A NOTE ON ABELIAN GROUP EXTENSIONS

R. J. Nunke

In Exercise 21 page 248 of his book Abelian Groups L. Fuchs asks for a proof of the following

Theorem. If A is a torsion-free and C a torsion group, then $\operatorname{Ext}(A, C)$ is either 0 or contains an element of infinite order.

Unfortunately the hint given with the exercise leads only to the conclusion that every countable subgroup of A is free. Professor Fuchs has informed me that he meant to assume A countable. The purpose of this note is to prove this theorem.

Lemma. If C_{1}, C_{2}, \cdots is a sequence of abelian groups, ΠC_{i} their direct product and ΣC_{i} their direct sum, then $\operatorname{Ext}\left(A, \Pi C_{i} / \Sigma C_{i}\right)=0$ for all torsion-free groups A.

Proof. A special case of this lemma with all the $C_{i}=Z$ the group of integers is a consequence of Theorem 1 of [1]. The proof of the special case given in [4] makes no use of the fact that $C_{i}=Z$. This proof will be sketched here. It is enough to prove the case in which A is the rational numbers. Since $\operatorname{Ext}\left(A, \Pi C_{i} / \Sigma C_{i}\right)$ is a homomorphic image of $\operatorname{Ext}\left(A, \Pi C_{i}\right)$ we must show that each extension $0 \rightarrow \Pi C_{i} \rightarrow$ $E \rightarrow A \rightarrow 0$ splits over $\Pi C_{i} / \Sigma C_{i}$, i.e., that there is a map $f: E \rightarrow \Pi C_{i} / \Sigma C_{i}$ whose restriction to ΠC_{i} is the canonical projection. With A the rationals we choose elements e^{1}, e^{2}, \cdots in E such that e^{n} maps onto $1 / n$! modulo ΠC_{i}. Then E is generated by ΠC_{i} and the e 's with relations

$$
e^{n}=(n+1) e^{n+1}+c^{n} \quad n=1,2, \cdots
$$

where $c^{n} \in \Pi C_{i}$. We choose $b^{n} \in \Sigma C_{i}$ such that the first n coordinates of $c^{n}+b^{n}$ are 0 and put

$$
x^{n}=\sum_{k \geqq n}(k!/ n!)\left(c^{k}+b^{k}\right) .
$$

Then

$$
x^{n}=(n+1) x^{n+1}+c^{n}+b^{n}
$$

and we can define f to be the projection on ΠC_{i} and by $f\left(e^{n}\right)=x^{n}+\Sigma C_{i}$.
Proposition. If C is the direct sum of infinitely many copies of

[^0]D and if A is torsion-free with $\operatorname{Ext}(A, D) \neq 0$, then $\operatorname{Ext}(A, C)$ has an element of infinite order.

Proof. Since D is a direct summand of C we have $\operatorname{Ext}(A, C) \neq 0$. The sequence

$$
\operatorname{Ext}(A, \Sigma C) \rightarrow \operatorname{Ext}(A, \Pi C) \rightarrow \operatorname{Ext}(A, \Pi C / \Sigma C) \rightarrow 0
$$

is exact where ΣC is the direct sum and ΠC the direct product of countably many copies of C. By the lemma $\operatorname{Ext}(A, \Pi C / \Sigma C)=0$ so that the left-most map in the sequence is an epimorphism. Since A is torsion-free $\operatorname{Ext}(A, C)$ is divisible and hence has elements of arbitrarily large finite order if it has nonzero elements of finite order at all. Hence $\operatorname{Ext}(A, \Pi C) \cong \Pi \operatorname{Ext}(A, C)$ has an element of infinite order. It follows that $\operatorname{Ext}(A, \Sigma C)$ also has an element of infinite order. Since C is the direct sum of infinitely many copies of D we have $\Sigma C \cong C$ so that $\operatorname{Ext}(A, \Sigma C) \cong \operatorname{Ext}(A, C)$ proving the proposition.

Now to prove the theorem we suppose that A is torsion-free, C is torsion and that $\operatorname{Ext}(A, C)$ is a nonzero torsion group. Then $\operatorname{Ext}(A, C)$ has a nonzero p-primary component for some prime p. Since $C=C^{\prime} \oplus E$ where C^{\prime} is the p-primary component of C and E is the sum of the other primary components we have

$$
\operatorname{Ext}(A, C)=\operatorname{Ext}\left(A, C^{\prime}\right) \oplus \operatorname{Ext}(A, E)
$$

Multiplication by p is an automorphism of E, hence also an automorphism of $\operatorname{Ext}(A, E)$. It follows that $\operatorname{Ext}\left(A, C^{\prime}\right)$ is a nonzero torsion group. Hence in proving the theorem we may assume that C is p primary.

In [3] it was shown that, for A torsion-free and $C p$-primary,

$$
\operatorname{Ext}(A, C) \cong \operatorname{Ext}(A, M)
$$

where M is a direct sum of copies of $\Sigma Z \mid p^{n} Z$, the number of copies being equal to the final rank of C. If C has bounded order, then $\operatorname{Ext}(A, C)=0$ for all torsion-free groups A. Otherwise the final rank of C is infinite. This last case is the one to be considered. Then M is the direct sum of countably many copies of itself and the proposition shows that $\operatorname{Ext}(A, M)$ is either 0 or has an element of infinite order.

The referee has pointed out that a stronger form of the lemma in this paper has been proved by A. Hulanicki (Bull. Acad. Pol. Sci. Ser. Sci. Math. Astr. Phys., 10 (1962), 77-80.) He showed that each element of infinite height in $\Pi C_{i} / \Sigma C_{i}$ is in the maximal divisible subgroup, hence this group is algebraically compact.

References

1. S. Balcerzyk, On factor groups of some subgroups of a complete direct sum of infinite cyclic groups, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astr. Phys., 7 (1959), 141-142.
2. L. Fuchs, Abelian Groups, Budapest, Publishing house of the Hungarian Academy of Sciences, 1958.
3. R. J. Nunke, On the extensions of a torsion module, Pacific J. Math., 10 (1960), 597606.
4. -, Slender groups, Acta Sci. Math. Szeged, 23 (1962), 67-73.

University of Washington

[^0]: Received April 25, 1962. This work was supported by the National Science Foundation research grant NSF-G 11098.

