ON ALMOST-COMMUTING PERMUTATIONS

Daniel Gorenstein, Reuben Sandler and W. H. Mills

Suppose A and B are two permutations on a finite set X which commute on almost all of the points of X. Under what circumstances can we conclude that B is approximately equal to a permutation which actually commutes with A ? The answer to this question depends strongly upon the order of the centralizer, $C(A)$, of A in the symmetric group on X; and this varies greatly according to the cycle structure of A, being comparatively small when A is either a product of few disjoint cycles or a product or a large number of disjoint cycles of different lengths and being comparatively large when A is a product of many disjoint cycles, all of the same length. We shall show by example that when the order of $C(A)$ is small there may exist a permutation B which commutes with A 'almost everywhere" yet is not approximated by any element of $C(A)$. On the other hand, when A is a product of many disjoint cycles of the same length, we shall see that for any such permutation B, there must exist a permutation in $C(A)$ which agrees closely with B.

It is clear that if B is a permutation leaving fixed almost all points of X, then no matter what permutation A is given, B will commute with A on almost all points of X, and at the same time B can be closely approximated by an element of $C(A)$-namely, the identity. However, the examples we shall give will show that only when all (or nearly all) of the cycles of A are of the same length can we hope to approximate every B which nearly commutes with A by an element in $C(A)$. Accordingly, the bulk of this paper will be taken up with the study of the case in which A is a produc $\grave{\delta}$ of many disjoint cycles, all of the same length.

1. In order to get a satisfactory notation and a more compact way of discussing the problem, we begin by making the symmetric group $S_{N}(X)$ on the space X into a metric space. Here N denotes the cardinality of X, and it is to be understood that N is finite. Define, for any A in $S_{N}(x)$,

$$
\begin{equation*}
\|A\|=\frac{N-f_{A}}{N} \tag{1}
\end{equation*}
$$

where f_{A} is the number of fixed points of A on X. Now define the distance $d(A, B)$ between two elements A and B of $S_{N}(X)$ to be

$$
\begin{equation*}
d(A, B)=\left\|A B^{-1}\right\| \tag{2}
\end{equation*}
$$

Received December 2, 1961,

Under these definitions, the identity is the only permutation of norm 0 , every permutation has norm $\leqq 1$, and a permutation has norm p if and only if it moves $p N$ points of X. In particular, the permutations A and B commute if and only if $\|[A, B]\|=0$, or equivalently, if and only if $d(A B, B A)=0$.

In order to see that these definitions make $S_{N}(X)$ into a metric space, we need only verify the triangle inequality, since the other properties are trivial. But the points of X displaced by $A B$ are clearly among those which are displaced by either A or B. Hence $N-f_{A B} \leqq$ $\left(N-f_{A}\right)+\left(N-f_{B}\right)$ and consequently $\|A B\| \leqq\|A\|+\|B\|$. We thus have the following lemma.

Lemma 1. With the norm defined above, $S_{N}(X)$ forms a metric space.

When no restriction is placed upon the cycle structure of A, we have the following result:

Proposition 1. For any $\varepsilon>0$, there exists an integer N and permutations A and B in $S_{N}(X)$ such that $\|[A, B]\|<\varepsilon$ and such that $d(B, D)=1$ for every D in $C(A)$.

Proof. We shall give two examples of permutations A and B which satisfy the conditions of the proposition; in the first, A will be a product of cycles of relatively prime lengths, and in the second, a product of cycles of lengths n and $2 n$.

Example 1. Let $X=\{1,2, \cdots, N\}$, where $N=2 n>4 / \varepsilon$. Let A be the permutation

$$
(12 \cdots n-1)(n)(n+1 n+2 \cdots 2 n)
$$

and B the permutation $x B=x+n$ if $x \leqq n$, and $x B=x-n$ if $x>n$. By direct verification, we find that A and B commute except on the points $n-1, n, 2 n-1,2 n$. Thus $f_{[A, B]}=N-4$ and hence $\|[A, B]\|$ $=4 / N<\varepsilon$.

On the other hand, any element D of $C(A)$ must map each cycle of A into itself, since these cycles are of different lengths. But, for any x in $X, x B$ and x lie in distinct cycles of A. It follows that for any D in $C(A), B D^{-1}$ displaces every point of X and hence that $d(B, D)=1$.

Example 2. Let $X=\{1,2, \cdots, N\}$, where $N=4 n m$ and $n>1 / \varepsilon$. Let A be the permutation with m cycles of length $2 n$ and $2 m$ cycles
of length n, defined as follows:

$$
\begin{aligned}
& (12 \cdots 2 n)(2 n+1 \cdots 4 n) \cdots(2 n(m-1)+1 \cdots 2 n m) \\
& (2 n m+1 \cdots 2 n m+n)(2 n m+n+1 \cdots 2 n m+2 n) \cdots \\
& (4 n m-n+1 \cdots 4 n m) .
\end{aligned}
$$

Let B be the permutation $x B=x+2 n m$ if $x \leqq 2 n m$, and $x B=$ $x-2 n m$ if $x>2 n m$.

Again, by direct computation, we find that A and B commute on all points x of X except when $x \equiv 0(\bmod n)$. Thus $f_{[A, B]}=4 n m-4 m$ and hence $\|[A, B]\|=1 / n<\varepsilon$. On the other hand, if $D \in C(A), D$ must permute the cycles of A of length n among themselves and must permute the cycles of A of length $2 n$ among themselves. But if x is in a cycle of length n, then $x B$ is in a cycle of length $2 n$, and vice versa. It follows that $B D^{-1}$ displaces every point of X and hence that $d(B, D)=1$, for any D in $C(A)$.
2. The two examples given in Proposition 1 indicate that unless severe restrictions are placed on the cycle structure of A, the fact that B comes very close to commuting with A does not necessarily imply that B can be approximated by an element in $C(A)$. In fact, it seems that unless A consists almost entirely of cycles of the same length, little can be said in general of the relation between $\|[A, B]\|$ and the distance from B to $C(A)$.

In order to be able to make as exact statements as possible, we shall assume in the balance of the paper that A is the product of m disjoint cycles, each of length n. In this case our statements about the distance from B to $C(A)$ will depend only upon $\|[A, B]\|$ and n.

We may take $X=\{1,2, \cdots, N\}$, where now $N=n m$. Let x, k be integers such that $1 \leqq x \leqq N, 0 \leqq k \leqq n$, and write $x=i n+r$, where $1 \leqq r \leqq n$. We shall adopt the following notation:
(3) $\overline{x+k}=i n+s$, where $1 \leqq s \leqq n$ and $s \equiv r+k(\bmod n)$.

Without loss of generality we may assume that A is the mapping

$$
\begin{equation*}
x A=\overline{x+1}, x \in X \tag{4}
\end{equation*}
$$

We shall say that B in $S_{N}(X)$ transforms the cycle a of A into the cycle a^{\prime} if, for some x in $a, x B$ is in α^{\prime} and

$$
\begin{equation*}
\overline{(x+k)} B=\overline{x B+k}, \quad k=0,1, \cdots, n-1 \tag{5}
\end{equation*}
$$

We shall write (α) $B=a^{\prime}$ if B transforms a into α^{\prime}. We shall also say that B commutes with A on a cycle a if it commutes with A on each point of a.

Lemma 2. (a) A permutation B commutes with A on a cycle a if and only if B tranforms a into a cycle a^{\prime}.
(b) if B commutes with A on $n-1$ points of a cycle a, then B commutes with A on a.
(c) If B transforms r cycles of A into cycles of A, there exists an element D in $C(A)$ which agrees with B on these r cycles.

Proof. For A and B to commute on a point x of X we must have $x B A=x A B$, and hence

$$
\begin{equation*}
\overline{x B+1}=(\overline{x+1}) B . \tag{6}
\end{equation*}
$$

Suppose (α) $B=a^{\prime}$; then (6) follows at once from (5) for any x in a. Conversely if (6) holds for all x in a, (5) follows at once by induction on k.

To prove (b), suppose B and A commute on $x, \overline{x+1}, \cdots, \overline{x+n-2}$. Again by induction on k, (5) holds for $k=0,1, \cdots, n-2$. In particular, $\overline{(x+n-2)} B=\overline{x B+n-2}$. Now using (6) with x replaced by $\overline{x+n-2,}$ we obtain

$$
\begin{aligned}
& \overline{(x+n-1)} B=\overline{\overline{(x+n-2}) B+1} \\
= & \overline{\overline{x B+n-2}+1}=\overline{x B+n-1} .
\end{aligned}
$$

Thus (5) holds for all k, and hence A and B commute on a by part (a).
Finally suppose B transforms the cycles a_{1}, \cdots, a_{r} into the cycles $a_{1}^{\prime}, \cdots, a_{r}^{\prime}$. Denote by $a_{r+1}^{\prime}, \cdots, a_{m}^{\prime}$ the remaining cycles of A. Let D be a permutation which agrees with B on a_{1}, \cdots, a_{r} and transforms a_{i} into $a_{i}^{\prime}, i=r+1, \cdots, m$. By (a) D is in $C(A)$.
3. We shall now begin the analysis of the relationship between $\|[A, B]\|$ and the minimum distance from B to $C(A)$, under the assumption that A is the product of n-cycles. We shall denote this minimum distance by $d_{A}(B)$. Thus

$$
\begin{equation*}
d_{A}(B)=\min _{D \in C(A)} d(B, D) \tag{7}
\end{equation*}
$$

Then following estimate for $d_{A}(B)$ is easily obtained.
Proposition 2. For any B in $S_{N}(X)$,

$$
d_{A}(B) \leqq \frac{n\|[A, B]\|}{2} .
$$

Proof. If $\|[A, B]\| \geqq 2 / n$, the proposition is vacuously true since $d_{A}(B) \leqq 1$. Hence we may assume that $\|[A, B]\|<2 / n$.

Now $N=n m$, where m is the number of cycles in A. It suffices to show that B transforms at least

$$
m-\frac{N\|[A, B]\|}{2}
$$

cycles of A into cycles of A. For then by Lemma 2(c) we can find an element D in $C(A)$ which agrees with B on these cycles and hence on at least

$$
N-\frac{n N}{2} \cdot\|[A, B]\|
$$

points of X. It follows that

$$
d(B, D) \leqq \frac{n\|[A, B]\|}{2}
$$

By the definition of $\|[A, B]\|, N \cdot\|[A, B]\|$ is the number of points displaced by $[A, B]$ and hence on which A and B do not commute. But by Lemma 2(b) any cycle of A which is not transformed by B into a cycle of A contains at least 2 points on which A and B do not commute. Thus there are at most

$$
\frac{N\|[A, B]\|}{2}
$$

cycles of A which are not transformed by B into cycles of A, and hence B transforms at least

$$
m-\frac{N\|[A, B]\|}{2}
$$

cycles of A into cycles of A.
Proposition 2 gives an upper bound for $d_{A}(B)$, which depends only upon $\|[A, B]\|$ (and n), but not upon the particular structure of B. Our main concern in the paper will be in improving this upper bound. The next proposition shows the limit to which this estimate can be improved.

Proposition 3. If A contains at least two distinct cycles, then there exists a permutation B in $S_{N}(X)$ such that

$$
d_{A}(B)=\frac{n\|[A, B]\|}{4}
$$

when n is even, and such that

$$
d_{A}(B)=\frac{n-1}{4}\|[A, B]\|
$$

when n is odd. Furthermore for any $\varepsilon>0, N$ and B can be chosen so that $\|[A, B]\|<\varepsilon$.

Proof. Assume first that n is even. Set $m=m_{1}+m_{2}$, where $m_{1} \geqq 0$ and $m_{2} \geqq 2$. Define the permutation B as follows: $x B=x$ if $1 \leqq x \leqq n m_{1}$; if $x>n m_{1}$, write $x=i n+k$ where $1 \leqq k \leqq n$, and define $x B=x$ if $k \leqq n / 2, x B=x+n$ if $i \neq m-1$ and $k>n / 2$, and $x B=$ $n m_{1}+k$ if $i=m-1$ and $k>n / 2$.

Thus B leaves the first m_{1} cycles of A pointwise fixed, one half of each of the remaining m_{2} cycles pointwise fixed, and permutes the other halves of these m_{2} cycles cyclically. From its definition, we see that B commutes with A except on the points $x>n m_{1}$ for which $x \equiv 0$ $(\bmod n / 2)$. Thus

$$
\begin{equation*}
\|[A, B]\|=\frac{2 m_{2}}{N} \tag{8}
\end{equation*}
$$

Since $N=n\left(m_{1}+m_{2}\right), \quad 2 m_{2} / N$ can be made arbitrarily small by making m_{1} sufficiently large. Thus, to prove the proposition, we have only to show that

$$
d_{A}(B)=\frac{n\|[A, B]\|}{4} .
$$

Observe, first of all, that the identity, I, is in $C(A)$ and agrees with B on

$$
n m_{1}+\frac{n m_{2}}{2}
$$

points of X, whence

$$
\begin{equation*}
d(I, B)=\frac{N-n m_{1}-\frac{n m_{2}}{2}}{N}=\frac{n m_{2}}{2 N}=\frac{n}{4}\|[A, B]\| \tag{9}
\end{equation*}
$$

On the other hand, by Lemma 2, any D in $C(A)$ must transform each cycle a_{i} of A into some other cycle a_{j}. Since B transforms the two halves of the cycles a_{i} into distinct cycles of $A, m_{1} \leqq i \leqq-1, D$ and B can agree on at most half of the $n m_{2}$ points in these cycles. Hence $D B^{-1}$ displaces at least $n m_{2} / 2$ points of X, which implies that

$$
d(D, B) \geqq \frac{n m_{2}}{2 N}=\frac{n}{4}\|[A, B]\|
$$

for any D in $C(A)$.
When n is odd, the construction of B is entirely analogous.

4: If we set

$$
d_{A}=\max _{\substack{B \in S_{N}(X) \\ B \notin(A)}} \frac{d_{A}(B)}{\|[A, B]\| n},
$$

then d_{A} is a measure of the extent to which every permutation in $S_{N}(X)$ can be approximated by elements in $C(A)$. Propositions 2 and 3 show that

$$
\begin{equation*}
\frac{1}{4} \leqq d_{A} \leqq \frac{1}{2} \text { or } \frac{n-1}{4 n} \leqq d_{A} \leqq \frac{1}{2} \tag{10}
\end{equation*}
$$

according as n is even or odd.
In the balance of the paper we shall sharpen these inequalities by lowering the upper bound for d_{A}. Our next result will show that in considering this problem, we may restrict our attention to those cycles of A on which B commutes with A on exactly $n, n-2$, or $n-3$ points. Let U_{B}, V_{B}, W_{B} be the set of points in those cycles of A on which B commutes with A on $n, n-2$, and $n-3$ points respectively; and let $u_{B}=\left|U_{B}\right|, v_{B}=\left|V_{B}\right|, w_{B}=\left|W_{B}\right|$.

Theorem 1. Suppose there exists an element D in $C(A)$ which agrees with B on at least $u_{B}+(1 / 2) v_{B}+(1 / 3) w_{B}$ points of X. Then

$$
d_{A}(B) \leqq\|[A, B]\| \frac{n}{4}
$$

Proof. For simplicity of notation, we drop the subscript B, and define

$$
\begin{equation*}
t=N-u-v-w \tag{11}
\end{equation*}
$$

Thus t is the number of points in those cycles of A on which A and B commute on no more than $n-4$ points. Then by definition of u, v, w, t, we have

$$
\begin{equation*}
u+\frac{n-2}{n} v+\frac{n-3}{n} w+\frac{n-4}{n} t \geqq f_{[A, B]} \tag{12}
\end{equation*}
$$

Now, by hypothesis,

$$
\begin{equation*}
d(B, D) \leqq \frac{N-\left(u+\frac{1}{2} v+\frac{1}{3} w\right)}{N}=\frac{\frac{1}{2} v+\frac{2}{3} w+t}{N} \tag{13}
\end{equation*}
$$

We must show that

$$
\begin{equation*}
\frac{\frac{1}{2} v+\frac{2}{3} w+t}{N} \leqq \frac{n}{4}\|[A, B]\| \tag{14}
\end{equation*}
$$

But using (1), we can rewrite (14) as:

$$
\begin{equation*}
f_{[A, B]} \leqq u+\frac{n-2}{n} v+\left(1-\frac{8}{3 n}\right) w+\left(\frac{n-4}{n}\right) t \tag{15}
\end{equation*}
$$

Since (15) is an immediate consequence of (12), the theorem follows.
5. In this section, we prove that $d_{A} \leqq 1 / 4$, by proving that for any B in $S_{N}(X)$, there exists a permutation D in $C(A)$ which satisfies the conditions of Theorem 1.

To treat our problem, we need an additional concept: By a block of a cycle a of A, we shall mean a maximal sequence $x, \overline{x+1}, \cdots$, $\overline{x+r-1}$ of points of a such that A and B commute on every point of the sequence except $\overline{x+r-1}$. The integer r will denote the length of the block. According to the definition, if A and B commute on every point of a then a contains no blocks. When B and A do not commute on every point of a, we have the following obvious lemma:

Lemma 3. If A and B commute on exactly $n-k$ points of a cycle a of $A, k>0$, then A contains exactly k blocks, the sum of whose lengths is n.

Thus when a cycle a of A lies in V_{B}, a consists of 2 blocks which we denote by p_{1}, p_{2}; and when a lies in W_{B}, a consists of 3 blocks which we denote by q_{1}, q_{2}, q_{3}. We define $\left|p_{j}\right|,\left|q_{j}\right|$ to be the lengths of p_{j}, q_{j}, respectively. Furthermore we order the blocks so that $\left|p_{1}\right| \geqq\left|p_{2}\right|$ and $\left|q_{1}\right| \geqq\left|q_{2}\right| \geqq\left|q_{3}\right|$. Since $\left|p_{1}\right|+\left|p_{2}\right|=n$,

$$
\begin{equation*}
\left|p_{1}\right| \geqq \frac{n}{2} \tag{16}
\end{equation*}
$$

and likewise

$$
\begin{equation*}
\left|q_{1}\right| \geqq \frac{n}{3} \tag{17}
\end{equation*}
$$

Let $x, \overline{x+1}, \cdots, \overline{x+r-1}$ be a block contained in a cycle a. If $x B=y$, then, it follows from (6) as in the proof of Lemma 2, that

$$
\begin{equation*}
(\overline{x+k}) B=\overline{y+k}, \quad 0 \leqq k \leqq r-1 ; \tag{18}
\end{equation*}
$$

and

$$
\begin{equation*}
(\overline{x+r}) B \neq \overline{y+r} . \tag{19}
\end{equation*}
$$

Thus the image of the block is a consecutive sequence of points in a cycle a^{\prime}. It follows that there exist permutations which transform a
into a^{\prime} and agree with B on the block $b=\{x, \overline{x+1}, \cdots, \overline{x+r-1}\}$. In fact, any D in $C(A)$ for which $x D=y$ has this property. If D is such a permutation, we shall write simply $(a) D=a^{\prime} ;(b) D=(b) B$.

From this fact, we easily derive the following lemma:

Lemma 4. Let a_{1}, \cdots, a_{k} be distinct cycles of A containing the blocks b_{1}, \cdots, b_{k} respectively. If the images of b_{i} under B lie in distinct cycles a_{i}^{\prime} of $A, i=1,2, \cdots, k$, then there exist permutations D in $C(A)$ such that $\left(a_{i}\right) D=a_{i}^{\prime} ;\left(b_{i}\right) D=\left(b_{i}\right) B, i=1,2, \cdots, k$.

We are now in a position to prove the following result:
Theorem 2. Given any B in $S_{N}(X)$, there exists an element D in $C(A)$ which agrees with B on at least

$$
u_{B}+\frac{1}{2} v_{B}+\frac{1}{3} w_{B}
$$

points of X.
Proof. Let $a_{1}, a_{2}, \cdots, a_{m}$ be the cycles of A. For any $i, j, 1 \leqq i$, $j \leqq m$, let $b_{i j}$ be the maximal number of elements of a_{i} on which a permutation D in $C(A)$ mapping a_{i} into a_{j} can agree with B. Thus if B transforms a_{i} into $a_{j}, b_{i j}=n$. If $\left(a_{i}\right) B \cap a_{j}=\phi$, then $b_{i j}=0$. Now, to any $m \times m$ permutation matrix $\left(e_{i j}\right)$ there corresponds a permutation D in $C(A)$ which agrees with B on

$$
\begin{equation*}
\sum_{i, j} e_{i j} b_{i j} \tag{20}
\end{equation*}
$$

points, where D is defined to transform a_{i} into a_{j} if $e_{i j}=1$, and to $\operatorname{map} a_{i}$ so as to agree with B on $b_{i j}$ points.

We wish to show

$$
\begin{equation*}
\max _{\left(e_{i j}\right)} \sum e_{i j} b_{i j} \geqq u+\frac{1}{2} v+\frac{1}{3} w, \tag{21}
\end{equation*}
$$

where ($e_{i j}$) ranges over all permutation matrices. To do this, consider the set of all real $m \times m$ matrices $\left(x_{i j}\right)$ such that

$$
\begin{array}{rll}
x_{i j} \geqq 0 ; & 1 \leqq i, j \leqq m \\
\sum_{i} x_{i j}=1 ; & 1 \leqq j \leqq m \\
\sum_{j} x_{i j}=1 ; & 1 \leqq i \leqq m
\end{array}
$$

This is the set of doubly stochastic matrices and is a convex, bounded set whose vertices consist of exactly the permutation matrices (see [1],
pp. 132-3).
The following lemma will be useful in proving the theorem.
Lemma 5. If $\left(x_{i j}\right)$ is any doubly stochastic matrix, then there exists a permutation matrix ($e_{i j}$) such that

$$
\begin{equation*}
\sum_{i, j} e_{i j} b_{i j} \geqq \sum_{i, j} x_{i j} b_{i j} \tag{25}
\end{equation*}
$$

Proof. See [1], p. 134.
If we can now demonstrate a doubly stochastic matrix such that

$$
\begin{equation*}
\sum_{i, j} x_{i j} b_{i j} \geqq u+\frac{1}{2} v+\frac{1}{3} w \tag{26}
\end{equation*}
$$

we will clearly be finished since, by Lemma 5 , there must then be some permutation matrix ($e_{i j}$) such that

$$
\sum_{i, j} e_{i j} b_{i j} \geqq u+\frac{1}{2} v+\frac{1}{3} w,
$$

and this permutation matrix will yield the desired mapping D.
To find a matrix satisfying (26), define

$$
\begin{equation*}
x_{i j}=\frac{n_{i j}}{n}, \tag{27}
\end{equation*}
$$

where $n_{i j}$ is the number of points of a_{i} which B maps into a_{j}. The matrix ($x_{i j}$) is clearly doubly stochastic, so we must show that (26) holds. But if $a_{i} \cong U_{B}$, then

$$
\sum_{j} x_{i j} b_{i j}=n,
$$

since $\left(a_{i}\right) B=a_{j_{1}}$ for some j_{1}. If $\alpha_{i} \subseteq V_{B}$, there exist indices j_{1} and j_{2} such that $\left(p_{1}\right) B \subset a_{j_{1}}$ and $\left(p_{2}\right) B \subset a_{j_{2}}$. Note that $j_{1} \neq j_{2}$, or else a_{i} would be transformed by B into $a_{j_{1}}$. In this case, then,

$$
\begin{aligned}
& \sum_{j} x_{i j} b_{i j}=\frac{\left|p_{1}\right|^{2}}{n}+\frac{\left|p_{2}\right|^{2}}{n} \geqq \frac{n}{2} \\
& \text { (remember }\left|p_{1}\right|+\left|p_{2}\right|=n \text {) }
\end{aligned}
$$

Finally, when $a_{i} \subseteq W_{B}$, one of three things can happen:
(a) q_{1}, q_{2}, q_{3} can be mapped by B into three distinct cycles of A.
(b) $\dot{q}_{1}, q_{2}, q_{3}$ can be mapped by B into only two cycles of A,
(c) q_{1}, q_{2}, q_{3} can be mapped into one cycle of A.

In the first case,

$$
\sum_{j} x_{i j} b_{i j}=\sum_{k=1}^{3} \frac{\left|q_{k}\right|^{2}}{n} .
$$

In the second case,

$$
\begin{aligned}
& \sum_{j} x_{i j} b_{i j}=\frac{\left|q_{k_{1}}\right|^{2}}{n}+\frac{\left(\left|q_{k_{2}}\right|+\left|q_{k_{3}}\right|\right)}{n}\left|q_{k_{2}}\right| \\
& \quad \text { where }\left|q_{k_{2}}\right| \geqq\left|q_{k_{3}}\right| .
\end{aligned}
$$

Finally, in case c,

$$
\sum_{j} x_{i j} b_{i j}=\left|q_{1}\right| \frac{\left(\left|q_{1}\right|+\left|q_{2}\right|+\left|q_{3}\right|\right)}{n},
$$

where $\left|q_{1}\right| \geqq\left|q_{2}\right|,\left|q_{3}\right|$.
Since $\left|q_{1}\right|+\left|q_{2}\right|+\left|q_{3}\right|=n$, it follows at once in all three cases that

$$
\sum_{j} x_{i j} b_{i j} \geqq \frac{n}{3} .
$$

We have thus demonstrated the existence of a doubly stochastic matrix $\left(x_{i j}\right)$ with the property

$$
\sum_{i, j} x_{i j} b_{i j} \geqq u+\frac{1}{2} v+\frac{1}{3} w .
$$

Together with Lemma 5, this completes the proof of the theorem.
As an immediate corollary of Theorems 1 and 2 , we obtain our main result:

Theorem 3. Let A contain at least two distinct cycles. If n is even, $d_{A}=1 / 4$. If n is odd,

$$
\frac{n-1}{4 n} \leqq d_{\Delta} \leqq \frac{1}{4} .
$$

Reference

1. S. Karlin, Mathematical Methods and Theory in Games, Programming and Economics, vol. I (1959).

Clark University
Institute for Defense Analyses
Yale University

