HOMOGENEITY OF INFINITE PRODUCTS OF MANIFOLDS WITH BOUNDARY

M. K. Fort, Jr.

1. Introduction. In 1931, O. H. Keller [2] proved that the Hilbert cube Q is homogeneous. V. L. Klee, Jr., proved [3] in 1955 that Q is homogeneous with respect to finite sets, and in 1957 strengthened this result [4] by showing that Q is homogeneous with respect to countable closed sets. Our Theorem 1 extends this latter result to spaces which are the product of a countably infinite number of manifolds with boundary. Our method of proof exploits the notion of category for the space of self-homeomorphisms of the product space, and differs considerably from the methods of Keller and Klee, who made use of convexity properties of linear spaces.

In Theorem 2 we prove that if P is the product of a countably infinite number of manifolds with boundary and U and V are countable dense subsets of P, then there is a homeomorphism h of P onto itself such that $h\lceil U]=V$. This theorem is analogous to a well known theorem about Euclidean spaces (see [1], p. 44). In a corollary to our Theorem 2, we show that if U is a countable subset of the Hilbert cube Q, then there is a contraction $h_{t}, 0 \leqq t \leqq 1$, on Q such that if $0<t<1$, then h_{t} is a homeomorphism and $h_{t}[Q] \cap U=\phi$.
2. Notation and lemmas. For each positive integer n, we let M_{n} be a compact manifold with boundary, and we let B_{n} be the boundary of M_{n}. We let P be the cartesian product space $M_{1} \times M_{2} \times M_{3} \times \cdots$. The projection mapping of P into M_{n} is denoted by π_{n}. If $x \in P$, we denote $\pi_{n}(x)$ by x_{n}. An admissible metric d_{n} for M_{n} is chosen so that M_{n} has diameter less than 2^{-n}, and we then define an admissible metric d for P by letting

$$
d(x, y)=\sum_{n=1}^{\infty} d_{n}\left(x_{n}, y_{n}\right)
$$

If f and g are mappings on a compact metric space X into a metric space Y, we let $\rho(f, g)$ denote the least upper bound of the distances between $f(x)$ and $g(x)$ for x in X.

The set of all homeomorphisms of P onto P is denoted by H. Although the metric space (H, ρ) is not complete, it is topologically complete (i.e. homeomorphic to a complete metric space) and hence is

[^0]a second category space.
The following two lemmas can be proved using standard techniques, and the proofs are merely outlined.

Lemma 1. If M is a manifold with boundary B, α is an arc lying in B, u and v are the end points of α, and W is an open subset of M which contains α, then there is a homeomorphism ψ of M onto M such that $\psi(u)=v$ and $\psi(x)=x$ for $x \in M-W$.

Proof. Let S be the set of all points t of α for which there exists a homeomorphism ψ of M onto M such that $\psi(u)=t$ and $\psi(x)=x$ for $x \in M-W$. It is easy to see that S is both open and closed relative to α.

Lemma 2. If M is a manifold with boundary B, the dimension of M is at least $2, C$ is a countable and compact subset of $M-B$, and φ is a homeomorphism on C into $M-B$, then φ can be extended to a homeomorphism Φ on M onto M.

Proof. For each positive integer n, we can obtain compact sets J_{n} and K_{n} such that:
(i) C is contained in the interior of J_{n} and $\varphi[C]$ is contained in the interior of K_{n};
(ii) each component of J_{n} and of K_{n} has diameter less than $1 / n$ and is homeomorphic to a spherical ball of dimension equal to that of M;
(iii) for each component D of $J_{n}, \varphi[D \cap C]$ is contained in a single component of K_{n}; and
(iv) $J_{n} \supset J_{n+1}$ and $K_{n} \supset K_{n+1}$.

Using the sets J_{n} and K_{n}, it is possible to construct homeomorphisms Φ_{n} of M onto M such that:
(i) if D is a component of J_{n} and E is a component of K_{n}, then $\Phi_{n}[D] \subset E$ if and only if $\left.\left.\varphi\right] D \cap C\right] \subset E$; and
(ii) $\Phi_{n+1}(x)=\Phi_{n}(x)$ for all $x \in M-J_{n}$.

The sequence $\Phi_{1}, \Phi_{2}, \Phi_{3}, \cdots$ converges to the desired homeomorphism.
Lemma 3. If $p \in P$, there is a residual subset R of H such that if $h \in R$, then $h(p)_{n} \in M_{n}-B_{n}$ for each n.

Proof. Let $K_{n}=\left\{h \mid h \in H\right.$ and $\left.h(p)_{n} \in B_{n}\right\}$. It is obvious that each K_{n} is closed. We want to prove that K_{n} if nowhere dense. Thus, suppose $h \in K_{n}$ for some n and that $\varepsilon>0$. We seek $g \in H-K_{n}$ such that $\rho(g, h)<\varepsilon$.

Choose an integer $m \neq n$ such that M_{m} has diameter less than ε. We define $M=M_{n} \times M_{m} . \quad M$ is also a manifold with boundary, and the boundary B of M is the set $\left(M_{n} \times B_{m}\right) \cup\left(B_{n} \times M_{m}\right)$. Since $h \in K_{n}$, the point $\left(h(p)_{n}, h(p)_{m}\right)$ is a member of $B_{n} \times M_{m}$. Let q be a point of B_{m}
such that $q \neq h(p)_{m}$. There is an arc β in $B_{n} \times M_{m}$ which joins $\left(h(p)_{n}, h(p)_{m}\right)$ to $\left(h(p)_{n}, q\right)$ and has diameter less than ε (since M_{m} has diameter less than ε). We may now choose a point $r \in M_{n}-B_{n}$ and an arc γ joining (r, q) to $\left(h(p)_{n}, q\right)$ such that $\beta \cup \gamma$ is an arc and has diameter less than ε. We let $\alpha=\beta \cup \gamma$.

We now use Lemma 1 to obtain a homeomorphism ψ of M onto M such that ψ maps the point $\left(h(p)_{n}, h(p)_{m}\right)$ onto (r, q) and the distance from x to $\psi(x)$ is less than ε for all $x \in M$.

Now, we define $g \in H$ by letting $g(y)_{k}=h(y)_{k}$ if $n \neq k \neq m$, and letting

$$
\left(g(y)_{n}, g(y)_{m}\right)=\psi\left(\left(h(y)_{n}, h(y)_{m}\right)\right) .
$$

Since $g(p)_{n}=r$ and $r \notin B_{n}, g \in H-K_{n}$. It is easy to see that $\rho(g, h)<\varepsilon$, and hence we have proved that K_{n} is nowhere dense. We define $R=$ $H-\bigcup_{n=1}^{\infty} K_{n} . \quad R$ is a residual set and if $h \in R$, then $h(p)_{n} \notin B_{n}$ for all n.

Lemma 4. If p and q are points of P, then there is a residual subset R of H such that if $h \in R$, then $h(p)_{n} \neq h(q)_{n}$ for all n.

Proof. We define $J_{n}=\left\{h \mid h \in H\right.$ and $\left.h(p)_{n}=h(q)_{n}\right\}$. Each J_{n} is closed. We want to prove that J_{n} is nowhere dense. Suppose $h \in J_{n}$ and $\varepsilon>0$. We seek $g \in H-J_{n}$ such that $\rho(g, h)<\varepsilon$.

It follows from Lemma 3, and the fact that residual subsets of H are dense in H, that there exists $f \in H$ such that $\rho(f, h)<\varepsilon / 2$ and for all $k, f(p)_{k} \notin B_{k}$ and $f(q)_{k} \notin B_{k}$. If $f(p)_{n} \neq f(q)_{n}$ we can let $g=f$. Otherwise, we choose $m \neq n$ so that $f(p)_{m} \neq f(q)_{m}$ and define $M=M_{n} \times M_{m}$. Since $\left(f(p)_{n}, f(p)_{m}\right)$ and $\left(f(q)_{n}, f(q)_{m}\right)$ are not equal and neither is on the boundary of M, there is a homeomorphis φ of M onto M such that the distance from x to $\varphi(x)$ is less than $\varepsilon / 2$ for all $x \in M$ and such that the points $\varphi\left(\left(f(p)_{n}, f(p)_{m}\right)\right)$ and $\varphi\left(\left(f(q)_{n}, f(q)_{m}\right)\right)$ have different first coordinates. We now define $g \in H$ by letting $g(y)_{k}=f(y)_{k}$ if $n \neq k \neq m$, and $\left(g(y)_{n}, f(y)_{m}\right)=\varphi\left(\left(f(y)_{n}, f(y)_{m}\right)\right)$. It is easy to see that $\rho(g, f)<\varepsilon / 2$ and hence $\rho(g, h)<\varepsilon$. Moreover, $g(p)_{n} \neq g(q)_{n}$ and hence $g \in H-J_{n}$.

We obtain the desired residual set R by letting $R=H-\bigcup_{n=1}^{\infty} J_{n}$.
Theorem 1. If A is a closed and countable subset of P and f is a homeomorphism on A into P, then f can be extended to a homeomorphism F on P onto P.

Proof. There is no loss in generality in assuming that each M_{n} has dimension at least 2 , for otherwise we could define $S_{n}=M_{2 n-1} \times M_{2 n}$ and represent P as $S_{1} \times S_{2} \times S_{3} \times \cdots$.

It follows from Lemma 3 and Lemma 4 that there is a homeomorphism
$h \in H$ such that for each n, the projection mapping π_{n} maps both $h[A]$ and $h f[A]$ in a one-to-one manner into $M_{n}-B_{n}$. The mapping $\varphi_{n}=$ $\pi_{n} h f h^{-1} \pi_{n}^{-1}$ is one-to-one on $\pi_{n} h[A]$ onto $\pi_{n} h f[A]$ and can be extended by Lemma 2 to a homeomorphism Φ_{n} on M_{n} onto M_{n}. We obtain $\Phi \in H$ by letting $\Phi(x)_{n}=\Phi_{n}\left(x_{n}\right)$. The desired extension F of f is obtained by defining $F=h^{-1} \Phi h$.

Let h be a homeomorphism on a compact space X into a compact space Y, and let n be a positive integer. We define

$$
\eta(h, n)=2^{-n} \cdot \inf \{d(h(x), h(y)) \mid x, y \in X \text { and } d(x, y) \geqq 1 / n\} .
$$

Lemma 5. If $h_{1}, h_{2}, h_{3}, \cdots$ is a sequence of homeomorphisms on X onto Y such that $\rho\left(h_{n}, h_{n+1}\right)<\eta\left(h_{n}, n\right)$, then the sequence converges uniformly to a homeomorphism h on X into Y.

Proof. It is clear that the sequence converges uniformly to a continuous function h on X into Y. We must prove that h is one-to-one.

Suppose u and v are distinct points of X. We choose $n>1$ so that $d(u, v)>1 / n$. Then, for $k \geqq n$,

$$
\begin{aligned}
d\left(h_{k+1}(u), h_{k+1}(v)\right) & \geqq d\left(h_{k}(u), h_{k}(v)\right)-d\left(h_{k}(u), h_{k+1}(u)\right)-d\left(h_{k}(v), h_{k+1}(v)\right) \\
& \geqq d\left(h_{k}(u), h_{k}(v)\right)-2 \eta\left(h_{k}, k\right) \\
& \geqq d\left(h_{k}(u), h_{k}(v)\right)-2 \cdot 2^{-k} d\left(h_{k}(u), h_{k}(v)\right) \\
& \geqq d\left(h_{k}(u), h_{k k}(v)\right) \cdot\left(1-2^{-k+1}\right) .
\end{aligned}
$$

Thus,

$$
\begin{aligned}
d(h(u), h(v)) & =\lim _{k \rightarrow \infty} d\left(h_{k}(u), h_{k}(v)\right) \\
& \geqq d\left(h_{n}(u), h_{n}(v)\right) \cdot \prod_{j=n}^{\infty}\left(1-2^{-j+1}\right) \\
& \left.\geqq d\left(h_{n}(u), h_{n}(v)\right) / 4, \quad \text { (since } n>1\right) .
\end{aligned}
$$

This proves that h is one-to-one and hence a homeomorphism.
Theorem 2. If U and V are countable dense subsets of P, then there is a homeomorphism h of P onto P such that $h[U]=V$.

Proof. As we have remarked in the proof of Theorem 1, there is no loss in generality in assuming that each M_{n} has dimension at least 2. In view of Lemma 3 and Lemma 4, we may also assume that U and V are so situated in P that each π_{n} maps both U and V in a one-to-one manner into $M_{n}-B_{n}$.

We are going to arrange the points of U and V into sequences $u_{1}, u_{2}, u_{3}, \cdots$ and $v_{1}, v_{2}, v_{3}, \cdots$ and choose homeomorphisms $h_{i j}$ for all
positive integers i and j. This is done by a fairly complicated inductive process, the first four steps of which are given below. We let $U_{1}=U$, $V_{1}=V$, and as soon as u_{1}, \cdots, u_{n} and v_{1}, \cdots, v_{n} are defined, we let $U_{n+1}=U_{n}-\left\{u_{1}, \cdots, u_{n}\right\}, V_{n+1}=V_{n}-\left\{v_{1}, \cdots, v_{n}\right\}$. We assume that U and V are well ordered so as to have the order type of the positive integers. We let H_{n} be the set of homeomorphisms of M_{n} onto itself.

Step 1. u_{1} is chosen to be the first point of U and v_{1} is chosen to be the first point of $V . h_{11} \in H_{1}$ is chosen so that $h_{11} \pi_{1}\left(u_{1}\right)=\pi_{1}\left(v_{1}\right)$. $h_{1 j} \in H_{j}$ is the identity for $j>1$.

Step 2. v_{2} is the first point of $V_{2} . \quad u_{2} \in U_{2}$ is chosen near enough to v_{2} for us to obtain $h_{21} \in H_{1}$ so that: $\rho\left(h_{21}, h_{11}\right)<\eta\left(h_{11}, 1\right)$ and $h_{21} \pi_{1}\left(u_{j}\right)=$ $\pi_{1}\left(v_{j}\right)$ for $j=1,2$. $h_{22} \in H_{2}$ is chosen so that $h_{22} \pi_{2}\left(u_{j}\right)=\pi_{2}\left(v_{j}\right)$ for $j=1,2$. $h_{2 j} \in H_{j}$ is the identity for $j>2$.

Step 3. u_{3} is the first point of $U_{3} . v_{3} \in V_{3}$ is chosen near enough to u_{3} for us to obtain $h_{3 i} \in H_{i}$ so that: $\rho\left(h_{3 i}, h_{2 i}\right)<\eta\left(h_{2 i}, 2\right)$ and $h_{3 i} \pi_{i}\left(u_{j}\right)=$ $\pi_{i}\left(v_{j}\right)$ for $i=1,2$ and $j=1,2,3 . \quad h_{33} \in H_{3}$ is chosen so that $h_{33} \pi_{3}\left(u_{j}\right)=$ $\pi_{3}\left(v_{j}\right)$ for $j=1,2,3 . h_{3 j} \in H_{j}$ is the identity for $j>3$.

Step 4. v_{4} is the first point of $V_{4} . \quad u_{4} \in U_{4}$ is chosen near enough to v_{4} for us to obtain $h_{4 i} \in H_{i}$ so that: $\rho\left(h_{4 i}, h_{3 i}\right)<\eta\left(h_{3 i}, 3\right)$ and $h_{4 i} \pi_{i}\left(u_{j}\right)=$ $\pi_{i}\left(v_{j}\right)$ for $i=1,2,3$ and $j=1, \cdots, 4$. $h_{44} \in H_{4}$ is chosen so that $h_{44} \pi_{4}\left(u_{j}\right)=$ $\pi_{4}\left(v_{j}\right)$ for $j=1, \cdots, 4$. $h_{4 j} \in H_{j}$ is the identity for $j>4$.

We continue this process. By Lemma 5, the homeomorphisms $h_{j 1}, h_{j 2}, h_{j 3}, \cdots$ converge uniformly to a homeomorphism $g_{j} \in H_{j}$. It is easy to see that $g_{j} \pi_{j}\left(u_{i}\right)=\pi_{j}\left(v_{i}\right)$ for all i and j. There is determined uniquely a homeomorphism $h \in H$ for which $\pi_{j} h=g_{j} \pi_{j}$ for all j. Since $h\left(u_{i}\right)=v_{i}$ for all i, and $U=\left\{u_{1}, u_{2}, \cdots\right\}, V=\left\{v_{1}, v_{2}, \cdots\right\}, h$ is the desired homeomorphism.

Corollary. If C is a countable subset of the Hilbert cube Q, then there is a contraction $h_{t}, 0 \leqq t \leqq 1$, defined on Q such that:
(i) h_{1} is the identity,
(ii) h_{0} is a constant mapping, and
(iii) if $0<t<1, h_{t}$ is a homeomorphism of Q into Q and $h_{t}[Q] \cap C=\phi$.

Proof. We let M_{n} be the closed interval $\left[-5^{-n}, 5^{-n}\right]$. The resulting space P may then be thought of as the Hilbert cube Q. (This representation is used since M_{n} was assumed to have diameter less than 2^{-n}.) We let D be the set of all points x in P such that $\pi_{i}(x)$ is rational for
all i, and $\pi_{i}(x)=5^{-i}$ for all but a finite number of values of i :
Both $C \cup D$ and D are countable and dense in P, so by Theorem 2 there is a homeomorphism G of P onto P such that $G[C \cup D]=D$. We define $g_{t}(x)=t x$ for $0 \leqq t \leqq 1$ and $x \in P$. Finally, we let $h_{t}=$ $G^{-1} g_{t} G$. It is easy to see that the desired contraction is $h_{t}, 0 \leqq t \leqq 1$.

References

1. W. Hurewicz and H. Wallman, Dimension Theory, Princeton 1941.
2. Ott-Heinrich Keller, Die Homoiomorphie der kompakten konvexen Mengen im Hilbertschen Raum, Math. Ann., 105 (1931), 748-758.
3. V. L. Klee, Jr., Some topological properties of convex sets, Trans. Amer. Math. Soc., 78 (1955), 30-45.
4. -, Homogeneity of infinite-dimensional parallelotopes, Annals of Math., 66 (1957), 454-460.

University of Georgia

[^0]: Received October 3, 1961. Written during a period in which the author was an Alfred P. Sloan Research Fellow. This work was also partially supported by National Science Foundation grant NSF-G12972.

