FURTHER RESULTS ON p-AUTOMORPHIC p-GROUPS

J. Bóen, O. Rothaus, and J. Thompson

Graham Higman [3] has shown that a finite p-group, p an odd prime, with an automorphism permuting the subgroups of order p cyclically is abelian. In [1] a p-group was defined to be p-automorphic if its automorphism group is transitive on the elements of order p. It was conjectured that a p-automorphic p-group $(p \neq 2)$ is abelian and proved that a counterexample must be generated by at least four elements. In this present paper we prove that a counterexample generated by n elements must be such that $n>5$ and, if $n \neq 6$, then $p<n 3^{n^{2}}$ (Theorem 3). We also show that the existence of a counterexample implies the existence of a certain algebraic configuration (Theorem 1). All groups considered are finite.

Notation. $\Phi(P)$ is the Frattini subgroup of the p-group P and P^{\prime} is its commutator subgroup. $\Omega_{i}(P)$ is the subgroup generated by the elements of P whose orders do not exceed p^{i}. $Z(P)$ is the center of P. $F(m, n, p)$ denotes the set of p-automorphic p-groups P which enjoy the additional properties:

1. $\quad P^{\prime}=\Omega_{1}(P)$ is elementary abelian of order p^{n}.
2. $\Phi(P)=Z(P)=\Omega_{m}(P)$ is the direct product of n cyclic groups of order p^{m}.
3. $|P: \Phi(P)|=p^{n}$.

In [1] it was shown that a counterexample generated by n elements has a quotient group in $F(m, n, p)$. Hence, in arguing by contradiction, we may assume that a counterexample P is in $F(m, n, p)$.

Let $A=A(P)=$ Aut P and let $A_{0}=\operatorname{ker}($ Aut $P \rightarrow \operatorname{Aut} P \mid \Phi(P)$). Thus $A \mid A_{0}=B$ is faithfully represented as linear transformations of $V=P \mid \Phi(P)$, considered as a vector space over $G F(p)$.

Since p is odd and $c l(P)=2$, the mapping $\eta: x \rightarrow x^{p^{n}}$ is an endomorphism of P which commutes with each σ of Aut P. Since $\Omega_{m}(P)=$ $\Phi(P)$, ker $\eta=\Phi(P)$, so η induces an isomorphism of V into $W=P^{\prime}$. Since $\operatorname{dim} V=\operatorname{dim} W, \eta$ is onto.

The commutator function induces a skew-symmetric bilinear map of $V \times V$ onto W, (onto since P is p-automorphic) and since $\Phi(P)=Z(P)$, (,) is nondegenerate. Associated with (,) is a nonassociative product \circ, defined as follows: If $\alpha, \beta \in V$, say $\alpha=x \Phi(P), \beta=y \Phi(P)$, then $[x, y]$ is an element of W which depends only on α, β, and so $[x, y]=z^{p^{m}}$ where the coset $\gamma=z \Phi(P)$ depends only on α, β. We write $\alpha \circ \beta=\gamma$. An immediate consequence of this condition is the statement that $\alpha \rightarrow \alpha \circ \beta$

[^0]is a linear map ϕ_{β} of V into V. Thus, o induces a map θ of V into End V, the ring of linear transformations of V to V.

If $\bar{\sigma}$ is the inner automorphism of End V induced by $\sigma \in B$, then the diagram

commutes, that is $\phi_{\beta} \sigma=\sigma^{-1} \phi_{\beta} \sigma$. Since P is p-automorphic, if α, β are nonzero elements of V, then $\alpha=\beta^{\sigma}$ for suitable $\sigma \in B$, so that $\phi_{\alpha}=\sigma^{-1} \phi_{\beta} \sigma$.

Theorem 1. If $\alpha \in V$, then ϕ_{α} is nilpotent.
Proof. We can suppose $\alpha \neq 0$. Since $\alpha \circ \alpha=0, \phi_{\alpha}$ is singular. Let $f(x)=x^{n}+c_{1} x^{n-1}+c_{2} x^{n-2}+\cdots$ be the characteristic equation of ϕ_{α}. $f(x)$ is independent of the nonzero element α of V, and $c_{n}=0$ since ϕ_{α} is singular.

Let $\alpha_{1}, \cdots, \alpha_{n}$ be a basis for V, and identify ϕ_{∞} with the matrix which is associated with ϕ_{α} and the basis $\alpha_{1}, \cdots, \alpha_{n}$. Then c_{i} is the sum of all i by i principal minors of ϕ_{α}, so if $\alpha=\lambda_{1} \alpha_{1}+\cdots+\lambda_{n} \alpha_{n}, c_{i}$ is a homogeneous polynomial of degree $i(\leqq n-1)$ in the n variables λ_{1}, \cdots, λ_{n}. By a Theorem of Chevalley [2], there are values $\lambda_{1}, \cdots, \lambda_{n}$ of $G F(p)$ which are not all zero, such that $c_{i}=0$. Since c_{i} is independent of the non-zero tuple ($\lambda_{1}, \cdots, \lambda_{n}$), it follows that $c_{i}=0$ so ϕ_{a} is nilpotent.

Theorem 1 states that $\theta(V)$ is a linear variety of End (V) consisting only of nilpotent matrices such that any two nonzero $x, y \in \theta(V)$ are similar. If one could show that the algebra generated by $\theta(V)$ were nilpotent, an easy argument would show that all p-automorphic p-groups (p odd) are abelian.

Theorem 2. Let r be the rank of ϕ_{α}. If $n>3$, then $2<r<n-1$.
Proof. We assume $n>3$ because $n \leqq 3$ was treated in [1]. Clearly $r \neq 0$ because P is non-abelian and $r \neq n$ by Theorem 1 .

Case I. $\quad r \neq n-1$. Suppose $r=n-1$. Then, for $\alpha \neq 0, \beta \circ \alpha=$ $\beta \phi_{\alpha}=0$ implies that $\beta \in\{\alpha\}$ where $\{\alpha\}$ is the subspace of V spanned by α. If $\gamma \phi_{\alpha}^{2}=\left(\gamma \phi_{\alpha}\right) \phi_{\alpha}=0$, then $\gamma \phi_{\alpha} \in\{\alpha\}$, say $\gamma \phi_{\alpha}=k \alpha$. But $\gamma \phi_{\alpha}+\alpha \phi_{\gamma}=$ 0 by the skew-symmetry of o, so $\alpha \phi_{\gamma}=-k \alpha$. By Theorem $1, k=0$ and thus $\gamma \in\{\alpha\}$. Hence rank $\phi_{\alpha}^{2}=\operatorname{rank} \phi_{\alpha}$, a contradiction to Theorem 1.

Case II. $\quad r \neq 1$. Choose a basis of V, say $\alpha_{1}, \cdots, \alpha_{n}$, and suppose
that $\phi_{\alpha}=\left(a_{i j}\right)$ with respect to this basis; End (V) has the obvious matrix representation with $\phi_{\alpha} \in \theta(V) \subset \operatorname{End}(V)$. Recall that $\theta(V)$ becomes an n-space of n by n nilpotent matrices over $G F(p)$ in which any two nonzero matrices are similar. If $r=1$, then we may assume without loss of generality that ϕ_{∞} has a 1 in the $(1,2)$ position and zeros elsewhere.

If every $\left(x_{i j}\right)=X \in \theta(V)$ satisfies $x_{i j}=0$ for $i>1$, then we are done because the nilpotency of X implies that $x_{11}=0$ for every $X \in \theta(V)$, which implies that $\operatorname{dim} \theta(V)<n$. If, on the other hand, there exists $X \in \theta(V)$ with a nonzero entry below the first row, then we may use the fact that every 2 by 2 subdeterminant of every element of $\theta(V)$ vanishes to show that every X has its nonzero elements in the second column only. But the nilpotency of X implies that $x_{22}=0$. Hence $\operatorname{dim} \theta(V)<n$, a contradiction.

Case III. $r \neq 2$. If $r=2$, we may assume without loss of generality that
(a) ϕ_{α} has 1 's in the $(1,2),(2,3)$ positions and zeros elsewhere or else
(b) ϕ_{α} has 1's in the $(1,2),(3,4)$ positions and zeros elsewhere. First consider (a).

If every $\left(x_{i j}\right)=X \in \theta(V)$ satisfies $x_{i j}=0$ for $i>2$, then $Z(P) \varsubsetneqq \Phi(P)$, a contradiction. If every $X \in \theta(V)$ satisfies $x_{i j}=0$ for $j \neq 2,3$, then $x_{32}=0$ because $X+k \phi_{a}$ is nilpotant for every $k \in G F(p)$ and $p>2$. But then $\operatorname{dim} \theta(V)<n$, a contradiction. Hence we need consider only the subcase of (a) in which some $X \in \theta(V)$ has a nonzero entry below the third row and a nonzero entry that is not in columns two or three. Consider such an X. Unless $x_{i j}=0$ when $i \neq 1,2$ and $j \neq 2,3$, it is easy to see that there exists a nonzero 3 by 3 determinant in $X+k \phi_{\infty}$ for some k. It is also easy to see that any two rows of X below the second row are dependent, and that any two columns other than the second and third are dependent. Using the fact that every 3 by 3 subdeterminant of every element of $\theta(V)$ is zero, it is straightforward to show that there exist nonsingular matrices R and S such that $R X S$ has 1 's in the $(1,4),(3,2)$ posititions and zeroes elsewhere and $R \phi_{\alpha} S$ has 1's in the $(1,3),(2,2)$ positions and zeroes elsewhere.

Set $X^{\prime}=R X S, \phi_{\alpha}^{\prime}=R \phi_{\alpha} S$. It is now straightforward to show that that if $Y=\left(y_{i j}\right) \in R \theta(V) S$ is linearly independent from $\left\{X^{\prime}, \phi_{\alpha}^{\prime}\right\}$, then $y_{i j}=0$ for $i \neq 1$ and $j \neq 2$. This implies that $\operatorname{dim} R \theta(V) S<n$, a contradiction, since $\operatorname{dim} R \theta(V) S=\operatorname{dim} \theta(V)=n$.

Subcase (b), in which $\phi_{\alpha}^{2}=0$, is handled in a similar fashion except that we exclude the case in which every $X \in \theta(V)$ satisfies $x_{i j}=0, j \neq 2,4$, by noting the following: In such a case $\left(X+k \phi_{\alpha}\right)^{2}=0$ for every k implies that $x_{22}=0$, which in turn implies that $\operatorname{dim} \theta(V)<n$.

Corollary. $\quad F(m, n, p)$ is empty for all m and odd p unless $n>5$.
Proof. Theorem 2 implies that $n>4$ and that if $n=5$, then rank $\phi_{\alpha}=3$. Let S_{n} denote the projective $(n-1)$-space whose points are the 1 -subspaces of V. If $n=5$ and rank $\phi_{\alpha}=3$, then it follows that S_{5} is partitioned into lines according to the rule that $\{\alpha\},\{\beta\}(0 \neq \alpha$, $\beta \in V$) lie on the same line if and only if $\alpha \circ \beta=0$. But S_{5} has $p^{4}+p^{3}+p^{2}+p+1$ points and cannot be partitioned into disjoint subsets of $p+1$ points each.

Theorem 3. If $p \geqq n 3^{n^{2}}$ and $n \neq 6$, then $F(m, n, p)$ is empty for all positive inteqers m.

Proof. If $G L(n, p)$ denotes the invertible elements of End V, then

$$
|G L(n, p)|=p^{n(n-1) / 2} \cdot k(n, p), \text { where } k(n, p)=\left(p^{n}-1\right)\left(p^{n-1}-1\right) \cdots(p-1)
$$

If we consider $G F\left(p^{n}\right)$ as a vector space over $G F(p)$, the right-regular representation shows that $G L(n, p)$ contains a cyclic group of order $p^{n}-1$.

Let $\Phi_{d}(x)$ be the monic polynomial whose complex roots are the primitive d th roots of unity. Then $p^{n}-1=\Pi_{d \mid n} \Phi_{d}(p)$. By an elementary number-theoretic theorem [4], $\Phi_{n}(p)$ and $k(n, p) / \Phi_{n}(p)$ are relatively prime, or their greatest common divisor is q where q is the largest prime divisor of n, in which case $\Phi_{n}(p) / q$ is relatively prime to $k(n, p) / \Phi_{n}(p)$. Thus, we determine $\varepsilon=0$ or 1 so that $\Phi_{n}(p) / q^{\varepsilon}$ is relatively prime to $k(p, n) / \Phi_{n}(p)$.

Let $p \in F(m, n, p)$. Since P is p-automorphic, $|B|$ is divisible by $p^{n}-1$ and in particular is divisible by $\Phi_{n}(p) / q^{\varepsilon}$. Let r^{∞} be the largest power of the prime r which divides $\Phi_{n}(p) / q^{\varepsilon}, \alpha \geqq 1$, and let S_{r} be a Sylow r-subgroup of B. By Sylow's theorem and the preceding paragraph, S_{r} is cyclic with generator σ_{r}.

Since P belongs to the exponent n modulo r, it follows that λ, λ^{p}, $\cdots, \lambda^{p^{n-1}}$ are the characteristic roots of σ_{r}, λ being a primitive r^{α} th root of unity in $G F\left(p^{n}\right)$.

Since η commutes with σ_{r}, λ is also a characteristic root of σ_{r} on W. Since $(\alpha, \beta)^{\sigma}=\left(\alpha^{\sigma}, \beta^{\sigma}\right)$, the characteristic roots of σ_{r} on W are to be found among the $\lambda^{p^{i}+p^{j}}, 0 \leqq i<j \leqq n-1$, as can be seen by diagonalizing σ_{r} over $V \otimes G F\left(p^{n}\right)$. Hence, $\lambda=\lambda^{p^{i}+p^{j}}$ for suitable i, j and so

$$
\begin{equation*}
p^{i}+p^{j}-1 \equiv 0\left(\bmod r^{\alpha}\right) \tag{1}
\end{equation*}
$$

Since r was any prime divisor of $\Phi_{n}(p) / q^{\ell}$, we have

$$
\begin{equation*}
\prod_{0 \leq i<j \leq n-1}\left(p^{i}+p^{j}-1\right) \equiv 0\left(\bmod \Phi_{n}(p) / q^{\varepsilon}\right) \tag{2}
\end{equation*}
$$

The polynomials $\Phi_{n}(x), n \neq 6$, and $x^{i}+x^{j}-1$ are relatively prime, a fact
which can be seen geometrically, as pointed out by G. Higman. Namely, if $\varepsilon, \varepsilon^{\prime}$ are complex numbers of absolute value one, and $\varepsilon+\varepsilon^{\prime}=1$, then the points $0,1, \varepsilon$ are the vertices of an equilateral triangle, so that ε is a primitive sixth root of unity. Since $n \neq 6$, we can therefore find integral polynomials $f(x), g(x)$, such that

$$
\begin{equation*}
f(x) \Phi_{n}(x)+g(x) \prod_{0 \leqq i<j \leq n-1}\left(x^{i}+x^{j}-1\right)=|N| \tag{3}
\end{equation*}
$$

where

$$
\begin{align*}
N & =\Pi_{\zeta} \Pi_{i, j}\left(\zeta^{i}+\zeta^{j}-1\right) \tag{4}\\
\Phi_{n}(\zeta) & =0
\end{align*}
$$

is the resultant of $\Phi_{n}(x)$ and $\Pi\left(x^{i}+x^{j}-1\right)$.
From (4) we see that $N \leqq 3^{\phi(n) n^{2}}$, since there are at most $\phi(n) n^{2}$ triples (ζ, i, j). Now (2) and (3), the fact that $\Phi_{n}(p) / q^{\varepsilon}$ divides $|N|$, imply that

$$
\begin{equation*}
\Phi_{n}(p) / q^{\varepsilon} \leqq 3^{\phi(n) n^{2}} \tag{5}
\end{equation*}
$$

One sees geometrically that $\Phi_{n}(p) \geqq(p-1)^{\phi(n)}$, so with (5) and $q^{\varepsilon} \leqq n$ we find

$$
\begin{equation*}
p \leqq 1+n^{1 / \phi(n)} 3^{n^{2}}<n 3^{n^{2}} \tag{6}
\end{equation*}
$$

Remark. Theorem 3 of [3] provides a certain motivation for the detailed examination of $\Phi_{n}(p)$ in the preceding theorem.

Bibliography

1. J. Boen, On p-Automorphic p-Groups, (to appear in Pacific Journal of Mathematics).
2. C. Chevalley, Demonstration d'une hypothese de M. Artin, Abh. Math. Seminar U. Hamburg, 11 (1936).
3. G. Higman, Suzuki 2-groups, (to appear).
4. T. Nagell, Introduction to Elementary Number Theory, Wiley (1951).

University of Chicago and University of Michigan
Institute for Defense Analyses
University of Chicago

[^0]: Received December 6, 1961. Boen's work on this paper was partly supported by N.S.F Grant G-9504.

