation*}
J(x, y, u)=-3 a x y \quad \text { where } x, y \in A_{a} \tag{7.4}
\end{equation*}
$$

Let $x, y, z \in A_{a}$, then using (2.14), (2.4), (1.9) and (7.4) we have

$$
\begin{aligned}
0 & =J(x y, z, u) \\
& =x J(y, z, u)+J(x, z, u) y-2 J(z u, x, y) \\
& =x(-3 a y z)+(-3 a x z) y-2 a J(z, x, y)
\end{aligned}
$$

Therefore

$$
\begin{aligned}
2 J(x, y, z) & =-3(x \cdot y z+x z \cdot y) \\
= & 3(x y \cdot z+y z \cdot x+z x \cdot y)-3 x y \cdot z
\end{aligned}
$$

and thus

$$
\begin{equation*}
J(x, y, z)=3 x y \cdot z \quad \text { where } x, y, z \in A_{a} \tag{7.5}
\end{equation*}
$$

Now $J(x, z, y)=3 x z \cdot y$ and adding this to (7.5) yields $0=x y \cdot z+x z \cdot y$ and with a slight change of notation we have

$$
\begin{equation*}
x y \cdot z=-x \cdot y z \quad \text { where } x, y, z \in A_{a} . \tag{7.6}
\end{equation*}
$$

From (7.6) with $z=x$ we obtain

$$
\begin{equation*}
x y \cdot x=0 \quad \text { where } x, y \in A_{a} \tag{7.7}
\end{equation*}
$$

Now let $x, y \in A_{a}, z \in A_{-a}$, then $-a J(x, y, z)=J(x, y, z u)$ and $J(z, y, x u)=a J(z, y, x)=-a J(x, y, z) . \quad$ So

$$
\begin{aligned}
-2 a J(x, y, z) & =J(z, y, x u)+J(x, y, z u) \\
& =J(z, y, u) x+J(x, y, u) z=J(x, y, u) z
\end{aligned}
$$

using (1.7) for the second equality, (2.4) for the third. Thus we have $-2 a J(x, y, z)=J(x, y, u) z=(-3 a x y) z$ using (7.4) and hence

$$
\begin{equation*}
2 J(x, y, z)=3 x y \cdot z \quad \text { where } x, y \in A_{a}, z \in A_{-a} . \tag{7.8}
\end{equation*}
$$

This yields $3 x y \cdot z=2(x y \cdot z+y z \cdot x+z x \cdot y)$ or

$$
\begin{equation*}
x y \cdot z=-2(x z \cdot y+x \cdot y z) \quad \text { where } x, y \in A_{a}, z \in A_{-\alpha} \tag{7.9}
\end{equation*}
$$

We now use (7.9) to prove the important identity (7.10). Thus let w, x, y, z be elements of A_{a} and set $v=J(x, y, z), 2 x^{\prime}=y z,-2 y^{\prime}=x z$ and $2 z^{\prime}=x y$. Then

$$
\begin{equation*}
v w=6\left(x^{\prime} w \cdot x+y^{\prime} w \cdot y+z^{\prime} w \cdot z\right) \tag{7.10}
\end{equation*}
$$

To prove this note that $x^{\prime}, y^{\prime}, z^{\prime} \in A_{-a}$ and using (7.9) we have $2 x^{\prime} x \cdot w=$ $x w \cdot x^{\prime}-2 w x^{\prime} \cdot x, 2 y^{\prime} y \cdot w=y w \cdot y^{\prime}-2 w y^{\prime} \cdot y, 2 z^{\prime} z \cdot w=z w \cdot z^{\prime}-2 w z^{\prime} \cdot z$. Adding these equations and multiplying by 2 yield

$$
2 v w=2\left(x w \cdot x^{\prime}+y w \cdot y^{\prime}+z w \cdot z^{\prime}\right)+4\left(x^{\prime} w \cdot x+y^{\prime} w \cdot y+z^{\prime} w \cdot z\right)
$$

Now using (1.10),

$$
\begin{aligned}
& 2\left(x w \cdot x^{\prime}+y w \cdot y^{\prime}+z w \cdot z^{\prime}\right)=x w \cdot y z+y w \cdot z x+z w \cdot x y \\
& \quad=x(z w \cdot y)+z(w y \cdot x)+w(y x \cdot z)+y(x z \cdot w)+y(x w \cdot z)+x(w z \cdot y) \\
& \quad+w(z y \cdot x)+z(y x \cdot w)+z(y w \cdot x)+y(w x \cdot z)+w(x z \cdot y)+x(z y \cdot w) \\
& \quad=w(y x \cdot z)+w(z y \cdot x)+w(x z \cdot y)+y(x z \cdot w)+z(y x \cdot w)+x(z y \cdot w) \\
& \quad=-w v+y\left(-2 y^{\prime} w\right)+z\left(-2 z^{\prime} w\right)+x\left(-2 x^{\prime} w\right)
\end{aligned}
$$

noting some cancellation to obtain the third equality. Thus $2 v w=$ $v w+2\left(x^{\prime} w \cdot x+y^{\prime} w \cdot y+z^{\prime} w \cdot z\right)+4\left(x^{\prime} w \cdot x+y^{\prime} w \cdot y+z^{\prime} w \cdot z\right)$ and this proves (7.10).

Since A is simple non-Lie Malcev algebra, we shall use the facts $A^{2}=A$ and $A=J(A, A, A)$ to obtain more identities for A. First we have

$$
\begin{aligned}
A_{0} \oplus & A_{\alpha} \oplus A_{-\alpha}=A=J(A, A, A) \\
& \subset J\left(A_{0}, A, A\right)+J\left(A_{\alpha}, A, A\right)+J\left(A_{-\alpha}, A, A\right) \\
& \subset J\left(A_{0}, A_{\alpha}, A_{\alpha}\right)+J\left(A_{0}, A_{-\alpha}, A_{-\alpha}\right)+J\left(A_{\alpha}, A_{\alpha}, A_{\alpha}\right) \\
& +J\left(A_{-\alpha}, A_{-\alpha}, A_{-\alpha}\right)+J\left(A_{\alpha}, A_{\alpha}, A_{-\alpha}\right)+J\left(A_{\alpha}, A_{-\alpha}, A_{-\alpha}\right) \\
& \subset A_{0} \oplus A_{\alpha} \oplus A_{-\alpha}
\end{aligned}
$$

and therefore

$$
\begin{aligned}
A_{0} & =J\left(A_{\alpha}, A_{\alpha}, A_{\alpha}\right)+J\left(A_{-\alpha}, A_{-\alpha}, A_{-\alpha}\right) \\
A_{\alpha} & =J\left(A_{0}, A_{-\alpha}, A_{-\alpha}\right)+J\left(A_{\alpha}, A_{\alpha}, A_{-\alpha}\right) \\
A_{-\alpha} & =J\left(A_{0}, A_{\alpha}, A_{\alpha}\right)+J\left(A_{\alpha}, A_{-\alpha}, A_{-\alpha}\right)
\end{aligned}
$$

We now use $A=A^{2}$ to obtain

$$
\begin{aligned}
A_{0} \oplus A_{\alpha} \oplus A_{-\alpha} & =A=A^{2} \\
& =A_{0} A_{\alpha}+A_{0} A_{-\alpha}+A_{\alpha}^{2}+A_{\alpha} A_{-\alpha}+A_{-\alpha}^{2}
\end{aligned}
$$

and therefore

$$
\begin{aligned}
A_{0} & =A_{\alpha} A_{-\alpha}, \\
A_{\alpha} & =A_{0} A_{\alpha}+A_{-\alpha}^{2}, \\
A_{-\alpha} & =A_{0} A_{-\alpha}+A_{\alpha}^{2}
\end{aligned}
$$

Since $A_{0}=u F$ we have $A_{0} A_{a}=A_{a}(\alpha= \pm \alpha)$. Also

$$
\begin{aligned}
& J\left(A_{0}, A_{-a}, A_{-a}\right) \subset A_{a}=A_{0} A_{a} \\
& \quad \subset A_{0} J\left(A_{0}, A_{-a}, A_{-a}\right)+A_{0} J\left(A_{a}, A_{a}, A_{-a}\right) \\
& \quad \subset J\left(A_{0}, A_{0}, A_{-a}^{2}\right)+J\left(A_{0}, A_{-a}, A_{-a} A_{0}\right)+J\left(A_{0}, A_{-a}, A_{0} A_{-a}\right) \\
& \quad+J\left(A_{0}, A_{a}, A_{a} A_{-a}\right)+J\left(A_{0}, A_{a}, A_{-a} A_{a}\right)+J\left(A_{0}, A_{-a}, A_{a}^{2}\right) \\
& \quad \subset J\left(A_{0}, A_{-a}, A_{-a}\right),
\end{aligned}
$$

obtaining the second inclusion from $A_{a}=J\left(A_{0}, A_{-a}, A_{-a}\right)+J\left(A_{a}, A_{a}, A_{-a}\right)$ and the third inclusion from (1.8). Thus we have

$$
A_{a}=J\left(A_{0}, A_{-a}, A_{-a}\right), \quad a \neq 0
$$

From this and remembering $A_{0}=u F$ we obtain

$$
A_{a}=A_{-a} A_{-a}, \quad \alpha \neq 0
$$

For $A_{-a} A_{-a} \subset A_{a}=J\left(A_{0}, A_{-a}, A_{-a}\right) \subset A_{-a} A_{-a}$. Also

$$
A_{0}=J\left(A_{a}, A_{a}, A_{a}\right), \quad a= \pm \alpha
$$

For

$$
\begin{aligned}
& J\left(A_{a}, A_{a}, A_{a}\right) \subset A_{0}=A_{a} A_{-a} \\
& \quad=A_{a} J\left(A_{0}, A_{a}, A_{a}\right) \\
& \quad \subset J\left(A_{a}, A_{0}, A_{a}^{2}\right)+J\left(A_{a}, A_{a}, A_{a} A_{0}\right)+J\left(A_{a}, A_{a}, A_{0} A_{a}\right) \\
& \quad \subset J\left(A_{a}, A_{a}, A_{a}\right)
\end{aligned}
$$

We summarize these identities in

Proposition 7.11. Let $A=A_{0} \oplus A_{\alpha} \oplus A_{-\alpha}$ be the usual simple nonLie Malcev algebra, then we have for $a= \pm \alpha$,

$$
A_{a}=A_{0} A_{a}=A_{-a} A_{-a}
$$

and

$$
A_{0}=A_{a} A_{-a}=J\left(A_{a}, A_{a}, A_{a}\right)
$$

Theorem 7.12. Let $A=A_{0} \oplus A_{\alpha} \oplus A_{-\alpha}$ be the usual simple nonLie Malcev algebra, then A is isomorphic to the simple seven dimensional Malcev algebra A^{*} discussed in the introduction.

Proof. Since $u F=A_{0}=A_{\alpha} A_{-\alpha}=A_{\alpha} \cdot A_{\alpha} A_{\alpha}$, there exists $x, y, z \in A_{\alpha}$ such that $x \cdot y z=2 u$. Define $2 x^{\prime}=y z,-2 y^{\prime}=x z$ and $2 z^{\prime}=x y$ and form the subspace B generated by $\left\{u, x, y, z, x^{\prime}, y^{\prime}, z^{\prime}\right\}$. First the x, y and z are linearly independent over F. For if $a x+b y+c z=0$ with $a, b, c \in F$ and, for example, $a \neq 0$, then write $x=b^{\prime} y+c^{\prime} z$ and therefore using (7.7) $2 u=x \cdot y z=b^{\prime} y \cdot y z+c^{\prime} z \cdot y z=0$, a contradiction. Similarly noting $u=x x^{\prime}$ and assuming a relation of the type $x^{\prime}=$ $b^{\prime} y^{\prime}+c^{\prime} z^{\prime}$ and using the definitions of x^{\prime}, y^{\prime} and z^{\prime} we see that the x^{\prime}, y^{\prime} and z^{\prime} are also linearly independent. Since $A=A_{0} \oplus A_{\alpha} \oplus A_{-\alpha}$, $\left\{u, x, y, z, x^{\prime}, y^{\prime}, z^{\prime}\right\}$ is a linearly independent set of vectors over F. Using identities (1.2), (7.6) and (7.7) we obtain the following multiplication table for B.

	u	x	y	z	x^{\prime}	y^{\prime}	z^{\prime}
u	0	$-\alpha x$	$-\alpha y$	$-\alpha z$	αx^{\prime}	αy^{\prime}	αz^{\prime}
x	αx	0	$2 z^{\prime}$	$-2 y^{\prime}$	u	0	0
y	αy	$-2 z^{\prime}$	0	$2 x^{\prime}$	0	u	0
z	αz	$2 y^{\prime}$	$-2 x^{\prime}$	0	0	0	u
x^{\prime}	$-\alpha x^{\prime}$	$-u$	0	0	0	αz	$-\alpha y$
y^{\prime}	$-\alpha y^{\prime}$	0	$-u$	0	$-\alpha z$	0	αx
z^{\prime}	$-\alpha z^{\prime}$	0	0	$-u$	αy	$-\alpha x$	0

By the remarks at the beginning of this section we can choose $\alpha=-2$
and consequently obtain that B is isomorphic to A^{*}. It remains to show the dimension of A over F is seven. For this it suffices to show dimension $A_{\alpha}=3$, since dimension $A_{\alpha}=$ dimension $A_{-\alpha}$. Let $0 \neq w \in A_{\alpha}$, then by (7.5)

$$
6 u=3 x \cdot y z=-J(x, y, z)
$$

and therefore by (7.10),

$$
6 \alpha w=6 w u=x_{0} x+y_{0} y+z_{0} z
$$

where $x_{0}, y_{0}, z_{0} \in A_{0}=u F$. But by the action of u on x, y and z we have $6 \alpha w=a_{0} x+b_{0} y+c_{0} z$ where $a_{0}, b_{0}, c_{0} \in F$. Thus the dimension of A_{α} is three.

Bibliography

1. A. A. Albert, On simple alternative rings, Canadian J. Math., 4 (1952), 129-135.
2. N. Jacobson, Lectures in abstract algebra, Vol. 2, D. Van Norstrand.
3. A. Sagle, Malcev algebras, Trans. Amer. Math. Soc., 101 (1961), 426-458.

The University of Chicago and
Srnacuse University

[^0]: Received September 2, 1961. The author would like to thank Professor L. J. Paige for his assistance in the preparation of the manuscript. This research was sponsored in part by the National Science Foundation under NSF Grant G-9504.

