ABELIAN SUBGROUPS OF ρ-GROUPS

CHARLES HOBBY

Let G be a finite p-group where p is an odd prime. We say that G has property A_n if every abelian normal subgroup of G can be generated by n elements. Further, if G_n denotes the nth element in the descending central series of G, we say that G has property $A_n(G_n)$ if every abelian subgroup of G_n which is normal in G can be generated by n elements. If G has property A_1 , then G is cyclic. N. Blackburn [1] found all of the groups which have property A_2 . It follows from the work of Blackburn that if G has property A_2 then the derived group of G is abelian and every subgroup of G has property A_2 . We shall show that if G has property A_3 then every subgroup of G has property A_3 . There exist groups which have property A_3 in which the derived series is arbitrarily long [2] so no analogue of Blackburn's result on the derived group is possible. We next consider groups G which have property $A_n(G_n)$ and show that G_n can be generated by n elements. This leads to the existence of a bound on the derived length of G which depends only on n and the exponent of G_n .

We shall use the following notation: p is an odd prime; $G = G_1 \supset G_2 \supset \cdots$ is the descending central series of G; $Z(G) = Z_1(G) \subset Z_2(G) \subset \cdots$ is the ascending central series of G; $G^{(k)}$ is the kth derived group of G; (H, K) is the subgroup of G generated by all elements $(h, k) = h^{-1}k^{-1}hk$ for $h \in H$, $k \in K$; $N \triangleleft G$ means N is normal in G; $N \subseteq G$ means N is properly contained in G; $C_G(N)$ is the centralizer of N in G; H^G is the normal subgroup of G generated by H; G(G) is the subgroup generated by G pth powers of elements of G. G is the subgroup generated by all elements of order G in G; G is the Frattini subgroup of G; G is the order of G.

If $A \triangleleft G$ and $A \subset C_G(A)$, then there is a subgroup B of $C_G(A)$ such that $B \triangleleft G$ and [B:A] = p. It follows that if a normal subgroup A of G is properly contained in an abelian subgroup C of G, then A is properly contained in some abelian normal subgroup B of G.

LEMMA 1. Suppose $A \triangleleft G$ and $A \subset C$ where C is an elementary abelian subgroup of G. Then G contains an elementary abelian normal subgroup B such that A is a subgroup of index p in B.

Proof. Suppose G is a group of minimal order for which the lemma is false. Then $C \subset G$, so there is a subgroup M of index p in G which contains C. It follows that M contains an elementary abelian normal subgroup B_1 such that $[B_1: A] = p$. Set $D = M \cap C_G(A)$. Then $B_1 \triangleleft D \triangleleft G$.

Received May 29, 1962.

Since $(D, B_1) \subseteq A$ and (D, A) = 1, we have $B_1 \subseteq Z_2(D) \triangleleft G$. Therefore $B_1^G \subseteq Z_2(D)$. But $Z_2(D)$ is a regular p-group for p > 2, so B_1^G has exponent p. Let B be a subgroup of B_1^G which is normal in G and which contains A as a subgroup of index p. Clearly B is elementary abelian, so the lemma is true for G.

THEOREM 1. If G has property A_3 then every subgroup of G has property A_3 .

Proof. Suppose G is a group of minimal order for which the theorem is false. Then G contains an elementary abelian normal subgroup A of order p^3 , and there is a subgroup M of index p in G which does not have property A_3 . It follows that M contains an elementary abelian normal subgroup D of order p^4 . Let N be a subgroup of order p^2 in A which is contained in M and which is normal in G. If we let $C = C_G(N)$, then $[G:C] \leq p$, hence $[D:D \cap C] \leq p$. Thus we may suppose that $N \subset D$, since otherwise we could choose a new subgroup D_1 in $(C \cap D)N$ such that $N \subset D_1 \triangleleft M$ and D_1 is elementary abelian of order p^4 .

Since G has property A_s it follows from Lemma 1 that A contains the only elements of order p in $C_o(A)$. Therefore $N=D\cap C_o(A)$. It is easy to see that $[C:C_o(A)] \leq p^2$, thus $C=DC_o(A)$. Therefore, if $d\in D$, $g\in G$, then $g^{-1}dg=d_1c$ for some $d_1\in D$, $c\in C_o(A)$. We recall that D is an abelian normal subgroup of M, and that $M\triangleleft G$. Thus D and $g^{-1}Dg$ generate a group of class at most two; hence for p>2 the group generated by D and $g^{-1}Dg$ has exponent p. Thus it follows from $g^{-1}dg=d_1c$ that $c^p=1$, whence $c\in A$. Therefore $AD\triangleleft G$. But $A\cap D=N$, so [AD:D]=p. Since D is not normal in G, we must have $AD=D(g^{-1}Dg)$ for some element $g\in G$. Therefore $D\cap g^{-1}Dg$ has order at least p^3 and is contained in $Z_1(AD)$ which is normal in G. Thus AD must contain an element of order p which centralizes A and which does not belong to A. This is a contradiction.

THEOREM 2. If G has property $A_n(G_n)$ then G_n can be generated by n elements.

Proof. Suppose G is a group of minimal order for which the theorem is false. Then G_n is not abelian, so $\phi(G_n) \neq 1$. Let Z be a group of order p in $Z_1(G) \cap \phi(G_n)$. Then G_n and $(G/Z)_n$ have the same number of generators, so $(G/Z)_n$ must contain an elementary abelian subgroup B/Z of order p^{n+1} which is normal in G/Z. Let B be the preimage of B/Z in G. Then $B \triangleleft G$, B has order p^{n+2} , and $B^{(1)} \subseteq Z$. Thus B has class at most two, hence is regular for p > 2. But $O(B) \subseteq Z$, so O(B) is a group of order at least p^{n+1} which is normal in G. Thus there is

a subgroup A of $\Omega(B)$ such that $A \triangleleft G$, $\sigma(A) = 1$, and A has order p^{n+1} . Let N be a subgroup of index p in A which is normal in G. Then $|N| = p^n$ and $N \triangleleft G$ imply $N \subseteq Z_n(G)$, whence $N \subseteq Z_1(G_n)$. Therefore A is abelian, a contradiction.

COROLLARY. Suppose G has property $A_n(G_n)$, where G_n has exponent p^m . Let k be an integer such that $2^k \ge n$. Then $G^{(k+m)} = 1$.

Proof. By Theorem 2, G_n can be generated by n elements. Therefore [3, Theorem 2] $\phi(G_n) = \Omega(G_n)$. It follows that $G_n^{(m)} = \langle 1 \rangle$ [4, Theorem 2]. In any p-group, $G^{(t)} \subseteq G_{2^t}$. Therefore $G^{(k)} \subseteq G_n$, whence $G^{(k+m)} = \langle 1 \rangle$.

REFERENCES

- 1. N. Blackburn, Generalizations of certain elementary theorems on p-groups, Proc. London Math. Soc., (3) 11 (1961), 1-22.
- 2. C. Hobby, The derived series of a finite p-group, Illinois J. Math., 5 (1961), 228-233.
- 3. ——, Generalizations of a theorem of N. Blackburn on p-groups, Illinois J. Math., 5 (1961), 225-227.
- 4. ——, A characteristic subgroup of a p-group, Pacific J. Math., 10 (1960), 853-858.

University of Washington