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Introduction* Let G be a semi-group of operators acting on a Banach
space E. Alaoglu-Birkhoff [1], Eberlein [8], Jacobs [9], deLeeuw and
Glicksberg [12], and others have given conditions under which certain
orbits (see § 1) in E will contain a single fixed vector under the action
of G. In general of course, a given orbit may contain many fixed points
or none at all; moreover it need not be the case that the 'ergodic' vectors
(those whose orbits contain a single fixed point) form a linear subspace
as one would wish.

The object of this paper is to show how the introduction of conside-
rations involving the conjugate space £7* under the action of the adjoint
semi-group G* illuminate these matters. We shall see that there is an
intimate connection between the existence of fixed points in the orbits
of one space and the uniqueness of fixed points in the orbits of the
associated space. Our first result in this direction, Theorem 1.3, asserts
that if every orbit in one space contains at least one fixed point, then
every orbit in the other contains at most one fixed point.

In § 2 we define what we mean by saying that the semigroup G
acts ergodically on the space E. When this is the case the pathology
that arises from the existence of more than one fixed point in a given
orbit of E cannot occur. Thus the ergodicity of G on E may be considered
as a strong uniqueness requirement on the fixed points of orbits of E.
When E is reflexive we can then show that this requirement (that (G, E)
is ergodic) may be characterized by the fact that every orbit of the con-
jugate space E * contains at least one fixed point under the adjoint semi-
group G*. Indeed whether E is reflexive or not, Theorem 3.1 asserts that
the 'ergodic behaviour' of the orbits of one space insures the existence of
(at least) one fixed point in any weakly compact orbit of the other.

These results 'explain' and unify many earlier results which were
obtained using different specialized techniques. The following two
examples are instructive:

(a) G is abelian. As it is quite trivial to verify that abelian semi-
groups act ergodically, both (G, E) and (G*, E*) are ergodic. Then since
(G, E) is ergodic (respectively (G*,E*) is ergodic), we see that every weakly
compact orbit of E contains at most (respectively at least) one fixed point.
Thus weakly compact orbits contain precisely one fixed point (cf. for
example [8]).

(b) G is a group acting on a Hubert space E. Here one can show
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(Jacobs [9]) that whenever a (bounded) group acts on a Hubert space,
any orbit contains at least one fixed point. Since this applies to ((?*, E*)
as well as to (G, E), we see from the previous discussion that every
orbit of E contains exactly one fixed point. Jacobs makes use of the
special nature of the hypotheses on G and E in deriving the uniqueness
of fixed points in orbits in case (b). Nonetheless the spirit of his argu-
ment is akin to ours and suggested the interest of such an investigation
as the present one.

In the last section of the paper we describe the relationship between
ergodicity and invariant means. We show in particular that if (G, E) is
ergodic where G is a semi-group of 'transition operators' on an appropriate
space E, then E admits a mean which is invariant under G.

This paper represents part of the authors doctoral dissertation
presented in 1957 at the University of California at Berkeley. In the
authors thesis ergodicity was also characterized generally in terms of
the notion of convergence due to Birkhoff and Alaoglu [1]. Here we
have preferred to proceed independently of all convergence considerations
in an entirely self-contained way. The author would like to thank
Professor F. Wolf, under whose direction the thesis was written for his
generous help and advice.

l Fixed points in orbits. Throughout this paper G will denote a
bounded semi-group of linear transformations acting on a Banach space
E. This means simply that G is closed under multiplication and that
there is a positive number M such that \\gx\\ < Λf H#|| for all xeEand
g e G. We will assume that G contains the identity transformation. If
x e E, the closed convex hull of the set {gx; g e G} will be referred to as
the orbit of x and denoted K(x); subsets of this type will frequently be
called orbits without specific reference to the generating vector. G will
denote the collection of operators on E which are convex combinations
of elements of G. Then G is a bounded semi-group in its own right
with the same bound M, the same orbits, and the same fixed points as
G. Clearly K(x) = closure {gx geG}. Finally we define N= {xeE Qe K(x)},
F = {xeE gx = x for all g e G}, D = {x — gx; x e E and g e G}, and [D] =
the closed subspace spanned by D.

In passing to the action of the adjoint semi-group G* on the conjugate
space E*9 the corresponding dual objects are naturally defined. Thus if
ξe E*, the orbit of ξ will mean the closed convex hull of {#* ξ; g* e G*} and
will be denoted again K(ξ). In the same spirit we define G*, N*, D* and ί7*.

We use the notation (x, ξ) to express the linkage between a vector
xeE and a vector ξeE*. If S is a subset of E and Γis a subset of
E*, we set Sλ={ξe E*; {x, ξ) = 0 for all xeS} and TL = {x e E; (x, ξ) = 0
for all ξe T}. Recall that S11 = [S], the closed subspace spanned by S.
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The following technical proposition expressing the relationships
between the sets we have defined will be used repeatedly throughout
this paper.

1.1. PROPOSITION.

1.1.1. N f] F= 0
1.1.2. DL = F* and D$ = F
1.1.3. N is closed in E
1.1.4. Da Na[D]
1.1.5. If x0 e F, then x0 e K(x) if and only if x — xoe N
1.1.6. If [D] Π F = 0, then any orbit of E can contain at most one

fixed point.

Proof. If x e N Π F, then K(x) = {x} and also 0 e K(x) so that (1)
follows. (2) is immediate by virtue of the identity (x — gx, ξ) = (x, ξ—g* ξ).
To prove (3), let x e N and choose neN with \\x — n\\ < ε. We can
then find geG with \\gn\\ < e. We now have \\gx\\ g llflΌB —w))|| +
\\gn\\ < (M + l)ε so that xeN.

To prove (4), we define gn = 1/n (1 + g + g2 + + g''"1) where geG.
Then 0% G G. If now as — gx e D, we have #„(# — ^x) = 1/w (x — gnx) —> 0
so that 0eK(x-gx). Thus D cz N. To show that ΛΓc [D], it will
suffice to prove that (N, F*) = 0 for then N c F$ - D11 = [D]. But if
neN and ξeF* we may choose geG with ||ι/w|| < ε/| |£| |. We have:

\{n,ξ)\ = \{n,g*ξ)\ - \(gn,ξ)\ ^ \\gn\\ | | f | | < ε

so that

(n, I) - 0 .

If x0 e F, then βrcc — x0 = fiί(x — x0) so that 11 gx — #011 < £ if and only

if HfKa - &o)ll < ε T h i s P r o v e s (5)
To prove (6), let xlf x2 be fixed points in the orbit K(x). Then by

(5) nx — x — xx and n2 = x — x2 are both in N. Since N c [D], this
means that ^ and n2 are in [D] so that nλ — n2 = x2 — xxe [D] f] F. In
particular if [D] Π F = 0, then a?! = a?2.

1.2 EXAMPLE. In the classical context where G is the bounded semi-
group consisting of the powers of a single operator T (where || Th\\ ^ M,
k — 1, 2, •), we may identify N with the closed subspace: η = {xe E;
Tnx = l/w(a? + Γx + + T71'^) -> 0}. For, take x — Tkx e D. Then
TJx - Tkx) = k/n Tk(l - Tn)x —> 0 so that J9 c 57. Since η is closed,
this means that [D] c 37 and so N c 37. But also if Γ%α; —> 0, then 0 e ίΓ(a?)
so that η cz N. Thus N=η.

If now x e i ? a n d x0 is a fixed point in K(x) then by (1.5) x — x0e N
and so Tnx — x0 = Tw(a; — a?0) —> 0. Consequently Twx —> a?0. We have
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thus shown: if the orbit of a vector xeE contains a fixed point xQf then

Tnx converges to x0. Conversely the identity (1 — T) Tnx = l\n(l — Tn)x

shows that if Tnx converges to xQ, then x0 is a fixed point, (cf. Eberlein
[8]).

1.3 THEOREM. If every orbit of E (respectively E*) contains at
least one fixed point, then any orbit of E* (respectively E) contains at
most one fixed point.

Proof. If the orbit of every vector x e E contains a fixed point xOr

then x — x0 e N, so that every vector x in E can be expressed as the
sum of a vector x0 in F and a vector x — x0 in N. Thus Fλ Γi NL = 0.
Now since D c N a [D] one has NL = DL = F*. Also (F, D*) = 0 so
that JP X contains [D*]. Consequently F1 Π ΛP- contains [D*] Π i*7* and
so [JD*] Π F* = 0. Applying Proposition 1.1.6 to the adjoint space, the
conclusion then follows.

If every orbit of E* contains at least one fixed point, then by what
we have just shown, any orbit of 2?** contains at most one fixed point-
But because of the isometric imbedding of E in E**9 the orbit of a
vector xeE is the same whether x is considered to lie in E or £/**»
Thus orbits of E contain at most one fixed point.

1.3.1 COROLLARY. / / every orbit in E and in £7* contains at least
one fixed point, then any orbit in E or in E* contains precisely one
fixed point.

1.4 EXAMPLES

1.4.1. If G consists of contractions1 on Hubert space then any orbit
K(x) certainly contains at least one fixed point. For if xQ is the (unique)
element of K(x) having smallest norm, then since ||flfa?0|| ^ ll̂ oll a n ( i
gxQ e K(x), it follows from the defining property of x0 that gxQ = xQ; that
is, xQ is a fixed point.

As the same argument applies to the adjoint semi-group G* (which

also consists of contractions on Hubert space) we conclude by Corollary

1.3.1 that every orbit contains precisely one fixed point (Alaoglu-Birkhoff

[1]).

1.4.2. More generally Day [5], pointed out that whenever G consists
of contractions on a strictly-convex2 reflexive space, the above argument
is still effective and shows that every orbit contains at least one fixed

1 An operator T is called a contraction if || T\\ ̂  1. It is called an isometry if || Tx\\ =
|| x || for all x e E.

2 A Banach space is strictly convex is the unit sphere (vectors of norm 1) contains no
line segment.



DUALITY IN GENERAL ERGODIC THEORY 1333

point. Thus if we assume that both E and £** are strictly convex,
Corollary 1.3.1 again allows us to conclude that every orbit contains
precisely one fixed point. Such is the case, for example, if E is an Lp

space for p > 1.

1.4.3. If G consists of a (bounded) group acting on a Hubert space
Eλ then we may define a new norm on E in the following way: | x |2 Ξ=
supg€(? (βttf 9χy* This clearly defines an equivalent norm relative to
which G acts isometrically. Moreover Jacobs [9] has shown that this
new norm is strictly convex. Thus by Day's result, every orbit of E
contains at least one fixed point. Since (?* is also a group, the same
conclusion is valid for orbits of E*; by Corollary 1.3.1 it then follows
that every orbit of E contains precisely one fixed point (Jacobs [9]).

1.5. REMARK. We are indebted to the referee for informing us of
some unpublished results of C. Ryll-Nardzewski [14]. His results imply
the following: if G is a semi-group of isometries1 on a Banach space E
then any weakly-compact orbit of E contains fixed points. In particular
if E is reflexive (and G consists of isometries) then every orbit of E
contains at least one fixed point. If in addition G* also acts as isometries
on the (reflexive) space E*, we conclude by Corollary 1.3.1 that every
orbit of E contains precisely one fixed point.

In the same way if G is any (bounded) group acting on a reflexive
Banach space we may renorm the space as in Example 3 above so that
G consists of isometries. The result of Ryll-Nardzewski thus again
applies to show that in this case too every orbit contains precisely one
fixed point

2 Ergodicity and duality• We now proceed to an examination of
the 'good' case where G acts 'ergodically' on E.

2.1 PROPOSITION. The following conditions are equivalent:
1. gNcz N for any geG (if 0 e K(ri), then 0 e K(gn)).
2. If neN then K(n) c N.
3. N is a linear subspace of E (i.e. if 0 e K(x) and 0 e K(y), then

OeK(x + y)).
4. N=[D\.

Proof. (1) = > (2) since N is closed.
(2) = > (3). Let x e N and yeN. Choose g1 e G such that

e. Then as gλyeN by (2), we can choose g2eG such that

/|| < ε W e n o w have:
O* + y)\\ ̂  M\\gix\\ + \\g,giy\\ < (M+ l)e. Thus x + yeN.

(3) = » (4) for N is closed and D c Nd [D].
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(4) ==> (1). Since F* is invariant under the action of £?*, it follows
that [D] = Fi is invariant under the action of G. In particular, if
[D] = N, then condition (1) is satisfied.

The pair (G, E) will be called ergodic if any of the above conditions
is satisfied. We will then call a vector of E ergodic if its orbit contains
a fixed point. By proposition 1.1.5 and proposition 2.1 a vector xeE
is ergodic if and only if it belongs to the subspace R = iV0 F — [D] 0 F.
R will be referred to as the ergodic subspace. (This nomenclature is
in accord with a somewhat unfortunate tradition.)

2.2 EXAMPLES 2.2.1. If G is abelian, then (G, E) is ergodic. For
if ne N and ge G we may choose gλeG with ||βriw|| < ε. We then have
11 #10̂ 11 = IIWî ll < Me so that gneN. Thus (G,E) is ergodic by
proposition 2.1.1.

2.2.2. If every orbit of E contains precisely one fixed point, then
(G,E) is ergodic. For let neN and geG. Since K(gri) c K(ri), the
fixed point of K{gn) must coincide with that of K(n); that is, 0 e K{gn).
Thus gneN and so again by proposition 2.1.1 (G, E) is ergodic.

2.2.3. If G admits a right invariant mean, then (G, E) is ergodic
(Theorem 4.2).

2.2A. If every orbit of E* contains at least one fixed point, then
(G, E) is ergodic. (We will see later—cf. Corollary 3.1.1—that when E is
reflexive, (G, E) is ergodic if and only if every orbit of E* contains at
least one fixed point.)

Proof. If (G, E) is not ergodic, by proposition 2.1.1 there is an
neN and a geG with gn£N, so that OeK(n) but OgK(gri). The
Hahn-Banach Theorem then asserts the existence of a functional ξeE*
which separates 0 from the closed convex set K(gn); that is, 0 < a ^
(K(gri), ξ) where a is a real number. In particular, 0 < a ^ (Ggn, ξ) =
(gn, G*ξ) and so 0 < a ^ (gn, G*ξ). But as gn induces a continuous
functional on i?* (in the norm topology on E*) we have:

(gn, G*ξ) => (gn, {G*ξ}) = (gn, K(ξ))

so that 0 < a ^ (gn, K(ξ)). If then K(ξ) were to contain a fixed point
ξ0, we would have 0 < a ^ (gn, ξ0) — (n, ξQ) which would contradict the
fact that N is perpendicular to F*.

2.3 THEOREM. // (G, E) is ergodic, then:

2.3.1. the ergodic subspace R is closed and strongly invariant (in
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the sense that gxe R if and only if x e R),

2.3.2. the orbit of a vector x e E contains precisely one fixed point
if xe R and contains none if x& R,

2.3.3. if xe R and p(x) is the associated fixed point of K(x) then
x —> p(x) defines a (bounded) linear operator p on R such that pg =

2.3.4. F* Φ 0 whenever F Φ 0; indeed the dimension of F* is at
least as great as the dimension of F.

Proof. If (G, E) is ergodic, then N = [D] and so [D] Π F = 0.
Then by proposition 1.1.6 orbits of E contain at most one fixed point.
Thus if xe R, K(x) contains precisely one fixed point. This gives 2.

By proposition 2.1, [D] = N is invariant under the action of G so
that R = J V 0 F is invariant under G. Moreover if gx e R, then K(gx)
contains a fixed point and since K(x) 3 K(gx), K(x) contains the same
fixed point. Thus xe R.

Next we show that R is closed. For x e R, let p(x) denote the
unique fixed point in K(x). Then ||p(x)\\ ίk M\\x\\ for all xe R. Moreover,
if neN and feF, then p(n + f) - / so that | |/ | | - \\p(n + / ) | | ^
M\\n + f\\.

Suppose then that xne R and that xn —• x0. Put xn = dn + fn where
dn e [D] = Nand fn e F. Since xn is Cauchy and \\fn-fm\\ ^ M\\ (dn - dm) +
(fn-f«)\\ = M\\xn-xm\\,we conclude that/ . is Cauchy. Thus fn->/0e F
and so dn —> x0 — /0 e N. Consequently x0 e iV0 F = R.

Let x19 x2eR and xi — n{ + /; where n^N and /< e F. Then ί>(a?i) =
fi and (̂α?! + a?2) = p((nλ + n2) + {f± + /2)) =fx + f2 since by Proposition
2.1 nλ + n2e N. Thus p is linear.

Finally in order to prove that dim F g dim F*, we may assume that
dimF* < oo. We then have F* = [D]1- ̂  (EI[D\)* so that dimΐ7* =
dim (£7/[i)]) = codim[i)]. But if (G, J5?) is ergodic, [ ΰ ] n f = 0, and so
in this case codim [D] ^ dim F.

This completes the proof.

Part 4 also follows from some results of Yood [15].

REMARK. If E is reflexive and both (G, E) and (G*, 2£*) are ergodic,
(cf. Corollary 3.1.1) then applying Theorem 2.3.4 to both spaces, we
conclude that dim F= dim F*. In particular, this equality holds when G is

3 It is easy to see that gx -» xo in the sense of Alaoglu-Birkhoff [1] if and only if x 6 R
and xo = p(x).
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a group or an abelian semi-group on Hubert space. When G consists
of contractions on Hubert space, it follows for the same reason that
dim F = dim F*. But in this case one actually has more; namely F — F*.
For if x e F, then \\x\\2 = (gx, x) = (x, g*x) ^ | | g | | \\g*x\\ ^ | |a | | a and so
\\x\\* = \\g*x\\2 = (x,g*x). Thus \\g*x - x\\2 = (g*x - x, g*x - x) = 0 so
t h a t g*x = x and x e F*.

3. Existence of fixed points* As the next proof will require us to
conduct our arguments in the (non-normed) weak-*topology of E*, we
mention here some of the relevant background. The definitions and
proofs of the results we use concerning topological vector spaces can be
found in Bourbaki [3].

We define the weak-topology on a Banach space E to be the least
fine topology relative to which all the elements of the adjoint space E*
are continuous. Thus the weak topology on the Banach space J57* is
defined using the elements of 2?**. By the weak-* topology on E* we
mean the least fine topology relative to which the elements of E induce
continuous functionals. By definition then, when J57* is endowed with
the weak-* topology, any element of E induces a continuous functional
on it. One can show that every functional on E* which is continuous
in the weak-* topology arises in this way from an element of E.

Although the norm topology is in general definitely richer in closed
sets than the weak topology, Mazur's theorem asserts that a convex
closed set is weakly closed. We will also make use of the fact that the
unit ball of E* is compact in the weak-* topology. Finally, as the new
topologies on E and E* are locally convex (that is, every vector possesses
a fundamental system of convex neighborhoods), the theorems of the
Hahn-Banach type apply. These guarantee in particular the existence
of continuous functionals strictly separating a given closed convex subset
from a disjoint compact convex subset.

3.1 THEOREM, (a) If (G, E) is ergodic, then any convex weak-*
compact subset of E* which is invariant under the action of G*,
contains a fixed point. In particular, any orbit of E* which is compact
in the weak-* topology contains a fixed point.

(b) If (G*, 2?*) is ergodic, then any convex weakly-compact subset
of E which is invariant under the action of G, contains a fixed point.
In particular, any orbit of E which is compact in the weak topology
contains a fixed point.

REMARK. Since by Mazur's theorem orbits are weakly closed, the
two assertions of part (b) are actually equivalent. Orbits of E*f on
the other hand, need not be weak-* closed so that the first assertion
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<)f part (a) is really stronger than the second one.

Proof of the theorem. Part (a). Suppose that W is a convex,
weak-* compact subset of E* which is invariant under G* and yet which
does not contain fixed points. Then W Π F* = φ. As F* = DL, F* is
weak-* closed. In the space E* endowed with the weak-* topology we
may then apply one form of the Hahn-Banach Theorem to the disjoint
closed convex set F* and the compact convex set W. This theorem
asserts the existence of a weak-*-continuous functional on E* which
strictly separates W and F*. As we have seen that all such functionals
arise from elements in E, there is then an x Φ 0 in E and a real number
a with (x, F*) < a < (x, W). Since F* is a subspace, this requires (x, F*)
to be zero and so xeF^ = [D].

Thus 0 < a < (x, W) where xe[D], Choosing an arbitrary ω0 e W,
we have G*ω0 c W so that 0 < a < {x, G*ω0) = (Gx, ω0) and hence 0 <
•cc 5Ξ (Gx, ω0). But as ω0 is continuous in the norm topology of E,
(K(x), ω0) = {{Gx}, ω0) c (Gx, ω0) and so 0 < a S (K(x), (o0). In particular
then, we conclude that 0 $ K(x); that is, x g N. As x was shown to be
in [D], this means that (G, E) cannot be ergodic.

Part (b). Since the weak-* topology of £*** induces on E (which
is naturally imbedded in E**) a topology which coincides with the ordinary
weak topology of Ef a subset of E which is weakly compact may be
considered a subset of i?** which is compact in the weak-* topology on
that space. An application of part (a) then gives part (b).

3.1.1 COROLLARY. If E is reflexive, then (G, E) is ergodic if and
only if every orbit of E* contains at least one fixed point.

Proof. Orbits are bounded and (by Mazur's theorem) weakly closed
so that in a reflexive space any orbit is weakly compact. Theorem 3.1
thus gives the forward implication. Example 2.2.4 gives the converse
independently of reflexivity.

3.2 REMARKS.

3.2.1. If both (G, E) and ((?*, E*) are ergodic, then any orbit in
either E or £7* can contain at most one fixed point (Theorem 2.3.2).
But then by Theorem 3.1, any weakly compact orbit of E or any weak-*
compact orbit of E* must contain precisely one fixed point. Since an
abelian semi-group always acts ergodically, these results are valid in
particular in the case where G is abelian (G* is also abelian). We shall
see that the same is true when G possesses a two-sided invariant mean
(Remark 4.3.1.).
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3.2.2. By the corollary of the last theorem we see that when E
is reflexive every orbit contains precisely one fixed point if and only if

either (a) both (G, E) and ((?*#*) are ergodic

or (b) every orbit of E and of E* contains at least one fixed point.

In the case where G is abelian, (a) is immediate. If E is a Hubert
space and G is either a semi-group of contractions or a (bounded) group,
we have seen that (b) holds. In fact using the results of C. Ryll-
Nardzewski [14] mentioned in remark 1.5., (b) is valid on any reflexive
Banach space so long as G is a bounded group or if both G and G*
are each semi-groups of isometries. His proof presumably depends on
delicate measure-theoretic machinery. It would be interesting to see if
one could prove (a) directly in these cases.

4Φ Means and ergodicity. Let E be the Banach space B(Ω) of
all bounded continuous functions on the completely regular topological
space Ω under sup norm4. An element ξeE* is called positive if ξ(f) ^ 0
whenever / ^ 0. In that case it is clear that \\ξ\\ = ξ(l). A positive
functional λ e E* is called a mean on E if λ(l) = 1. We then have
||λ| | = 1 and moreover |λ(/) | ^ λ(|/|) ^ | |/ | | for any feE. Let P be
the set of means on E. Evidently P is weak-* closed in E*. As P is
convex and is contained in the (weak-* compact) unit ball of E*, it follows
that P is weak-* compact.

An operator T on E is called an endomorphίsm (or a transition-
operator) if Tf^O whenever / ^ 0 and also Tl = 1. This is equivalent
to requiring Γ P c P; i.e., that the set of means on E is carried into
itself by T*. Finally as | |/ | | ^ 1 if and only if - l ^ / ^ l , we see
that the norm of an endomorphism is 1.

Suppose now that G is a semi-group of endomorphisms on the Banach
space E as above. Since every element of G has norm 1, G is bounded
in the sense of our earlier discussion. A mean A o n E is said to be
invariant (under G) if A (ft/") = Λ(/) f o r e a c h 9^Gf feE. Thus an
invariant mean on E is simply an element of P (Ί F*. In general, of
course, this set may be empty. However, as a consequence of Theorem
3.1, we have:

4.1 THEOREM. If G is a semi-group of endomorphisms which acts
ergodically on E, then E possesses an invariant mean.

Proof. The set P of means on E is a convex weak-* compact subset
of £/*. The fact that G consists of endomorphisms means that P is

4 The development in this paragraph could be carried through taking for E what Kakutani
[11] has called an abstract Tkf-space with unit, but his results show that the generality-
gained is only formal.
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carried into itself by every element of G*. But then by Theorem 3.1
(a), P contains a fixed point for G.

4.1.1. COROLLARY. If G is abelian, then E possesses an invariant
mean (Kakutani [10] and Day [4]).

If the space Ω is a (topological) semi-group G, then there are several
ways for G to induce endomorphisms on the space E = B{G). If g e G
and/e.B(G) let us define the operators Lg and Rg on E by: (LQf)(gr) =
f(gg') and (RJ) (</') = f(g'g). We then have LQγLH = L w RQiRΰ2 = RHH

and RgiLg2 = I^-R^ so that GL = {Lg; g e G} and GΛ = {Rg; g e G} form two
semi-groups of endomorphisms on E which commute elementwise. Thus
Gτ = {LgiRg2; glf g2 e G} also forms a semigroup of endomorphisms on E.
Corresponding to these three semigroups we obtain the notion of left,
right and two-sided invariant means on E (or as we shall say, on G).
By Corollary 4.1.1 any abelian semi-group possesses an invariant mean.
The existence of Haar measure (cf. § 4.4) shows that any compact group
possesses a (unique!) invariant mean.

Heretofore, in the discussion of bounded semi-groups of operators,
the topology on the semi-group played no role. We might equally well
have been dealing with an abstract semi-group G, together with a bounded
representation of G into the multiplicative semi-group of operators on
E, where we call a representation π of G bounded when the image
semi-group is bounded. If G is a topological semi-group, we will say
that the representation π is weakly-continuous if g —> (π(g)x, ξ) is a
continuous function on G for any xeE, ξeE*. For convenience we
omit the letter π and speak of the continuity of (gx, ξ), the ergodicity
of (G, E), etc.

4.2 THEOREM. Let π be a bounded weakly-continuous representation
of the topological semi-group G on the Banach space E. Then if G
admits a right invariant mean, (G, E) is ergodic.

Proof. For xeE, ξeE*, let [xf ξ\ denote the function in B{G)
whose value at g is {gx, ξ). If A denotes a right invariant mean on
G, then we may define a transformation T: E-^ E** by means of the
equation (Tx,ξ) = A([^!])- Then

| | Γ s | | = sup \(Tx,ξ)\= sup | Λ ( M ) I = § sup | | [ s f f ] | |
llίll^i llfll^i llfll^i

= sup sup I (gx, ξ) I ^ M \\ x \\
l l $ i | £ i Q

Thus T is continuous.
Observing that Rg([x, ξ]) = [goo, ξ] we have:

(Tgx, ξ) - A([gx, ξ]) = A(Rβ[x, ξ]) = Λ([a, f]) - (Tx, ξ)
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for any ξeE* so that Tgx = Tx and consequntly T vanishes on D. By
the continuity of T then, T vanishes on [D] and so a fortiori on N.

But now conversely if Tx — 0, we claim that 0 e K(x) so that x e N.
For otherwise, we could find ξe 2?* and a real number α with 0 < a ^
(i£(£), f). In particular α ^ (gx, ξ) for all # e G and so [#, £] ^ α. But
then {Tx, ξ) = Λ(l>, £]) ^ α > 0, which contradicts the fact that Tx = 0.
Thus Tx = 0 if and only if xe N, so that JV is a linear subspace and
(G, E) is ergodic.

4.3.1. Let G be a bounded semi-group of operators on E. If G
admits a right invariant mean when given either the discrete or the
uniform operator topology then Theorem 4.2. applies so that (G, E) is
ergodic. If instead G admits a left invariant mean in either of these
topologies then G* admits a right invariant mean in the same topology
so that (G*, E*) is ergodic. Thus in this case by Theorem 3.1 any invariant
compact convex set of E contains a fixed point (cf. Day [6]). In particular
if G admits a two-sided invariant mean in either topology then any
compact convex orbit of E must contain precisely one fixed point.

4.3.2. Combining Theorem 4.1 and 4.2, we see that if G is a
(topological) semi-group of endomorphisms of the space E = B(Ω) (and
g —> (gx, ξ) is continuous) then whenever G possesses a right invariant
mean, E also possesses a mean which is invariant under G.

4.4. Application to Haar Measure on a Locally Compact Group.

As an amusing application of the fact that abelian semi-groups admit
invariant means, we give here a construction of Haar measure (or rather
of a nontrivial invariant content5) on an arbitrary locally compact group.

Suppose then that & is a locally compact group and let G denote
the collection of neighbourhoods of the identity e in &. Then G is an
abelian semi-group under the operation of intersection] Let A be an
invariant mean on G. We wish to associate with each compact subset
K of the group gf a bounded function K on G in such a way that
λ: K —> Λ(K) will define a nontrivial invariant content. Let Ko be a fixed
compact neighborhood of e. Then if S c ^ and the interior of S is
nonvoid, define (K: S) as the smallest integer n such that K can be
covered by n (left) translates of S. We now define the function K on
G by setting K( V) = (K: V)I(KQ: V) where^ VeG. As K( V) ^ (K: Ko),
K is bounded and we may define λ(ίQ = A(K). Observing that (gK: V) =
(K: V) for ge gf, we have j £ = (flϋΓ) and so λ ( ^ ) - λ(iΓ). Also if iΓ
has a nonvoid interior, then K( V) ^ l/CKi,: K) so that in this case

5 cf. Halmos-Measure Theory, Theorem B, p. 254.
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\(K) ^ l/(Zo: K) > 0. It is clear that in general \{Kλ U K2) g X{K±) +
X(K2). If, moreover, Kx and K2 are disjoint, (Kx [j K2: V) = {Kx: F) +
(iΓ2: V) for all small enough VeG. By virtue of the invariance of Λ,
we then have X(KX U 1Q = HKJ + λ(iQ.
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