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I. Introduction, The following problem is posed and solved in this
article. A function H{θ) is defined over the interval (0, π), but is as
yet unknown over the interval (—π, 0). Furthermore it is supposed
that the function can be expressed as a Fourier series, with certain
constraints on the coefficients. In particular

H(θ) = - ^ + Σ(αn cos nθ + bn sin nθ)
2 n=l

where

aan + βbn = cn , n = 0,1, 2, .

a and β are prescribed constants and the cn a prescribed sequence.
The question which can now be raised is whether these constraints
automatically continue the function into the interval (—TΓ, 0). It will
be shown that under certain conditions the continuation of H(θ) is unique
almost everywhere.

There are two trivial special case namely if either a or β are
allowed to become infinite. In these cases the proper continuation is
as an odd or even function respectively.

A different, but equivalent, formulation is the following. Does the
definition of H(θ) and the constraints on the Fourier coefficients an and
bn allow one to evaluate these coefficients? In order to be able to use
the standard integral formulas for the coefficients H(θ) would have to
be defined over an interval of length 2π. Over the interval (0, π) the
trigonometric functions are not orthogonal so that such integral formulas
do not exist. One can show then that an equivalent statement is that
the nonorthogonal set of functions {sin (nx — tan"1**//?)} is complete in
L2(0, π), for I a \ Φ \ β |. The case | a \ = \ β \ requires some additional
stipulations.

One can also formulate a similar problem involving a function
defined over the interval (0, co), and constraints on the Fourier cosine
and sine transforms.

In both of these case one can show that a unique continuation
exists in the space of square-integrable functions for \a\Φ\β\. In
the case of the problem of the infinite interval one can explicitly demon-
strate nonunique continuations in the space of nonintegrable functions.
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The proof in both cases is accomplished by reducing the problem to
the solution of a singular Fredholm integral equation of the second
kind. An analysis of the spectrum of the resulting linear operator
shows that the lowest eigenvalue is outside the region of interest.

IL Statement of the theorems.

THEOREM A. Suppose the periodic function H{θ) possesses the
Fourier series

H{θ) = - ^ + X(an cos nθ + bn sin nθ)

where the Fourier coefficients are linearly dependent. They satisfy
the relationship

aan + βbn = cn , n ^ 0.

where a and β are prescribed real constants and the sequence {cn} is
square-summable. If H(θ) is defined as a square-integrable function
over the interval (0, π), there exists a unique (a.e.) square-integrable
continuation of H(θ) into the interval { — π, 0), provided \a\ φ \β\.

When a = β, one also requires that the function

K{θ) = H{θ) - cr\cJ2 + Σcn cos nθ]
1

be such that

oo oo

ΣK < oo, and ^Σt\kn\lnn< oo
0 1

where

kn = ('(cot ΘI2)1I2K(Θ) cos nθ dθ .
Jo

When a = —β the cot θ\2 is to be replaced by tan θ\2 in the above
integral.

Theorem B is a companion theorem to A.

THEOREM B. Suppose the function H(θ) can be represented by the
Fourier Integral

H(θ) = I (a(ω) cos ωθ + b(ω) sin ωθ)dω
Jo

where the Fourier cosine and sine transforms are linearly dependent.
They satisfy the relationship
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aa(ω) + βb{ώ) — c(ω) , ω ^ 0

where a and β are prescribed real constants and the function c(ω) is
square integrable. If H(θ) is defined as a square integrable function
over the interval (0, oo) there exists a unique (a.e.) square integrable
continuation of H{θ) into the interval (— oo, 0), provided \a\ Φ \ β \.

When a — β one also requires that the function

K(θ) = H(θ) - — [°°c(ω) cos ωθ dθ
a Jo

be such that

\ k\ω)dω < oo, and \ \ k(ω) | In ω dω < oo .
Jo Jo

where

k(ω) = \~θ~ll2K{θ) cos ωθ dθ .

When a = — β, θ~112 is to be replaced by θ1'2 in the above integral.
Equivalent formulations of these theorems are the following.

THEOREM A'. A function H(θ) in L2(0, π) can be represented in
the form

H{θ) = ΣK sin (nθ + φ)

where φ is a fixed phase angle. For φ = ±τr/4 one must impose ad-
ditional restrictions on H{θ) as in Theorem A.

THEOREM B'. A function H(θ) in L2(0, oo) can be represented in
the form

H(θ) = [°k(ω) sin (ωθ + φ)dω
Jo

where φ is a fixed phase angle. For φ = ±ττ/4 one must impose ad-
ditional restrictions on H(θ) as in Theorem B.

However the former formulation is preferable because that is the
direct form in which the theorems are proved.

ΠL Reduction of the proofs to the analysis of integral equations*
One can in the ensuing analysis replace the cn by zero without loss of
generality since the general expansion can be rewritten in the following
form after an is eliminated.
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H(θ) - 1/αΓA. + £C ncosnθ\
L 2 i J

- sin %0

Let h(—θ) denote the continuation of H{θ) in the interval (—π, 0),
and αΛ, &„ denote the Fourier coefficients of the resultant function. Then

and let d% and en be defined by

ί>« {£}•"»-«{£}•
Thus one can solve for the corresponding integrals for h(θ) and

!:»<•» U S } - * - = * - " ; } •
From these two equations the unknown coefficients an and bw can be
eliminated by use of the relationship

aan + βbn = 0 .

It follows that

(1) I h(θ)(a cos nθ — β sin nθ)dx — π(—adn — βen), n — 0,1,
Jo

One can now multiply the above equation first by a cos ny and then
by β sin ny and take the difference of the resultant equations, to obtain

a* + / g 2 Vh{θ) cos n(θ — φ)dθ + a2 ~ ^ Γ&(0) cos n(θ + φ)dθ

— α/51 h(θ) sin ^(^ + φ)dθ = (ττ(—αdπ — βen)(a cos nφ — β sin ^φ) .

Jo
One can now apply the summation formulas

s i n ( i V - — λx
1 N V 2— + Σ cos nx =

Σsin^=|-cot^--

2

cos (JV— —)x
V 2/
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to the above equation and then pass to the limit as N tends to infinity.
One then obtains the integral equation

(2) h(φ) - — [πh(θ) cot θ + φ dθ = f(φ)

where

. _ 2α/9

a2 + β2

f(Φ) = —i — ] ~a ° + Σ (—adn — β θ ( α cos nφ — β sin nφ) \ .

To convert the Fourier integral case to an integral equation one
defines d(ω) and e(ω) by

and proceeds in a similar fashion as in the previous case. There is an
alternative procedure. The period is changed from π to T by a formal
change of variable and by a passage to the limit as T tends to infinity
one obtains

(4)
7Γ Jo ΰ -\- φ

where

λ

α2 + β2

___±—__ \ (—ad(ω) — βe(ω))(a cos ωφ — β sin ωφ)dω .

IV* Analysis of the integral equations* The integral equations
corresponding to both problems are singular integral equation of the
Fredholm type of the second kind. It will be shown that both equa-
tions have unique solutions in the space of square-integrable functions
provided that the eigenvalue parameter λ satisfies

| λ | < 1 .

But since

λ _ 2aβ
α2 + /92

and the latter function is bounded by unity it is evident that the in-
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tegral equations alway have unique solutions in the space of square-
integral functions. The case | λ | = 1 will be treated separately.

Equation (4) is discussed in detail in [3], and the same method can
be adopted for equation (2).

We now consider equation (2) and expand the kernel in terms of
an orthonormal system of functions over the interval (0, π). We find
that with the kernel we can associate the quadratic form

Σ antkxnxk
n,k=l

where the antk are given by

ank = —[*[* cot θ + φ sin nθ sin kφ dθ dφ
π JoJo 2

n + k even
OM / \n+kl

= j^ι± v—i—j_ =

n + k
4

n + k
n + k odd ,

if the selected orthonormal system is {(2/ττ)1/2 sin nθ}.
We now consider the analytic function

F(z) = Σ a?^""1

1

and suppose {xn} to be a square-summable sequence. A direct calculation
shows that

Γ zF\z)dz = i Σ a«,kr
n+kxnxk, 0 ^ r < 1 .

J-r 2 n.k=l

One can also show that the quadratic form is bounded over the
space of square summable sequences.

I Γ zF\z)dz - I Ϋr*e**F\reiφ)dφ

^ A*\ F(reiφ) \2dφ = ^[{Σx^-1 cos (n - l)φ)2

Jo Jo

+ (Σxnr
n^ sin (n - l)φ)2]dφ = πΣx2

nr
2n

^ πΣxl .

By letting r tend to unity one finds

Σ

In order for equation (2) to have a unique solution in the space of
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square-integrable functions it is necessary and sufficient that the quad-
ratic form

Q(x) = f>l - - £ - Σ α
i Z7Γ n,k=i

be positive definite. We see that this form can be written as

Q(x) = lim Γ— (V1 F(retφ) |2 dφ - —Γ zF\z)dz\ .
r- l L7Γ JO π J-r J

This expression must be real, and writing

F(z) = R(r, φ)emr'^

we obtain

Q(x) = lim Γ—(V2i22(r, φ)dφ - — (V.K2(r, cp) sin {2θ(r, φ) + 2φ]dφ\ .
r-i Lπ Jo 7Γ Jo J

Evidently this is positive definite if | λ | < 1.
The preceding type of argument was first used by Fejer & F. Riesz

[1], to discuss the bounds of such operators. But one can show still
more, namely that the bound of the operator is not attained for any
vector x. If it were Q(x) would vanish, in which case

sin {20(1, ψ) + 2φ} = 1 , a.e.

In this case the real part of the function z2F\z), is a harmonic function,
which vanishes a.e. on | z \ — 1. Such a harmonic function can be re-
presented by a Poisson Integral [2]. In follows therefore that since it
vanishes a.e. on | z \ — 1 it must vanish identically and it follows that
the function zF(z) must also vanish identically. Therefore Q(x) does
not vanish for any x. One can infer from this that the homogeneous
integral equation has only the trivial solution, so that the inhomogemeous
equation will have a unique solution provided a solution exists even in
the case | λ | = 1. But the existence of a solution depends on the
nature of the inhomogeneous term. This case will be discussed in the
next section.

It follows that for | λ | < 1 the integral operator is a contraction
operator so that the solution can be obtained by successive iterations of
the operator.

A similar analysis can be carried out for equation (4) using as an
orthonormal set over (0, oo) Laguerre polynomials. The rest of the
analysis is similar and details may be found in [3]. However one can
approach this problem also by the use of Fourier integrals. This ana-
lysis can be found in Titchmarsh [4]. The substitutions
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φ = e\ θ = β*, e^h^) = Φ(rj)

e() = Ψ{ξ)

reduces equation (4) to the form

cosh — (v — ξ)
2

Let

τi

and it is known that

2

One finds immediately that

coshi coshπω '

F(ω) =
λ

cosh πω

so that

(2ττ)1 / 2 -l-o
1 -

COSh 7ΓO)

From the expression it is evident that the integral equation need not
have unique solutions. The solutions of the homogeneous equation must
be of the form evv, where v is a zero of cos (πv) — λ. Thus equation
(4) has unique solutions in the space of square-integrable functions, but
is only determined to within a nonintegrable term of the form cyv~112,
c being arbitrary.

V The case | λ | = 1. When | λ | = 1 we have either a = β or
a = — β. We will consider the case a = β in detail and the other case
can be reduced to this one by replacing θ by π — θ. The given function
H{θ) is to be represented in the form

H(θ) = i χ (cos nθ - sin nθ)
1

and we introduce the function
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f(z) = Σbnz
n = u{r, θ) + iv(r, θ) .

1

Evidently

H{θ) = w(l, 0) - v(l, θ) 0 < 0 < π .

Let Z7(r, 0) be a harmonic function defined by

U(r, θ) = w(r, 0) - v(r, 0) ,

whose conjugate harmonic function is given by

V(r, θ) = v(r, θ) + u{r, θ) .

Since the bn are taken to be real u will be even and v will be odd in
S. Then

l, θ) = H{θ) 0 < θ < π

V{1, θ) = H{-θ) -π < θ < 0 .

In order to determine the continuation of H(θ) into the interval (—π, 0)
it is necessary to determine U(r, θ) for all θ. We now define the
function

F(z)= U+ίV

and introduce the function

\l/2

— z

with the boundary values

G(eiΘ) = (cot ΘI2)112 , 0 < θ < 7Γ

= -i(cot -0/2)1/2 , -π < 0 < 0 .

The function G(z)F(z) ~ T(z) is an analytic function whose real part is
defined for the whole boundary.

ReίG{z)F{z) = (cot θβY'H{θ) , 0 < 0 < π

= (cot -θfeY'Ήi-θ) , -7Γ < θ < 0 .

Thus T{z) is explicitly given by

T(z) = %e-\

= A Γ(cot ΘI2)1I2H(Θ) cos ̂ 0
π Jo
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and c is a real, but otherwise arbitrary constant of integration. F(z)
is now fully determined and it follows that

U(l, θ) = Re^ζL = H(θ) , 0 < θ < π

= -(tan -0/2)1'jc + | χ sin nθ\, -π < θ < 0 .

Here J7(l, θ) is not uniquely specified, but if one requires that 17(1,0)
be square integrable the constant c must be set equal to zero. Fur-
thermore it is not enough to require

Σkl < oo ,

but one also needs

Σ\ kn I In n < oo

in order for

Γ tan θ/2[Σkn sin nθYdθ < oo .
Jo

The Fourier integral case be treated in an analogous fashion or by
formal limiting processes.

VI Proof of Theorems A and B To prove Theorem A it is still
necessary to show that the periodic function, which is given by h(—φ)
for — π < φ < 0 and H(φ) for 0 < φ < π has the required properties*
From the definitions of the coefficients dn and en it follows that

1 °°

—a?d0 + Σ0*2^n cos nφ — β2en sin nφ
2 i

+ aβ en cos nφ — aβ dn sin nφ)

S *
denotes the principal value of the integral. One can by the use of

this summation formula now rewrite equation (2) to read

.H(φ) + ̂ -V h(-θ)cot°^dθ

dθ = 0 .( H ( g ) c o t
2π Jo 2

To complete the proof one merely observes that
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H(Φ) = -7r + Σ(α* cos nφ + bn sin nφ)
2 i

KΦY= -y- Σ(« cos ίiφ - &re sin

Then the previous equation reduces to

α2-^- + α 2 | χ cos nφ - /32i>% sin
2

Σfn cos w0 —
1

which evidently shows that

aan + βbn = 0 , w ^ 0 ,

and thus completes the proof of Theorem A.
The proof of Theorem B is completely analogous and will therefore

be omitted.
The statements of the theorems can be considerably strengthened

if one assumes that the original function H(θ) defined for 0 < θ < π is
continuous and bounded and the {cn} are such that the inhomogeneous
terms in (2) and (4) are also continuous and bounded. In this case it
follows from the existence of the Neumann series that the function
h{θ) is also continuous and bounded for 0 < θ < π. Then the resultant
periodic function is continuous and bounded at all points with the ex-
ception of points of the form nπ.
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