CONGRUENCE PROPERTIES OF $\sigma_{r}(N)$

V. C. Harris and M. V. Subba Rao

1. Introduction. Let $\sigma_{r}(N)$ denote as usual the sum of the r th powers of the divisors of N. Let d be a divisor of N with $1 \leqq d \leqq \sqrt{N}$ and d^{\prime} its conjugate, so that $d d^{\prime}=N$. By a component of $\sigma_{r}(N)$ we mean the quantity $d^{r}+d^{\prime r}$ or d^{r} according as $1 \leqq d<\sqrt{N}$ or $d=\sqrt{N}$. Components corresponding to distinct divisors $d \leqq \sqrt{N}$ are distinct and $\sigma_{r}(N)$ is their sum.

If every component of $\sigma_{r}(N)$ is congruent to the integer a, modulo K, we say that $\sigma_{r}(N)$ is componently congruent to a $(\bmod K)$ and indicate this by writing

$$
\sigma_{r}(N) \equiv a(\bmod K) .
$$

This does not necessarily imply that also $\sigma_{r}(N) \equiv a(\bmod K)$. For example $\sigma_{4}(8) \equiv 2(\bmod 3)$ but $\sigma_{4}(8) \equiv 1(\bmod 3)$. Similarly ordinary congruence does not imply component congruence, as the same example shows.
2. Theorem 1. If r, K, L are fixed positive integers with $K \geqq 3$ and $(L, K)=1$, and if a is a nonnegative integer, then a necessary and sufficient condition that
(1) $\sigma_{r}(n K+L) \equiv a(\bmod K)$ for all integral values of $n \geqq 0$
is that
(2) L is a quadratic nonresidue of K
(3) $1+L^{r} \equiv a(\bmod K)$
(4) $\left(w^{r}-1\right)\left(w^{r}+1-a\right) \equiv 0(\bmod K)$ for all w such that $(w, K)=1$
all hold.
We first show necessity. Assume that $\sigma_{r}(n K+L) \equiv a(\bmod K)$ and L is a quadratic residue of K. Then there exists q such that $q^{2} \equiv L(\bmod K)$ and consequently n_{1} such that $n_{1} K+L=q^{2}$. Consider q^{2} and $n_{2} K+$ $L=\left(n_{1} K+n_{1}+L\right) K+L=(K+1) q^{2}$, both occurring in the sequence $n K+L$. Since $\sigma_{r}\left(q^{2}\right) \equiv a(\bmod K)$ we have with $d=q$ that $q^{r} \equiv a(\bmod K)$ and since $\sigma_{r}\left([K+1] q^{2}\right) \equiv a(\bmod K)$ we have with $d=q$ and $d^{\prime}=(K+1) q$ that $q^{r}+(K+1)^{r} q^{r} \equiv a(\bmod K)$. Thus $q^{r}+(K+1)^{r} q^{r} \equiv q^{r}$, or, $2 \equiv 1(\bmod K)$. This is a contradiction and (2) is necessary. Assume next (1) holds. Then in particular for $n=0$ we have $\sigma_{r}(L) \equiv a(\bmod K)$. By condition (2) just proved $L \neq 1$ and the component with $d=1$ and $d^{\prime}=L$ gives $1+L_{r} \equiv a(\bmod K)$ which is (3).

[^0]Next to show (4). Given any w such that $(w, K)=1$, there exists an $x \not \equiv w(\bmod K)$ such that $w x \equiv L(\bmod K)$. Let this x be denoted by w_{1}.

Then

$$
w w_{1} \equiv L(\bmod K)
$$

and by our assumption $\sigma_{r}(n K+L) \equiv a(\bmod K)$ applied to $w w_{1}$ it follows that

$$
\begin{aligned}
1+w^{r} w_{1}^{r} & \equiv a(\bmod K) \\
w^{r}+w_{1}^{r} & \equiv a(\bmod K) .
\end{aligned}
$$

Eliminating w_{1}^{r} gives $1+w^{r}\left(a-w^{r}\right) \equiv a(\bmod K)$. Rewriting this gives (4) and shows (4) is necessary.

To show sufficiency, we need to show for any divisor d of $N=$ $n K+L$ with $1 \leqq d \leqq \sqrt{N}$ and conjugate divisor d^{\prime} that $d^{r}+d^{\prime r} \equiv$ $a(\bmod K)$ or $d^{r} \equiv a(\bmod K)$ according as $1 \leqq d<\sqrt{N}$ or $d=\sqrt{N}$ provided (2), (3) and (4) hold. But (2) insures that N cannot be a square, so the second alternative cannot occur. Now

$$
\begin{aligned}
d^{r}\left(d^{r}+d^{\prime r}\right) & =d^{2 r}+\left(d d^{\prime}\right)^{r} \\
& \equiv\left(1+a d^{r}-a\right)+L^{r}
\end{aligned}
$$

by (4) and the fact that $d d^{\prime} \equiv L(\bmod K)$. Then using (3),

$$
d^{r}\left(d^{r}+d^{\prime r}\right) \equiv\left(1+a d^{r}-a\right)+a-1 \equiv a d^{r}(\bmod K)
$$

Since $(d, K)=1$ it follows that

$$
d^{r}+d^{\prime r} \equiv a(\bmod K)
$$

for each d as specified. But this shows (1) holds and completes the proof.
3. Examples and some special cases. It is not difficult to show that when $K=p$ is an odd prime, all component congruences are obtained with $r=(p-1) / 2$ and $a=0$ or $r=(p-1)$ and $a=2$. Thus for example:

$$
\begin{aligned}
& \sigma_{6}(13 n+L) \equiv 0(\bmod 13), L=2,5,6,7,8,11 \\
& \sigma_{12}(13 n+L) \equiv 2(\bmod 13), L=2,5,6,7,8,11
\end{aligned}
$$

When K is composite we have $\sigma_{\varphi(K)}(n K+L) \equiv 2(\bmod K)$ for any nonquadratic residue L of K.

In the special case $r=1$ we show
Theorem 2. For all integral $n \geqq 0, \sigma_{1}(n K+L) \equiv a(\bmod K)$ holds for suitable L and a if and only if K is one of $3,4,6,8,12$ and 24.

The equation in condition (4) becomes

$$
\begin{equation*}
w^{2}-a w+a-1 \equiv 0(\bmod K) \tag{5}
\end{equation*}
$$

The congruence (5) is equivalent to

$$
4 x^{2}-4 a x+a^{2} \equiv(2 x-a)^{2} \equiv(a-2)^{2}(\bmod 4 K)
$$

With $y=2 x-a$ we have

$$
\begin{equation*}
y^{2} \equiv(a-2)^{2}(\bmod 4 K) \tag{6}
\end{equation*}
$$

subject to $y \equiv-a(\bmod 2)$. But this last condition is no restriction so that the number of solutions of (5) is the same as that of (6). Let $S(4 K)$ be the number of solutions of (6) and let $4 K=p_{1}^{2+e_{1}} p_{2}^{\epsilon_{2}} \cdots p_{j}^{\rho}$ where $p_{1}=2, p_{2}=3, \cdots$ are distinct primes. Then

$$
S(4 K)=S\left(p_{1}^{2+e_{1}}\right) S\left(p_{2}^{e_{2}} 2\right) \cdots S\left(p_{j}^{\rho}\right) \text { and } S\left(p_{1}^{2+e_{1}}\right) \leqq 2 \text { for } e_{1}=0 ;
$$

$S\left(p_{1}^{2+e_{1}}\right) \leqq 4$ for $e>0 ; S\left(p_{i}^{e_{i}}\right) \leqq 2$ for $p_{i}>2$.
Since (5) is to hold for all w such that $(w, K)=1$, we must have $\phi\left(p_{i}^{e_{i}}\right) \leqq S\left(4 p_{i}^{i_{i}}\right)$ or

$$
p_{i}^{e_{i}-1}\left(p_{i}-1\right)=\phi\left(p_{i}^{e_{i}}\right) \leqq \begin{cases}2 & p_{i}=2, e_{i}=0 \tag{7}\\ 4 & p_{i}=2, e_{i}>0 \\ 2 & p_{i}>2\end{cases}
$$

But the only values of $p_{i}^{e_{i}}$ satisfying these are $1,2,4,8$ and 1,3 . Since $K \geqq 3$ these give $K=3,4,6,8,12,24$. The converse can be proved by enumeration. The results are listed:

$$
\begin{array}{rrrrrrrrrr}
K & 3 & 4 & 6 & 8 & 8 & 12 & 12 & 24 & 24 \\
L & 2 & 3 & 5 & 3 & 7 & 5 & 11 & 11 & 23 \\
a & 0 & 0 & 0 & 4 & 0 & 6 & 0 & 12 & 0
\end{array}
$$

4. Relation between component congruence and congruence. We have

Theorem 3. If $\sigma_{r}(n K+L) \equiv a(\bmod K)$ for all integral $n \geqq 0$, then $\sigma_{r}(n K+L) \equiv a(\bmod K)$ for all integral $n \geqq 0$ if and only if $a \equiv 0(\bmod K)$.

If $a \equiv 0(\bmod K)$ then each component is congruent to zero and the sum of the components-that is, $\sigma_{r}(n K+L)$-is congruent to zero. Conversely, if $\sigma_{r}(n K+L) \equiv a(\bmod K)$ as well as $\sigma_{r}(n K+L) \equiv a(\bmod K)$, then, $\tau(n)$ standing for the number of divisors of n, we have

$$
[\tau(n K+L) / 2] a \equiv a(\bmod K)
$$

since there are $\tau(n K+L) / 2$ components each congruent to $a(\bmod K)$. By Dirichlet's theorem, w and w_{1} in the proof of Theorem 1 may be
taken as primes p and p_{1}. Then for $n K+L=p p_{1}, \tau(n K+L)=4$. We must have $2 a \equiv a$ or $a \equiv 0(\bmod K)$.

In the particular case $a=0$, conditions (2), (3) and (4) reduce to conditions which Gupta [1] and Ramanathan [2] found to be necessary and sufficient in order that $\sigma_{r}(n K+L) \equiv 0(\bmod K)$ for r, n, K and L as above. Thus we have the remarkable result:

Theorem 4. Let r, K and L be positive integers with $(K, L)=1$ and $K \geqq 3$. Then $\sigma_{r}(n K+L) \equiv 0(\bmod K)$ for all $n \geqq 0$ if and only if $\sigma_{r}(n K+L) \equiv 0(\bmod K)$ for all $n \geqq 0$.

References

1. H. Gupta, Congruence properties of $\sigma(n)$, Math. Student, XIII, 1 (1945), 25-29.
2. K. G. Ramanathan, Congruence properties of $\sigma_{r}(n)$, Math. Student, XIII, 1 (1945), 30.
3. M. V. Subba Rao, Congruence properties of $\sigma(n)$, Math. Student (1950), 17-18.

San Diego State College
Sri Venkateswara University and University of Missouri

[^0]: Received May 11, 1961, and in revised form November 1, 1961,

