FURTHER RESULTS ON *p*-AUTOMORPHIC *p*-GROUPS

J. BOEN, O. ROTHAUS, AND J. THOMPSON

Graham Higman [3] has shown that a finite *p*-group, *p* an odd prime, with an automorphism permuting the subgroups of order *p* cyclically is abelian. In [1] a *p*-group was defined to be *p*-automorphic if its automorphism group is transitive on the elements of order *p*. It was conjectured that a *p*-automorphic *p*-group ($p \neq 2$) is abelian and proved that a counterexample must be generated by at least four elements. In this present paper we prove that a counterexample generated by *n* elements must be such that n > 5 and, if $n \neq 6$, then $p < n3^{n^2}$ (Theorem 3). We also show that the existence of a counterexample implies the existence of a certain algebraic configuration (Theorem 1). All groups considered are finite.

Notation. $\mathcal{P}(P)$ is the Frattini subgroup of the *p*-group *P* and *P'* is its commutator subgroup. $\Omega_i(P)$ is the subgroup generated by the elements of *P* whose orders do not exceed p^i . Z(P) is the center of *P*. F(m, n, p) denotes the set of *p*-automorphic *p*-groups *P* which enjoy the additional properties:

- 1. $P' = \Omega_1(P)$ is elementary abelian of order p^n .
- 3. $|P: \mathcal{O}(P)| = p^n$.

In [1] it was shown that a counterexample generated by n elements has a quotient group in F(m, n, p). Hence, in arguing by contradiction, we may assume that a counterexample P is in F(m, n, p).

Let $A = A(P) = \operatorname{Aut} P$ and let $A_0 = \operatorname{ker}(\operatorname{Aut} P \to \operatorname{Aut} P/\Phi(P))$. Thus $A/A_0 = B$ is faithfully represented as linear transformations of $V = P/\Phi(P)$, considered as a vector space over GF(p).

Since p is odd and cl(P) = 2, the mapping $\eta: x \to x^{p^m}$ is an endomorphism of P which commutes with each σ of Aut P. Since $\Omega_m(P) = \Phi(P)$, ker $\eta = \Phi(P)$, so η induces an isomorphism of V into W = P'. Since dim $V = \dim W$, η is onto.

The commutator function induces a skew-symmetric bilinear map of $V \times V$ onto W, (onto since P is *p*-automorphic) and since $\Phi(P) = Z(P)$, (,) is nondegenerate. Associated with (,) is a nonassociative product \circ , defined as follows: If $\alpha, \beta \in V$, say $\alpha = x\Phi(P), \beta = y\Phi(P)$, then [x, y] is an element of W which depends only on α, β , and so $[x, y] = z^{p^m}$ where the coset $\gamma = z\Phi(P)$ depends only on α, β . We write $\alpha \circ \beta = \gamma$. An immediate consequence of this condition is the statement that $\alpha \to \alpha \circ \beta$

Received December 6, 1961. Boen's work on this paper was partly supported by N.S.F Grant G-9504.

is a linear map ϕ_{β} of V into V. Thus, \circ induces a map θ of V into End V, the ring of linear transformations of V to V.

If $\bar{\sigma}$ is the inner automorphism of End V induced by $\sigma \in B$, then the diagram

$$V \xrightarrow{\theta} \text{End } V$$

$$\sigma \downarrow \qquad \qquad \qquad \downarrow \bar{\sigma}$$

$$V \xrightarrow{\theta} \text{End } V$$

commutes, that is $\phi_{\beta^{\sigma}} = \sigma^{-1}\phi_{\beta}\sigma$. Since *P* is *p*-automorphic, if α, β are nonzero elements of *V*, then $\alpha = \beta^{\sigma}$ for suitable $\sigma \in B$, so that $\phi_{\alpha} = \sigma^{-1}\phi_{\beta}\sigma$.

THEOREM 1. If $\alpha \in V$, then ϕ_{α} is nilpotent.

Proof. We can suppose $\alpha \neq 0$. Since $\alpha \circ \alpha = 0$, ϕ_{α} is singular. Let $f(x) = x^n + c_1 x^{n-1} + c_2 x^{n-2} + \cdots$ be the characteristic equation of ϕ_{α} . f(x) is independent of the nonzero element α of V, and $c_n = 0$ since ϕ_{α} is singular.

Let $\alpha_1, \dots, \alpha_n$ be a basis for V, and identify ϕ_{α} with the matrix which is associated with ϕ_{α} and the basis $\alpha_1, \dots, \alpha_n$. Then c_i is the sum of all i by i principal minors of ϕ_{α} , so if $\alpha = \lambda_1 \alpha_1 + \dots + \lambda_n \alpha_n$, c_i is a homogeneous polynomial of degree $i (\leq n-1)$ in the n variables $\lambda_1, \dots, \lambda_n$. By a Theorem of Chevalley [2], there are values $\lambda_1, \dots, \lambda_n$ of GF(p)which are not all zero, such that $c_i = 0$. Since c_i is independent of the non-zero tuple $(\lambda_1, \dots, \lambda_n)$, it follows that $c_i = 0$ so ϕ_{α} is nilpotent.

Theorem 1 states that $\theta(V)$ is a linear variety of End (V) consisting only of nilpotent matrices such that any two nonzero $x, y \in \theta(V)$ are similar. If one could show that the algebra generated by $\theta(V)$ were nilpotent, an easy argument would show that all *p*-automorphic *p*-groups (p odd) are abelian.

THEOREM 2. Let r be the rank of ϕ_{α} . If n > 3, then 2 < r < n - 1.

Proof. We assume n > 3 because $n \leq 3$ was treated in [1]. Clearly $r \neq 0$ because P is non-abelian and $r \neq n$ by Theorem 1.

Case I. $r \neq n-1$. Suppose r = n-1. Then, for $\alpha \neq 0$, $\beta \circ \alpha = \beta \phi_{\alpha} = 0$ implies that $\beta \in \{\alpha\}$ where $\{\alpha\}$ is the subspace of V spanned by α . If $\gamma \phi_{\alpha}^2 = (\gamma \phi_{\alpha})\phi_{\alpha} = 0$, then $\gamma \phi_{\alpha} \in \{\alpha\}$, say $\gamma \phi_{\alpha} = k\alpha$. But $\gamma \phi_{\alpha} + \alpha \phi_{\gamma} = 0$ by the skew-symmetry of \circ , so $\alpha \phi_{\gamma} = -k\alpha$. By Theorem 1, k = 0 and thus $\gamma \in \{\alpha\}$. Hence rank $\phi_{\alpha}^2 = \operatorname{rank} \phi_{\alpha}$, a contradiction to Theorem 1.

Case II. $r \neq 1$. Choose a basis of V, say $\alpha_1, \dots, \alpha_n$, and suppose

that $\phi_{\alpha} = (a_{ij})$ with respect to this basis; End (V) has the obvious matrix representation with $\phi_{\alpha} \in \theta(V) \subset \text{End}(V)$. Recall that $\theta(V)$ becomes an *n*-space of *n* by *n* nilpotent matrices over GF(p) in which any two nonzero matrices are similar. If r = 1, then we may assume without loss of generality that ϕ_{α} has a 1 in the (1, 2) position and zeros elsewhere.

If every $(x_{ij}) = X \in \theta(V)$ satisfies $x_{ij} = 0$ for i > 1, then we are done because the nilpotency of X implies that $x_{11} = 0$ for every $X \in \theta(V)$, which implies that dim $\theta(V) < n$. If, on the other hand, there exists $X \in \theta(V)$ with a nonzero entry below the first row, then we may use the fact that every 2 by 2 subdeterminant of every element of $\theta(V)$ vanishes to show that every X has its nonzero elements in the second column only. But the nilpotency of X implies that $x_{22} = 0$. Hence dim $\theta(V) < n$, a contradiction.

Case III. $r \neq 2$. If r = 2, we may assume without loss of generality that

(a) ϕ_{α} has 1's in the (1, 2), (2, 3) positions and zeros elsewhere or else

(b) ϕ_{α} has 1's in the (1, 2), (3, 4) positions and zeros elsewhere. First consider (a).

If every $(x_{ij}) = X \in \theta(V)$ satisfies $x_{ij} = 0$ for i > 2, then $Z(P) \subsetneq \theta(P)$, a contradiction. If every $X \in \theta(V)$ satisfies $x_{ij} = 0$ for $j \neq 2, 3$, then $x_{32} = 0$ because $X + k\phi_{\alpha}$ is nilpotant for every $k \in GF(p)$ and p > 2. But then dim $\theta(V) < n$, a contradiction. Hence we need consider only the subcase of (a) in which some $X \in \theta(V)$ has a nonzero entry below the third row and a nonzero entry that is not in columns two or three. Consider such an X. Unless $x_{ij} = 0$ when $i \neq 1, 2$ and $j \neq 2, 3$, it is easy to see that there exists a nonzero 3 by 3 determinant in $X + k\phi_{\alpha}$ for some k. It is also easy to see that any two rows of X below the second row are dependent. Using the fact that every 3 by 3 subdeterminant of every element of $\theta(V)$ is zero, it is straightforward to show that there exist nonsingular matrices R and S such that RXS has 1's in the (1, 4), (3, 2) positions and zeroes elsewhere and $R\phi_{\alpha}S$ has 1's in the (1, 3), (2, 2) positions and zeroes elsewhere.

Set X' = RXS, $\phi'_{\alpha} = R\phi_{\alpha}S$. It is now straightforward to show that that if $Y = (y_{ij}) \in R\theta(V)S$ is linearly independent from $\{X', \phi'_{\alpha}\}$, then $y_{ij} = 0$ for $i \neq 1$ and $j \neq 2$. This implies that dim $R\theta(V)S < n$, a contradiction, since dim $R\theta(V)S = \dim \theta(V) = n$.

Subcase (b), in which $\phi_{\alpha}^2 = 0$, is handled in a similar fashion except that we exclude the case in which every $X \in \theta(V)$ satisfies $x_{ij} = 0$, $j \neq 2, 4$, by noting the following: In such a case $(X + k\phi_{\alpha})^2 = 0$ for every k implies that $x_{22} = 0$, which in turn implies that dim $\theta(V) < n$.

COROLLARY. F(m, n, p) is empty for all m and odd p unless n > 5.

Proof. Theorem 2 implies that n > 4 and that if n = 5, then rank $\phi_{\alpha} = 3$. Let S_n denote the projective (n - 1)-space whose points are the 1-subspaces of V. If n = 5 and rank $\phi_{\alpha} = 3$, then it follows that S_5 is partitioned into lines according to the rule that $\{\alpha\}, \{\beta\} \ (0 \neq \alpha, \beta \in V)$ lie on the same line if and only if $\alpha \circ \beta = 0$. But S_5 has $p^4 + p^3 + p^2 + p + 1$ points and cannot be partitioned into disjoint subsets of p + 1 points each.

THEOREM 3. If $p \ge n3^{n^2}$ and $n \ne 6$, then F(m, n, p) is empty for all positive integers m.

Proof. If GL(n, p) denotes the invertible elements of End V, then $|GL(n, p)| = p^{n(n-1)/2} \cdot k(n, p)$, where $k(n, p) = (p^n - 1)(p^{n-1} - 1) \cdots (p-1)$.

If we consider $GF(p^n)$ as a vector space over GF(p), the right-regular representation shows that GL(n, p) contains a cyclic group of order $p^n - 1$.

Let $\mathcal{P}_d(x)$ be the monic polynomial whose complex roots are the primitive dth roots of unity. Then $p^n - 1 = \prod_{d \mid n} \mathcal{P}_d(p)$. By an elementary number-theoretic theorem [4], $\mathcal{P}_n(p)$ and $k(n, p)/\mathcal{P}_n(p)$ are relatively prime, or their greatest common divisor is q where q is the largest prime divisor of n, in which case $\mathcal{P}_n(p)/q$ is relatively prime to $k(n, p)/\mathcal{P}_n(p)$. Thus, we determine $\varepsilon = 0$ or 1 so that $\mathcal{P}_n(p)/q^{\varepsilon}$ is relatively prime to $k(p, n)/\mathcal{P}_n(p)$.

Let $p \in F(m, n, p)$. Since P is p-automorphic, |B| is divisible by $p^n - 1$ and in particular is divisible by $\Phi_n(p)/q^{\varepsilon}$. Let r^{α} be the largest power of the prime r which divides $\Phi_n(p)/q^{\varepsilon}$, $\alpha \ge 1$, and let S_r be a Sylow r-subgroup of B. By Sylow's theorem and the preceding paragraph, S_r is cyclic with generator σ_r .

Since P belongs to the exponent n modulo r, it follows that λ, λ^p , $\dots, \lambda^{p^{n-1}}$ are the characteristic roots of σ_r, λ being a primitive r^{α} th root of unity in $GF(p^n)$.

Since η commutes with σ_r , λ is also a characteristic root of σ_r on W. Since $(\alpha, \beta)^{\sigma} = (\alpha^{\sigma}, \beta^{\sigma})$, the characteristic roots of σ_r on W are to be found among the $\lambda^{p^i+p^j}$, $0 \leq i < j \leq n-1$, as can be seen by diagonalizing σ_r over $V \otimes GF(p^n)$. Hence, $\lambda = \lambda^{p^i+p^j}$ for suitable i, j and so

(1)
$$p^i + p^j - 1 \equiv 0 \pmod{r^{\alpha}}.$$

Since r was any prime divisor of $\Phi_n(p)/q^{\epsilon}$, we have

(2)
$$\prod_{0 \le i < j \le n-1} (p^i + p^j - 1) \equiv 0 \pmod{\varphi_n(p)/q^e}.$$

The polynomials $\Phi_n(x)$, $n \neq 6$, and $x^i + x^j - 1$ are relatively prime, a fact

which can be seen geometrically, as pointed out by G. Higman. Namely, if ε , ε' are complex numbers of absolute value one, and $\varepsilon + \varepsilon' = 1$, then the points 0, 1, ε are the vertices of an equilateral triangle, so that ε is a primitive sixth root of unity. Since $n \neq 6$, we can therefore find integral polynomials f(x), g(x), such that

(3)
$$f(x) \Phi_n(x) + g(x) \prod_{0 \le i < j \le n-1} (x^i + x^j - 1) = |N|$$

where

(4)
$$N = \prod_{\zeta} \prod_{i,j} (\zeta^i + \zeta^j - 1)$$
$$\varphi_n(\zeta) = 0$$

is the resultant of $\Phi_n(x)$ and $\prod (x^i + x^j - 1)$.

From (4) we see that $N \leq 3^{\phi(n)n^2}$, since there are at most $\phi(n)n^2$ triples (ξ, i, j) . Now (2) and (3), the fact that $\mathcal{P}_n(p)/q^{\varepsilon}$ divides |N|, imply that

(5)
$$\Phi_n(p)/q^{\varepsilon} \leq 3^{\phi(n)n^2}$$

One sees geometrically that $\varphi_n(p) \ge (p-1)^{\phi(n)}$, so with (5) and $q^{\varepsilon} \le n$ we find

(6)
$$p \leq 1 + n^{1/\phi(n)} 3^{n^2} < n 3^{n^2}$$
.

REMARK. Theorem 3 of [3] provides a certain motivation for the detailed examination of $\Phi_n(p)$ in the preceding theorem.

BIBLIOGRAPHY

- 1. J. Boen, On p-Automorphic p-Groups, (to appear in Pacific Journal of Mathematics).
- 2. C. Chevalley, Demonstration d'une hypothese de M. Artin, Abh. Math. Seminar U. Hamburg, **11** (1936).
- 3. G. Higman, Suzuki 2-groups, (to appear).
- 4. T. Nagell, Introduction to Elementary Number Theory, Wiley (1951).

UNIVERSITY OF CHICAGO AND UNIVERSITY OF MICHIGAN INSTITUTE FOR DEFENSE ANALYSES UNIVERSITY OF CHICAGO