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Let K be an ordiary differential field of characteristic zero with
field of constants C. Let R be a differential subring of K containing
C and having quotient field K. A differential subring V of an ex-
tension differential field M of K is called a fundamental differential
ring (over R) if V contains R and if, for each v in V, there exist
v2, , vn in V, n depending on v, such that v,vif , vn form a funda-
mental system of solutions of a homogeneous linear differential equation
with coefficients in K. Throughout this paper, {•••} denotes differ-
ential ring adjunction, < > differential field adjunction.

THEOREM 1. Let K, C, R, M, V be as above. Then V is a funda-
mental differential ring over R if and only if V ~ R{vai, aeA,l^ί
^ na}f A an indexing set, where for each a in A, vΛU vΛ3f , vΛna form
a fundamental system of solutions of a homogeneous linear differential
equation over K.

Proof. If V is a fundamental differential ring over R, we may let
A = V; the interest attaches to the converse. It amounts to proving
that every differential polynomial with coefficients in R in the vΛi is one
element of a fundamental system of solutions of a homogeneous linear
differential equation over K, all the elements of which system of
solutions belong to V. By use of induction, we may reduce the problem
to consideration of the four differential polynomials s', s +1, st, and rs,
r e K. We treat the polynomials s' and s + t; the polynomials st and rs
are treated in a like manner.

Let s{n) + αw_1s
(w~1) + + aos = 0, a, e K, 0 ^ i ^ n - 1. (There

is no loss of generality in supposing that the leading coefficient of this
differential equation is 1.) If α0 = 0, then sr already satisfies a homo-
geneous linear differential equation (of order n — 1) over K; if a0 φ 0,
we differentiate the expression

(-!.>•> + ( «s=i-W + .. . + ί^iλs' + s)
\ a01 \ a0 I \ a0 / /

to obtain a homogeneous linear differential equation of order n in s'
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with coefficients in K.
To prove the result for s + t, let s, t be in V with s + t Φ 0; let

s, s2, , ŝ  be w elements of V forming a fundamental system of
solutions of a homogeneous linear differential equation over K, and the
same for t, t2J , tm. Let sx = s, ίx = £. Let uλ — sx + tx and choose
w2, u3, --,ur from among s1? s2, , s%; ίu ίa, •••,*„ such that ^ , w2, ,
wr form a basis over the constants for the vector space spanned over
the constants by sl9 s29 , sn; tlf t2, , tm. Let W(zu z2, , 2P) denote
the wronskian of the p elements zl9 z2f -—,zp. Consider the linear
differential operator of order r, ^f(y) — W(y, uu , ur)IW(ul9 , ur).
(Since ul9 , ur are linearly independent over constants, their wronskian
is nonzero.) £f{ur) = 0, 1 ^ λ ^ r, and .Sf7 ^ 0 since the coefficient of
2/(r) is 1 = W(ulf •• ,ur)IW(u1, --,ur). We shall prove that all the
coefficients of ^f are in K; Sf(y) = 0 will then be the sought-after
differential equation.

Let σ be a differential isomorphism of K(sίy s2, , sn; tu t2, , έm>
over iί; then σ(sμ) = Σ?=icμΐs^ 1 ^ /̂  ^ ^ and σ(ίv) ΣΓ=i^vi*i, 1 ^ î  ^ m,
where the c N and ώvi are constants. This is true because su s2, •• ,s w

span over constants the vector space of solutions of the homogeneous
linear differential equation over K satisfied by sx; similarly for tu ,
tm. These two sets of equations taken together imply σ(uλ) — Σ ^ 1

e\kuk, 1 ^ λ ^ r, eλfc constants, for each σ(^λ) is in the vector space
spanned over the constants by slf , sn; tu , tm.

This implies that W{y, σuu , σur) = (det {eλk)) W(y, ulf , ur),
and similarly W(σuu , σ^r) = (det (βλJfe)) W(ul9 , wr). Therefore the
coefficients aP90 ^ p ^ r9 of Jίf(y) are invariant under <τ, for all
differential isomorphisms σ of -K"<slf , sw; t l f •• , ίw> over K. By
Theorem 2.6, pg. 16 of [1], ap is in K, as required. This proves the
theorem.

The above theorem has the following immediate consequence.

COROLLARY. If M is a universal differential field extension of
K ([2], Sec. 5, esp. pg. 771, Theorem), the set V of all elements of M
satisfying a homogeneous linear differential equation over K forms a
fundamental differential ring.

The following lemma isolates the key property of fundamental
differential rings that will be used to prove integral closure. An
element w in an extension differential field of K is called a wronskian
over K if w Φ 0 and w'lw belongs to K.

LEMMA. Let V be a fundamental differential ring over R. Then
any nonzero differential ideal I of V contains a wronskian over K.
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Proof. Let ux be a nonzero element of the differential ideal / of
V, and let u2, u3, , un be n — 1 elements of V such that ulf u2, ,
un form a fundamental system of solutions of a homogeneous linear
differential equation over K. Then W(ulf u2, , un) is a nonzero
element of I: it is nonzero since ul9u3, , un are linearly independent
over constants; it belongs to I because each term in the expansion of
the determinant defining W(uu , un) contains a derivative of uλ as
a factor. Since W(uly , un) is a wronskian over K, the proof is
complete.

DEFINITION. A differential ring is called differentiably simple if
it has no differential ideals other than zero and itself.

THEOREM 2. Let R be differentiably simple (in particular, R =
K), and for every wronskian w over K belonging to V, let there exist
a nonzero h in R such that h/w is in V. Then V too is differentiably
simple. (When R — K, the assumption is that V contains the inverse
of every wronskian over K which belongs to V.)

Proof. Let I be a nonzero differential ideal of V. To prove that
I = V, let |p be a wronskian over K in /; such exist by the lemma.
Now by hypothesis, there is a nonzero h in R with h\w in V. Thus
w h\w = h is in I, so that / Π R is not the zero ideal of R. Since
/ Π R is a differential ideal of R and R is differentiably simple, IΠ R
= R, so that 1 e IΠ R, and 1 e /. Thus / = V as required.

The next theorem is a sort of converse to the previous theorem.
(Here V need not be a fundamental differential ring over R; V can be
any differential subring of M containing R.)

THEOREM 3. Let V, but not necessarily R, be differentiably simple,
and let w be a wronskian over K belonging to V. Then there is a
nonzero h in R such that h\w is in V. (Thus if R — K, \\w is in V.)

Proof. Since K is the quotient field of R, there exist b, c in R,
with c Φ 0, such that wf — (bjc)w. Let I denote the set of elements
of V of the form vc~pwf p a nonnegative integer, v an element of V.
I can readily be shown to be an ideal of V; we shall prove that / is
closed under differentiation. If vc~pw e I, then (vc~pw)' = v'c~pw —
pvc-p-Vw + vc~pw' = (v'c)c-p-χw — (pvcf)c~p~λw + {bv)c~p~ιw = (v'c — pvcr

+ bv)c-p-χw is an element of V and hence of I. Thus I is a differential
ideal of V, and is nonzero since w is in 7. Since V is differentiably
simple, I = V, and lei. Thus 1 = vc~pw for some ve V, p ^ 0. Then,
if cp = h, we have hjw = veV, with h an element of R. This proves
the theorem.
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The following theorem with K = C generalizes a consequence of a
result of Ritt ([4], Sec. 1, pg. 681) to the effect that if C is the field
of complex numbers, the ring C [eλx, all complex λ] is integrally closed
in its quotient field. In fact, Theorem 4 also implies that C [x, eλx] is
is integrally closed in its quotient field.

THEOREM 4. Let K be a differential field of characteristic zero
with field of constants C. Let K be differential algebraic over C. Let
V be a fundamental differential ring over K which contains the in-
verse of every wronskian over K in it. Then V is integrally closed
in its quotient field (it is differentiably simple by Theorem 2).

Proof. Let u be an element of the quotient field M of V integral
over V: that is, there exist elements vt in V, 1 ^ i ^ n, such that
v>* + Σ ί ^ i ^ * " * ~ 0, and there exist vn+19 vn+2 in V with u = vn+1lvn+2.
Let Vi be a solution of a homogeneous linear differential equation £fi(y)
= 0,1 ^ i ^ n + 2, where Sfly) = Σ;io&ΰ1/(i)', 1 ^ i ^ n + 2, 0 ^ j ^
nc biH = 1,1 ^ i ^ n + 2. Furthermore let vik91 ^ k ^ ni9 be for each
i a fundamntal system of solutions of ^fi(y) = 0, with viλ = vim Let
F be a differential indeterminate, and, for each i, j , let Pa(Y) e C{Y}
be a differential polynomial of lowest order riά say satisfiqjl by bi3 over
C and such that the degree of Pi3 in Yr(r^) is as small as possible
among these differential polynomials of order rij9 Define the separant
Si,-, of P{j as the (partial) derivative of Pi3 with respect to Y{r^\ One
verifies, using the minimal property of the Pi3, that 5̂ (6̂ -) is nonzero.
Then b$*+1) is S^φij) multiplied by a differential polynomial over C in
&„• of order at most ri3 . This implies that C{bi3) = C ^ , 0 ^ p ^ r^ ],
all i, i . (This argument is well known.)

Now define V =_C{bi3,S^(vi3),vik, all 1 ^ i £n+ 2,0 S>j S>ni9

1 ^ fc g %}; observe F c V. Since jSf̂ < has leading coefficient 1 and
£fi(vik) = 0,1 ^ i ^ n + 2,1 ^ k ^ nίf and because of the above prop-
erty of each C{64y}f.onβ concludes that V = C[b{$, S^Φu)9 vlP, all
l ^ i ^ n + 2, 0^'j ^nif l ^ k ^ n . O ^ p ^ ri31_0 g. q ^ n{ - 1]. This

is what we were after: we have proved that V is finitely generated
as an ordinary ring over C. We can now apply Theorem 2 of [3] to
conclude that the integral closure 0 of V in its quotient field M is in
fact a differential subring of M. But u is in 0; if we can prove that
0 is contained in V, the proof will be completed.

So consider the ideal J of V consisting of all h in V such that
hO c V. By [5], pg. 267, Theorem 9, I is nonzero; a fortiori, the
ideal / of V consisting of those h in V with hO c V is also nonzero,
since it contains I. We assert that I is a differential ideal of V: let
ω e O; then hω e V, (hω)f = h'ω + hω' e V. Since O is closed under
differentiation by [3], pg. 1393, lemma, ω'eO, so that, since he I,
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hω' e V. Thus h'ω is in V if o) is in 0 and h is in /. In other words,
I is a differential ideal of V. Since V is differentiably simple by
Theorem 2, and I is nonzero, we conclude that I = V. Therefore l e i .
This implies that 0 = 1-0 is contained in V, as promised. This
completes the proof of Theorem 4.

(The above theorem could be strengthened by use of the following
unproved result: a differentiably simple ring of characteristic zero is
integrally closed in its quotient field. This result would generalize
Theorem 1 of [3].)

Theorem 4 has the following corollary.

COROLLARY. Let K be a differential field of characterististic zero
with field of constants C. Let K be differential algebraic over C.
Let M be a universal differential field extension of K. Let V be the
subset of M comprising those elements of M satisfying a homogeneous
linear differential equation over K. Then V is integrally closed in
its quotient field.

Proof. That V is a fundamental differential ring over K follows
from the corollary to Theorem 1. To prove V integrally closed in its
quotient field, we shall prove that V contains the inverse of every
wronskian over K in it, and then apply Theorem 4.

Now if w is a wronskian over K in V, then w Φ 0 and w' — kw,
keK. Then (1/w)' = (-l/w')-™' = {-Ifw^-kw = -fc (l/w). So \\w
satisfies a (first order) homogeneous linear differential equation over K;
by the definition of V, (1/w) belongs to V, as required for the applica-
tion of Theorem 4.

REMARK. Let V1—V and Vn+1, n^l, be the differential subring
of M consisting of those elements of M satisfying a homegeneous linear
differential equation with coefficients in Vn. Then Vn+1 contains Ln

(thus UΓ=iVn= Ko is a field), for if f(Φθ) is in Vn, then (1//)'=
—f'lf llf. Thus 1// satisfies a first order homogeneous linear differ-
ential equation with coefficients in Ln and so is in Vn+1. Since Vn+1 con-
tains Vnf and now the inverse of every nonzero element in Vn9 Vn+1 con-
tains Ln. But each Ln is differential algebraic over C, and M is still a
universal differential extension of Ln. The above corollary thus implies
that each Vn is integrally closed in its quotient field Ln, n ^ 1.
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