
DIMENSIONAL INVERTIBILITY

P. H. DOYLE AND J. G. HOCKING

We report here upon another aspect of our continuing investiga-
tion of invertibility (see [5, 6]) and its applications in the theory of
manifolds.

All spaces considered here are separable and metric.
A separable metric space X will be said to be k-invertible, 0 ^ k ^

dim X, if for each nonempty open set U and each compact proper
subset C of dimension ^k, there is a homeomorphism h of X onto
itself such that h(C) lies in U. Then we say that X is strongly k-
ίnvertible if for each nonempty open set U and each closed proper
subset C of dimension rgfc, there is a homeomorphism h of X onto
itself such that h(C) lies in U.

Clearly, "strongly /c-invertible " implies " /c-invertible" and the
two properties coincide in compact spaces. If dim X — n, then "in-
vertible " and " strongly %-invertible " are equivalent but, for instance,
En is w-invertible and not invertible. We remark that fc-invertibility
is a strong form of near-homogeneity and says that compact fc-dimen-
sional subsets are "small under homeomorphisms." In the case of
an w-manifold, fc-invertibility is equivalent to the condition that eve-
ry compact set of dimension k lie in an open w-cell.

We first collect some results on O-invertible spaces, most of these
results being simple generalizations of theorems to be found in [5].
The first of these requires no proof here.

THEOREM 1. The orbit of any point in a O-invertible space is
dense in the space.

THEOREM 2. Each orbit in a O-invertible space is itself O-in-
vertible.

Proof. Let 0 be the orbit of any point in a O-invertible space
X. Let U be an open subset of 0 and C be a compact O-dimensional
proper subset of 0. Then there is an open set V in X such that
V Π 0 = U and, by O-invertibility, there is a space homeomorphism
h such that h(C) lies in V. But by definition of 0 as an orbit, h(C)
also lies in 0, hence h(C) lies in V Π 0 = U.

COROLLARY. Each O-invertible space is a union of disjoint, dense
homogeneous, O-invertible subspaces.
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THEOREM 3. If X is O-invertible and contains a nondegenerate
connected open set, then X is connected.

Proof. If U is a nondegenerate open connected set in X, let p
be any point in U.

For each point x in X, there is a space homeomorphism hx such
that hx(x U p) = hx(x) U hx(p) lies in U. Thus X is a union U h~\ U)
of connected sets, each containing the point p.

COROLLARY. If X is O-invertible and is locally connected at any
point, then X is connected or X is the 0-sphere.

THEOREM 4. If X is O-invertible and is locally Euclidean at any
point, then X is a manifold.

Proof. If X contains an open cell U as an open set, then X is
connected by Theorem 3 and, as in the proof of Theorem 3, h~\U)
is an open cell neighborhood of the point x for each point x in X.

THEOREM 5. If X is strongly O-invertible and contains an open
set with compact closure, then X is compact.

Proof. Let U be an open set in X with compact closure U.
Given any infinite set A in X such that A has no limit point, the
set A contains an infinite sequence {an} having no limit point in X.
But then the sequence {an} can be carried into U by a space homeomor-
phism h in view of strong O-invertibility. In U, the sequence {h(an)}
has a limit point. This contradiction shows that X is compact.

COROLLARY. A locally compact, strongly O-invertible space is
compact.

Every 2-manifold is O-invertible and every compact 2-manifold is
strongly O-invertible because any compact O-dimensional set in a 2-
manifold lies in an arc in the manifold. In higher dimensions, howe-
ver, O-invertibility has more force. The following result is an inte-
resting characterization of the 3-sphere.

THEOREM 6. A strongly O-invertible 3-manifold is S3.

Proof. We employ the characterization of R. H. Bing [1] and
show that every polygonal simple closed curve in such a 3-manifold
lies in an open 3-cell. Let M3 be a strongly O-invertible 3-manifold
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and let J be a polygonal simple closed curve in M\ A sufficiently
thin tubular neighborhood of J may be chosen to be a polyhedral
solid torus T in M\ Since every longitudinal simple closed curve in
T is isotopic to J, if we can show that there is such a curve which
lies in an open 3-cell, the proof will be complete.

Using the solid torus T as the Oth stage, we construct a "neck-
lace of Antoine " N in M*. By the assumption of O-invertibility, the
compact 0-dimensional set N lies in an open 3-cell in M3. Hence
there is a standard decomposition M3 — P 3 (J C, where P 3 is an open
3-cell and C is a nonseparating continuum of dimension 5̂ 2 (see [7]),
such that JV Π C is empty. Since N and C are compact, there is a
positive distance between N and C. Thus there is some stage, say
the fcth, in the construction of N such that the residual set C fails
to meet each solid torus in the fcth stage.

Now we add a 2-disk spanning the hole in each solid torus in
the kth stage of the construction of N. This results in a connected
set consisting of alternately " orthogonal" disks with disjoint solid
toroidal rims in the interior of each solid torus in the (k — l)st stage.
Call these sets L^, ί = 1, 2, , n*~\ where n ^ 3. There are two
cases to consider: (1) In each of the sets L^~λ) we can find a simple
closed curve passing longitudinally around the hole in the correspond-
ing solid torus in the (k — l)st stage and not meeting the residual
set C or (2) for some set I/J

 (fc~1), C meets every longitudinal simple
closed curve on L/*-1*.

In case (2), the residual set C does not meet the solid toridal
rims of the disks in Li

(fc~1) but C must meet at least one of the
spanning disks in such a way that no arc from one solid torus of a
linking pair to the other can be drawn in the spanning disk without
meeting C. Thus C must separate some spanning disk D into com-
ponents, one of which meets the solid torus spanned by D and ano-
ther of which meets one of the solid tori linked with that spanned
by D. This is impossible. For, in such a case, any longitudinal sim-
ple closed curve in the linking solid torus would be linked with C
while lying in the complement of C which contradicts the assumption
that M3 - C = P 3 is an open 3-cell.

Case (1) reduces to the following situation: Each solid torus in
the (k — l)st stage of the construction of the necklace JV contains
a longitudinal simple closed curve lying in the open 3-cell P 3 and
these curves are linked just as are the solid tori in the (k — l)st
stage. We can now replace the solid tori in the (k — l)st stage by
thinner ones where necessary so that the entire (k — l)st stage lies
in the open 3-cell P3. The spanning disks are now added to these
tori to obtain the sets Li{k~2), i = 1, 2, •••, wfc~2, and the argument
above can be repeated. The finite regression is now obvious. The
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contradiction in case (2) at each step forces us back to the first
stage in the construction of the necklace JV. But then the same
argument produces a longitudinal simple closed curve Jr in the
original solid torus T such that J' Γ\ C is empty. By our remark
above J and J' are isotopic and since Jr lies in an open 3-cell, so
does J.

COROLLARY. Every polygonal simple closed curve in a 0-inver-
tible 3-manifold lies in an open 3-cell.

Proof. The argument for Theorem 6 goes through in this case,
too, because the residual set C is closed and there is still a positive
distance between C and a necklace JV in the complement of C.

Imposing a natural restriction upon the manifold permits us to
generalize, not Theorem 6, but its corollary.

THEOREM 7. In a O-invertible, combinatorial n-manifold, every
polygonal simple closed curve lies in an open n-cell. (Hence such
manifords are simply connected.)

Proof. Let Mn be a O-invertible, combinatorial ^-manifold and
let J be a polygonal simple closed curve in Mn. In the combinatorial
^-manifold, a sufficiently thin tubular neighborhood of J will be a
polyhedral solid w-torus T (a homeomorph of the product of an (n — 1)
disk and the unit circle). In the interior of T we construct a Cantor
set JV by the method of Blankenship [2]. Then, with the appropriate
changes in dimension, the remainder of the proof is identical to that
of Theorem 6.

A natural conjecture at this point concerns fc-invertibility and
the vanishing of the homotopy group πk+1(Mn). Such a conjecture is
fruitless, however, in view of the following result.

THEOREM 8. Let An+1 = Sn x E\ n^ 2. Then An+1 is an (n - 1)-
invertible manifold (and clearly πn(An+1) is not trivial).

Proof. Assume that An+1 is imbedded in En+1 as the region be-
tween two concentric spheres. Then An+1 is a closed annulus and
there is a map h from An+1 onto Sn+1 such that h | An+1 is a home-
omorphism and h carries the two components of An+1 — An+1 into a
pair of points a and b.

If JV is any compact (n — l)-dimensional set in An+1, then Ẑ (JV)
is a compact (n — l)-dimensional set in Sn+1 — (a U b). Since Ẑ (JV)
does not separate Sn+1, there is a polygonal arc J in Sn+1 — h(N)
from a to b and Sn+1 - J is an (n + l)-cell. Whence /^-1(Sn+1 - J)
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is an (n + l)-cell in An+1 containing N and therefore An+1 is (n — 1)-
invertible.

The next result is a slight generalization of our characterization
theorem [4].

THEOREM 9. The only strongly (n — lyinvertible n-manifold is
S\

Proof. If Mn is strongly (n — l)-invertible, then Mn is compact.
Choose any standard decomposition Mn = Pn (J C Since C is a con-
tinuum of dimension ^n — 1 and Pn is an open w-cell, there is a
space homeomorphism carrying C into P \ Then Corollary 1 of Theo-
rem 2 in [7] applies to show that Mn is an ^-sphere.

THEOREM 10. The only (n — l)-invertible, noncompact n-mani-
fold is En.

Proof. Let Mn be an (n — l)-invertible, noncompact w-manifold.

Since Mn is locally compact, it is a union U A3 where we may cho-

ose A1 to be a closed ^-cell and where A5 is compact and lies in the
interior of Aj+1 for each j (Theorem 2.60 of [8]). Let U be an open
w-cell in Aλ with bi-collored boundary. Each set BdAά has dimension
^n — 1 and hence there is a homeomorphism hό of Mn onto itself
such that hjiBdAj) lies in U.

We claim that h3{A3) also lies in U. For BdA3 separates Mn

and if hn(An) does not lie in U, then hn{Mn — An) must lie in U.
But then hj(Mn-Aj) - hj(Mn~Aj) is compact whence M" = (Mn - A3) U A3

is the union of two compact sets and is compact. This contradiction
proves that h3{A3) lies in U.

From here we see that {hj^U)} is a sequence of open w-cells.
We may select a monotone increasing subsequence inductively (or else
all A3 lie in some hj^U) which completes the proof). Therefore Mn

is the union of a monotone increasing sequence of %-cells and, in
view of [3], Mn = En.

To finish this report, we collect some immediate consequences of
the Poincare duality and the Hurewicz theorem.

THEOREM 11. Let Mn be a compact, triangulated, orientable, k-
invertible n-mainfold. Then the homotopy groups πp(Mn) are trivial
for 1 g p ^ k.

COROLLARY 1. If Mn is as in Theorem 11, then Mn has trivial
integral homology groups in dimensions 1, 2, , k and n — k, ,
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n- 1.

COROLLARY 2. If Mn is as in Theorem 11, and if k^ [nj2] {the
largest integer in n\2), then Mn is a homotopy sphere.

Recent results of Stallings [9] and Zeeman [10] provide immediate
proofs of the following result.

THEOREM 12. A strongly [n/2]-invertible polyhedral n-manifold,
n Ξg 5, is an n-sphere.
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