
HYPONORMAL OPERATORS

JOSEPH G. STAMPFLI

We say a bounded linear transformation T on a Hubert space H
is hyponormal if || Tx\\ ^ || T*x\\ for all xεH or equivalently if T * T -
TT* ^ 0. The notion of hyponormality was introduced in [6], through
under another name. In [8], Putnam studied properties of the opera-
tor Jθ = eiθT + e~ieT*, where T is hyponormal. Lemmas 1 through 6
which appear below occur as exercises in [1], and will be quoted wi-
thout proof. Henceforth the term operator will mean bounded linear
transformation.

LEMMA 1. Let T be a hyponormal operator on the Hilbert space

H, then\\(T - zl) x\\ ^ | | (Γ* - zl)x\\for xεH, i.e. T - zl is hyponormal.

LEMMA 2. Let T be hyponormal on H; then Tx = zx implies
T*x — zx.

LEMMA 3. Let T be hyponormal on H with Txx = zλxlf Tx2 = z2x2

and z±Φ z2. Then (xlf x2) = 0.

LEMMA 4. If T is hyponormal on H and MczH is invariant under
T; then T\M is hyponormal.

LEMMA 5. Let T be hyponormal on H, with McH invariant
under T and let T\M be normal. Then M reduces T.

LEMMA 6. Let T be hyponormal on Hand Let M — {xεH: Tx = zx}.
Then M reduces T and T\M is normal.

THEOREM 1. Let T be hyponormal on H, then \\T\\ = RSP(T) (the
spectral radius of T).

Proof. For xεH, \\x\\ — 1 we have

\\Tx\\2 = (Tx, Tx) = (T*Tx, x) S | |Γ*Γa?|| ^ \\T2x\\.

But then | | Γ | | 2 ^ | | T 2 | | ^ | | Γ | | 2 which implies | | Γ | | 2 = | | Γ 2 | | .

Now

|| Tnx\\2 = (Tnx, Tnx) = (T*Γ% T^x)
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Thus \\Tn\\2^ HΓ -MHIΓ 'Ίlf and combining this with the equality
above, a simple induction argument yields \\Tn\\ = || T\\n for n = 1, 2,
Since RSP(T) = l i m ^ || Tn\\lln = l i π w || Γ|| the proof is finished.

COROLLARY. The only quasi-nilpotent hyponormal operator is the
transformation which is identically zero.

THEOREM 2. Let T be hyponormal on the Hilbert space H and let
z0 be an isolated point in the spectrum of T. Then zoεσp(T), the point
spectrum of T.

Proof. By Lemma 1 we may assume zQ — 0. Choose R > 0 suf-
ficiently small that 0 is the only point of σ(T) contained in or on the
circle \z\ = R. Define

E = ( (T-ziy'dz .

Then E is a nonzero projection which commutes with T (see [9]; pro-
jection as used here does not necessarily mean self-ad joint).

Thus EH is invariant under T and T\EH is hyponormal. Also

σ(T\EH) = σ(T)[]{\z\<R}

by, [9] p. 421, so σ(T\EH) = {0} .
From the last corollary we may conclude that T\EH is the zerα

transformation. In fact, it is now clear that EH = {xεH: Tx=0} which
implies EH actually reduces T.

THEOREM 3. If T is hyponormal on H with a single limit point in
its spectrum, then T is normal.

Proof. We may assume by Lemma 1 that the limit point is 0.
By Theorem 1 there exists z1eσ(T) such that | ^ | = || Γ | | .

Let Mx — {xeH: Tx = zλx}; Mx is not empty by theorem 2 and since
Λfi reduces T, we conclude from theorem 2 that T\mL does not have
zx in its spectrum. We note also by Lemma 6 that T\Mι is normal.
We continue in this way, selecting points in σ(T) ordered by absolute
value, setting M{ = {xεH: Tx = z&}.

Then ilίi© ••• ®Mn reduces T and Tr||JflΘ...ΘJfn is normal. We ob-
serve that T\lMlΘ...ΘMnll is hyponormal with its spectral radius equal
to its norm. Thus, since 0 is the only limit point of o{T), the normal
operators T\MlΘ...ΘMn must converge to T in the uniform operator topo-
logy. Hence, T is normal.

COROLLARY 1. If T is a hyponormal, completely continuous opera-
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tor, then T is normal.

COROLLARY 2. If T is hyponormal on H with only a finite num-
ber of limit points in its spectrum; then T is normal.

Proof. Let zx be a limit point of σ(T) and choose a smooth sim-
ple closed curve G which does not intersect o(T) and contains only the
limit point zΎ in its interior. Now define

Then T is invariant on EλH and

σ(T) n [Interior G] - σ(T\BlB)

so o{T\ElH) can have only one limit point.
We now apply theorem 3 to T\EXH to conclude that it is normal.

Then by Lemma 5, T is reduced by EJί. We may thus turn our at-
tention to T on {Ex H)± and continue this process until the limit points
are exhausted.

Theorem 1 and the first corollary to Theorem 3 have been proved
independently by both T. Ando and S. Berberian, and will soon appear.

The subsequent theorem generalizes the well-known result which
equates similarity equivalence of normal operators with unitary equi-
valence. However, there is a strong restriction on the spectrum of
the operator.

THEOREM 4. If T is a hyponormal scalar operator and σ(T) has
zero area, then T is normal.

Proof. Since T is scalar, (see [2]), T = QAQ-1 where Q is positive

.self-adjoint and A is normal. Let A = \zdE(z). For ε > 0, there ex-

ists a set of half-open, half-closed disjoint squares {#*}**=! with each Rζ

of dimension \\n x 1/n such that k/n2 = area {Uk

%^R^ < ε where

σ(T) c (Uk

i=1Ri). Now for x.eEiR,)!!] s< the center of 22*

we have

Q ηi/2 i

\z-ziγd\\E{z)xi\\Λ ^ i .
Rι Λ n

Thus

j | (A - zJ)Q% | | = | | A* - zJ)Q*x{ | | = | | Q(T* - z{I)Qa>t II

^ | | ( Γ * - z^Qx, | | | | Q | | ^ | | (T - zJ)Qxi \\ \\Q \\
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= \\Q(A-ziI)xi\\.\\Q\\£\\Q\\*.±- and
n

| | ( ^ ) ^ | | S | | Q | |
n

Combining these we have

|| (AQ2 - Q*A)x{ || ^ 2 || Q ||2 1 for xfi
n

Now E{Rτ)H is orthogonal to E{R3)H for i Φj so for yεH, \\y\\ = 1
we have

2/ = Σιi=iaiχi where Σ J = 1 I α< |2 = 1 .

Thus

|| (AQ" - Q2A)?/1| = || ΣI=

«*
£ { Σ ί u I ^ I2 Σ ϊ = i ( 2 I I Q I I 2 ^ ) } 1 / 2 - 211Q ||'

implying that AQ2 = Q2A.
Noting that Q is positive we may conclude from the spectral theo-

rem that AQ — QA and thus T = A which completes the proof.
The author has been unable to decide whether the condition on

the area of the spectrum in the last theorem may be omitted. He
would conjecture that it cannot. There is a generalization of the theo-
rem quoted above which states that if A and B are normal operators,
Q an arbitrary operator such that AQ — QB; then A*Q = QJ3*. This
statement does not hold if A is normal and B semi-normal. To see
this, let H be a Hubert space with the basis {&•}£=-«, and define Aφ{ =
Φi+U all i; Bφ{ = Φi+1, i^O Bφi = 0, i < 0; and Q = B. Then it is-
clear that AQ = Q£ but A*Q^0 = ^0 =£ QJ5*^0 = 0.

Before going on to the next theorem we must recall some results
from the literature. Let B be a normal operator of finite spectral
multiplicity n, and let T be an operator commuting with B. Then
there is a finite measure v(-) defined on Borel sets of the complex plane
and vanishing outside of σ(B) and n Borel sets el9 , en with e1 the
plane and e{ c ei+1, such that if we define v{(e) = v(e n β<) for such Borel
set e; set H — Σ?=i^2(^ί) and define

for f(a)eH; then B and JB are unitarily equivalent. Also there exist
measurable functions α, y(s)i, j = 1, , ^ such that if we define
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Tf(a) =

a1>n(s) Ms)

for f(s)εH; then T and T are unitarily equivalent. The foregoing may
be found in [3] Chapter X theorem 5.10, in [4], [7] and in its earliest
form is due to von Neumann.

Using results of Gonshor (see [5] Theorem 3 and remarks in section
6) we may define H in such a way that

^n(s) α12(s) aln{i

0 a22(s) a2n{i

: ° :
0 ann(i

or roughly speaking f has super diagonal form. In what follows we
will identify f with T and B with B.

THEOREM 5. Let T be a hyponormal operator with Tn — B where
n is a positive integer and B is a normal operator; then T is normal.

Proof. For xoeH, let M = clmlB'B*^^] (the closed linear mani-
fold spanned by the iterates) for k — 0,1, , n — 1; i,j — 0, 1, 2, .

Then M reduces B and B has spectral multiplicity n on M (we will
assume x0, Tx0, •••, Tn~λx^ are linearly independent). Also M is invari-
ant under T since TrBΐi?*:'Trfc$o = BiB*3'T*+1x0 and invariance holds under
closure. The Fuglede theorem is used in obtaining the last equality.

Let us now consider T | M which we may write as

Then for the vector fx = (xσ{B)1 0, , 0), where xσ{B) is the character-
istic function of o{B),

we have

and

σ-(B)
a11{s)\*dvι{s)
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But || ΓI if/ill ^ ||(ZΊjf)*/ill since the restriction of a hyponormal opera-
tor to an invariant subspace is hyponormal. Thus αiy(s) = 0 a.e. (vs)
for j = 2, 3, , n. Continuing this argument, we find that a^s) = 0
a.e. (Vj) for iφj. We conclude from this that T\M is normal, or
II T\My || - || (T\M)*y || for ysM. Therefore,

II rn || — NT7! T II — 11 (TI Ί*r II < II T * r II
II * * Ό I I — II J- l i f ^ o l l — W K 1 \M) Λ O II = II •* * Ό | |

But this with hyponormality implies that || Txo\\ = || Γ*#o|| . Since x0

is arbitrary Γ must be normal.

COROLLARY. If T is kyponormal and commutes with a normal
operator having finite spectral multiplicity; then T is normal.

EXAMPLE. Let {φ%)i = — oo be a basis for the Hubert space H
and define Tψi — a^i+1. Then if | a{ \ ̂  | ai+1 \, all i, T is hyponormal.
T will be normal if and only if j α, | = | α ί + 1 j for all ΐ. If | ak j = | αΛ+11
for some fixed k and | aό \ Φ \ ak | for some j > k then Γ will not be
subnormal. Another example of hyponormal operator which is not sub-
normal is given in [6],
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